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Abstract
There are many situations in supervised learning where the acquisition of data is very expen-
sive and sometimes determined by a user’s budget. Oneway to address this limitation is active
learning. In this study, we focus on a fixed budget regime and propose a novel active learning
algorithm for the pool-based active learning problem. The proposed method performs active
learning with a pre-trained acquisition function so that the maximum performance can be
achieved when the number of data that can be acquired is fixed. To implement this active
learning algorithm, the proposed method uses reinforcement learning based on deep neural
networks as as a pre-trained acquisition function tailored for the fixed budget situation. By
using the pre-trained deep Q-learning-based acquisition function, we can realize the active
learner which selects a sample for annotation from the pool of unlabeled samples taking
the fixed-budget situation into account. The proposed method is experimentally shown to be
comparable with or superior to existing active learning methods, suggesting the effectiveness
of the proposed approach for the fixed-budget active learning.
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1 Introduction

In the framework of supervised learning, the predictive performance of a learned model
should improve when the number of samples increases. However, it is not desirable to simply
increase the number of samples when the cost of annotation or acquiring labels is high.
Examples of such cases include problems that require expert knowledge for annotation as
well as problems that require large-scale experiments. Also, the effect of each set of data
on the training of the predictive model is not equal. Some data hardly change the model,
and some data can deteriorate the performance of the model. Therefore, it is necessary to
selectively annotate data that is considered useful for themodel. Tomaximize the performance
of the model, a framework for selective annotation called active learning [19,38] has been
developed. Active learning methods are roughly divided into two categories: pool-based and
stream-basedmethods. Pool-basedmethods assume that there is a large amount of data (called
pool data) that consists of features only (i.e., without labels or response values), and the active
learner selects which datum should be annotated next. The annotated datum is then included
in the training dataset. In the next step of active learning, the learner then selects a datum
from the remainder of the pool dataset. Stream-based active learning is a method that deals
with the problem of determining whether to annotate sequentially given data individually. In
this work, we focus on pool-based active learning.

In active learning, the most critical issue is how to design the acquisition function used for
determining which datum to annotate in the current circumstances. The majority of existing
approaches adopt some kind of measure of the difficulty of prediction as the sample selec-
tion criterion. These criteria often give good results empirically, but the same criterion is
used throughout the active learning process in these methods. The best strategy for design-
ing the acquisition function would differ according to context. In most of the conventional
active learning methods, a fixed single selection criterion is used throughout the learning
process, and the selected data may include outliers and other such samples that degrade the
performance of the model. For example, uncertainty sampling [30] selects the data with the
smallest discriminant posterior probability. In other words, the most difficult data for the
current learning model is selected. However, this method may select outliers on the discrim-
ination boundary. In order to avoid such a situation, it is necessary to change the criteria
flexibly according to the context of learning process.

Suppose we want to learn a prediction model when a budget is fixed in advance, namely,
the number of data to be labeled is pre-determined, which is an extremely common situation
when developing a machine learning system. In this case, a better model should be obtained
if we acquire the labeled data in a manner that considers the data acquisition order or context
within the budget. To meet these demands, we propose a method that applies reinforcement
learning [41] to active learning. The use of reinforcement learning for learning acquisition
function used in active learning is already considered in [49]. However, the method proposed
in [49] is designed only for classification problems and does not consider budget of learner.
Considering the context within which the data is acquired, data is selected according to an
appropriate criterion that reflects the current state of the learning model so that the model
performance is maximized when the specified number of data is acquired. For this purpose,
a deep Q-network (DQN) [32] is used to learn an acquisition function that takes the data
context into account.

The major contributions of this paper is summarized as follows:

– We tackled the problem of learning the acquisition function suitable for fixed-budget
active learning problem. Recent studies on active learning focus on the data-driven acqui-
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sition function design, but, to the best of the authors knowledge, the acquisition function
tailored for the fixed-budget situation is not investigated yet.

– To realize learning the fixed-budget acquisition function, we utilized the reinforcement
learning. In particular, we adopt the DQN and the acquisition function which is trained
in advance of the operational phase of the active learning. By using the reinforcement
learning, the training of the acquisition function is done so as to select appropriate samples
where the number of available samples is fixed.

The rest of the paper is organized as follows. In Sect. 2, related works on active learning
and recent results on learning acquisition functions from data are summarized. Section 3
introduces the notion of reinforcement learning and its modern implementation, the deep
Q-networks. Then, our proposed approach for the fixed budget active learning is presented
in Sect. 4, and it is experimentally evaluated in Sect. 5. The last section is devoted to the
discussion and conclusion.

2 RelatedWork

Active learning has a long history and is still actively researched [18,20,25] and applied
variety of problems [9,31,35,36,40,42,44]. However, in most of the literature, the criterion
used to select data from the pool data does not change according to the environment or
context, so if the criterion is not appropriate for the current status of the learning model or
pool data, the selected dataset will not improve the predictive model as expected.

Several recent studies have employed the meta-active learning approach, which aims to
learn the acquisition function for the active learning from the dataset [3,14,28,33,47,50].
The authors of [50] and [3] applied the active learning strategy to one-shot learning. Active
one-shot learning [50] is designed for stream-based active learning, in which reinforcement
learning is adopted to learn whether to label a given sample or to ignore it. The method
in [3] is a modified version of [50] for pool-based active learning. These methods utilize
reinforcement learning [10,41] to learn the acquisition function. In particular, [50] is similar
to our proposedmethod in that it uses a DQN. Themethod proposed in [50] has the advantage
of being able to learn the environment with high precision using a DQN. However, because
it is designed for cases in which an extremely small subset of pool data should be labeled, it
is not suitable for a standard active learning problem. Also, [12] utilize the DQN for learning
an appropriate acquisition function, but its formulation is heavily dependent on the Markov
decision process, meaning that it is only applicable to stream-based active learning, while
we consider the pool-based active learning in this study.

Recently, a methodology called learning active learning (LAL) was proposed in [28], in
which the acquisition function for active learning is pre-trained before the actual learning
phase. In the pre-training stage, a large number of datasets are collected. These datasets can
be collected from other problem domains or even be artificially generated. Then, features
are designed using the dataset and the predictive model to be learned. For example, the
distances between a candidate datum to be annotated and its k-nearest neighbor data in the
pool, the coefficients of a linear classifier (predictive model), or the average depth of random
forest classifiers could be employed. These features are calculated and stacked to form a
feature vector, and the feature vectors are used to train an acquisition function for improving
the prediction model. Then, the trained acquisition function is used in the predictive model
learning phase, in which the same feature vectors are extracted from the actual data and the
predictive model.
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A method that takes the feature extraction performed by LAL one step further by per-
forming feature engineering has also been proposed [33]. Using reinforcement learning, the
acquisition function for the embedded features is trained. This method is designed to perform
the feature embedding and learn the acquisition function in an end-to-end manner. However,
the predictive model for the method is currently limited to a two-class linear support vector
machine [46]. Though in this paper we concentrate on classification setting, our method is
applicable to both classification and regression settings.

In this study, we propose a method to pre-train the acquisition function for active learning
by using deep Q-network with datasets from other domains. The method enables us to select
data to be annotated according to the context of the learning process of a predictivemodel. For
the predictive model, we adopt random forest [6], which can realize multi-class classification
and regression in a unified framework, and it is easy to extract different kind of features from
the trained model as explained in Sect. 4, but other predictive models can be plugged into
our method. We note that even deep learning models can be used for classification in active
learning, but its hypothesis space is too large and has its own difficulty [23] when applied to
active learning.

We consider fixed budget regime in this study, and consider the optimal acquisition func-
tion under this circumstance, which is the main difference between existing work for learning
acquisition function for active learning [28,33]. We note that in some cases, we run active
learning algorithm without explicit limitation or budget for data annotation. In such cases,
we encounter another problem, namely, when to stop learning. There are several works on
the optimal stopping timing of active learning [2,4,22,26]. There are only few works in the
literature of active learning in which the budget is explicitly considered [7,13], where the
authors derived a budget aware stream-based active learning, which do not consider learning
the acquisition function from data.

3 Preliminary for Reinforcement Learning

Our active learning model uses a pre-trained acquisition function, which is learned by rein-
forcement learning. There are many possibilities for implementing reinforcement learning
and our main idea does not assume any specific realization of reinforcement learning. One of
themodern and promising approaches is that based on the deep neural networks. In particular,
DQN [32] is used to account for dynamic phenomena where time is explicitly involved. The
consecutive data acquisition process corresponds to the notion of “time”, and DQN is shown
to work well in the literature of learning acquisition function for active learning [12,50].

In this section, we introduce a reinforcement learning method based on DQN to realize
active learning in consideration of the context of data acquisition.

3.1 Q-Learning

This subsection presents an overview of Q-learning, which is a representative reinforcement-
learning method. Reinforcement learning [41] is a field of machine learning in which an
agent tries to maximize reward by taking actions under a state in which the agent is located.
Q-learning is a theoretically sound reinforcement learning methods that has been empirically
shown to perform well.

The aim in Q-learning is to obtain a function that calculates value for taking action at
when a learner or an agent is in state st at a certain time t . Here, st is a collection of parameters
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that specify the state or current situation of the agent, and at is a collection of parameters
that represent the action that is taken in the current situation. We define a Q-function that
accepts (st , at ) and outputs a reward.With this function, an action that maximizes the reward
is taken. The ideal Q-function Q∗(st , at ) is defined by

Q∗(st , at ) = max
π

E [Rt |st , at , π] . (1)

Here, π is a mapping from state s to action a; that is, it is the strategy for deciding which
action to take. In other words, Q∗(s, a) is the expectation of the obtained reward when the
agent takes the ideal action a in a certain situation s.

Reward Rt is composed of the cumulative immediate rewards from time t = 0 to t = T
with a discount factor as follows:

Rt =
T∑

τ=t

γ τ−t rτ , (2)

where T is the time in the final state, γ ∈ [0, 1] represents the discount rate, and rτ represents
the immediate reward at time t = τ . Applying Eq. (2) to Eq. (1) yields the following
expression:

Q∗(st , at ) = Est+1∼Pt+1

[
r + γ max

at+1
Q(st+1, at+1) | st , at

]
,

where Pt+1 is the probability distribution of state st+1. The action a∗ that maximizes the
reward at time t constitute the sequence of actions {a∗

τ }Tτ=t , and in this sense, reinforcement
learning considers the context of learning.

In Q-learning, the ideal Q-function in Eq. (1) is not available because of the lack of the
ground truth distribution of Rt . As a result, the Q-function is typically represented as a table
created from discrete states s and discrete actions a. The value (reward) of each cell in this
table is updated by the following formula:

Q(st+1, at+1) = Q(st , at )

+ α(rt+1 + γ max
a

Q(st+1, a) − Q(st , at )),

where α ∈ [0, 1] is a parameter indicating the learning rate. There are various ways to select
the action during learning, but here we use a simple method called the ε-greedy method [41].
The ε-greedy method is a strategy that takes a random action with a probability of ε and
maximizes the Q-function currently obtained with a probability of 1 − ε.

3.2 Deep Q-Network

A Deep Q-network (DQN) uses a deep neural network [15,29] instead of a table for rep-
resenting the Q-function; hence, unseen states and actions can be evaluated. Here, we
approximate the Q-function using a deep neural network determined by the parameter θ

as Q∗(s, a) ≈ Q(s, a; θ). The DQN starts with a randomly initialized parameter θ and
optimizes the following objective function:

Li (θ i ) = Es,a∼ε

[
1

2
(qi − Q(s, a))2

]
, (3)
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where

qi = Est+1∼ε

[
r + γ max

at+1
Q(st+1, at+1; θ i−1)|st , at

]
.

The index i indicates the i-th label annotation on the unlabeled data from the pool dataset.
Parameter θ i+1 is then optimized with qi+1, calculated using θ i , until i reaches a predefined
time T , which is the maximum number of data to be acquired as determined by the budget.
The final Q-function is the deep neural network determined by θ . The biggest difference
between conventional Q-learning and a DQN is that conventional Q-learning treats the states
and actions as discrete, whereas a DQN treats states and actions as continuous values. We
use a DQN in active learning by designing the state and behavior appropriately because of
its high empirical performance.

4 ProposedMethod

This section describes the procedure for applying DQN to active learning. The framework is
similar to that of [28], which considers the reduction of loss for the predictive model when
data is added to the training set, and learns a predictor of the reduction by using datasets from
other domains.

Learning the acquisition function would improve the performance of active learning.
However, active learning is in general used under scarce data regime, and we cannot expect
the acquisition function learned with a small number of data generalize well. In the proposed
method, we use a large number of datasets that are collected from other domains or artificially
generated to learn the acquisition function (i.e., the predictor of the reduction in loss). The
acquisition function is modeled and learned within the framework of a DQN. The state and
action in our formulation have the following design:

State: Parameters that represent the predictive model and that describe the training data (c.f.
coefficients for regressor, averaged distance to other data in the pool).

Action:A parameter that determines which data to select (c.f. uncertainty of prediction eval-
uated by the current predictive model).

By designing the state and action in this way, we can learn a Q-function that predicts the
amount of test loss reduction (reward) by selecting an unlabeled data (action) given the
current predictive model and pool data (state). Once the Q-functions have been obtained, it
is possible to select the data that reduces the test loss the most when a certain number of data
are added to the training data.

In this work, we consider supervised learning problem of predicting response vari-
able y ∈ {1, 2, . . . ,C} with d-dimensional explanatory variable x ∈ R

d . A dataset
D = {(x1, y1), . . . , (xN , yN )} is assumed to be given for training a predictive model.

4.1 Design of the State, Action and Reward

For implementingDQN,we have to design state and action as input and output ofDQN. In this
subsection, we first define the state, namely, the feature vector extracted from the predictive
model and annotated dataset. Then the action of the learner is defined, which corresponds
to the data selection policy in terms of the acquisition function for active learning. Finally,
the reward for a certain action is defined as the amount of increase of accuracy by adding
the annotated datum selected by the learner. We note that there are various possibilities for
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designing state, action, and reward, and we do not rule out other designs not adopted here.
Appropriateness of those designs would depend on the dataset, predictive model, budget, and
many other factors, and optimization of the design is an open issue.

4.1.1 Design of the State

The state used for the DQN should consist of parameters that reflect the performance and
structure of the current learning model. In [28], it is empirically shown that simple features,
such as the variance of the classifier output or the predicted probability distribution over
possible labels for a specific datapoint on synthetic data, is effective for training the acquisition
function. Here, we explain the parameters adopted for defining the state in our framework.

An arbitrary predictive model is used in the proposed framework, but we here consider a
random forest [6]. We adopt the OOB accuracy Ao as one of the features of the acquisition
function because it should be useful for expressing the performance of the predictive model.

The random forest used as the predictive model performs random sampling with replace-
ment of the given dataset k times. Let Φi , i = 1, . . . , k be a subset of the given dataset
to construct the i-th decision tree for ensemble learning. In the sampling with replacement,
approximately 36% of all data are not sampled1. The unsampled data subset is called the
out-of-bag (OOB) sample, and is used to assess the generalization performance of the pre-
dictive model [6]. The OOB accuracy is obtained by performing verification using this OOB
sample as follows:

Ao = 1

|O|
∑

(x,y)∈O
1y(RF(x; D)), (4)

where (xi , yi ) ∈ O = D \ ∪k
i=1Φi , and RF(x; D) is the output when the input x is given

to the random forest trained over the dataset D. 1yi (S) is an indicator function, and returns
1 when the statement yi = S holds, and returns 0 otherwise. We adopted the OOB accuracy
Ao because it directly express the performance of the predictive model.

We use decision trees for weak learners in random forest. Decision tree divides the feature
space into regions and determines the output depending on which region the input feature
belongs to. The average of the number of divided regions and the number of divisions in the
decision tree is given by

ν = 1

k

k∑

i=1

(NT
i + NS

i ), (5)

where NT
i is the number of terminal regions in the i-th tree, and NS

i is the number of splits
in the i-th tree among the k decision trees. The average of the number of regions that were
above and below the threshold when splitting just before the end region of the decision tree
is expressed by Eqs. (6) and (8), respectively.

1 Consider the probability that certain sample xi out of size n dataset is not sampled in the sampling procedure
of the random forest. The probability that this sample is not selected in a single sampling procedure is (n−1)/n.
Since random forest performs sampling with replacement n times from the size n dataset, the probability that

the certain sample xi is not selected is calculated as
(
n−1
n

)n =
(
1 − 1

n

)n n→∞−−−−→ e−1 	 0.36.

123



1952 Y. Taguchi et al.

νr = 1

k

k∑

i=1

|Ri |, (6)

Ri =
Ni⋃

e=1

{
z ∈ Γ i

e | z ≥ τ ie

}
, (7)

and

νl = 1

k

k∑

i=1

|Li |, (8)

Li =
Ni⋃

e=1

{
z ∈ Γ i

e | z < τ ie

}
. (9)

Here Γ i
e is the e-th region immediately before the end region in the decision tree h(·;Φi )

constructed using the i-th sample Φi , and where τ ie means the threshold for splitting in the
e-th region of a decision tree. Ni indicates the number of regions immediately preceding
the end region in the decision tree h(·;Φi ). These values are considered to be useful for
characterizing the intrinsic data structure, and used as features for the acquisition function.

We also use the first m contribution ratios of the eigenvalues of the d × d matrix X�X ∈
R
d×d , where rows of the matrix X are annotated data xi ∈ R

d at the current stage of active
learning. We note that m ≤ d , the dimension of explanatory variable. The intuition for the
use of eigenvalues and associated contribution ratios of the design matrix is that in statistical
learning theory [45], eigenvalue of the datamatrix plays an essential role for characterising the
learnability. The contribution ratio of the j-th principal component is given by ξ j = λ j∑n

i=1 λi
,

where λi is the i-th eigenvalue, and n is the dimension of feature vector x.
Finally, state vector s is defined by concatenating the above features as follows:

s = [Ao, ν, νr , νl , ξ1, . . . , ξm] ∈ R
4+m . (10)

4.1.2 Design of the Action

In the proposed method, the data selection corresponds to the action in the reinforcement-
learning procedure. In this study, the action is designed using the indices used in existing
active learning methods. We combine uncertainty sampling (US) [30] and the variance for
prediction [1] to improve the performance. Combining other indices used for active learning,
e.g., disagree probability [39], margin of the classification surface [43], would be possible,
with a possible increase of computational cost. In the proposed method, the action value is
determined so that the reward is maximized for a certain state. Then, from the pool dataset,
we select the datum closest to that optimal action and assign a label to it.

The posterior probability of class discrimination is an index used in US [30], a commonly
used active learning method, and it is defined by

x∗ = argminx∈Πu(x), u(x) = max
c

P(Y = c|x). (11)

Here, P(Y = c|x) is the probability that the class of the response variable Y is c given
x ∈ R

d , andΠ is the pooled dataset.We note thatwe can consider solving both regression and
classification problems by our method, but acquisition function is trained with classification
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dataset. It is not absolutely necessary, but using classification dataset make the design of
action easier.

Variance for prediction is another index widely used in active learning methods such
as query by committee (QBC) [1], and is defined as var(x) = 1

k

∑k
i=1(h(x;Φi ) −

μ(x))2, μ(x) = 1
k

∑k
i=1 h(x;Φi ), where h(x;Φi ) is a tree within the random forest and

Φi is the subset used for training the tree.
Using the pre-trained DQN, the proposed method outputs the discriminant posterior prob-

ability and variance as a feature vector to characterize an ideal action. The action vectors are
calculated for each datum in the pool, and the closest one to the ideal action is selected and
labeled, which is expressed as follows:

x∗ = argminx∈Π‖a − [u(x), var(x)]T ‖2, a = [u′, var′]. (12)

Here, u′ and var′ are the values of the discriminant posterior probability and variance, respec-
tively, determined to be optimal by the DQN.

4.1.3 Design of Reward

We define the immediate reward as the amount of increase in accuracy obtained by adding a
new training sample (x, y) to the predictive model. That is,

rt = acc(Dt ; D ∪ {(x, y)}) − acc(Dt ; D), (13)

where acc(Dt ; D) is the accuracy of the prediction of the model trained using dataset D and
evaluated using dataset Dt .

4.2 Advantage of the ProposedMethod

Because the reward in Q-learning is the cumulative sum of the immediate reward at each
decision, the learned acquisition function takes into account the context, i.e., the situation
of data acquisition under the condition that the maximum number of obtainable training
data is fixed. Additionally, the output behavior (which is treated as optimal) can be used
in combination with the criteria of any existing method; hence, the design of the state in
the proposed method is highly flexible, unlike that of the method proposed in [33], which
uses heuristics specific to certain tasks and predictive models. Although the use of data
from other domains was inspired by [28], the proposed method updates DQN parameters by
reinforcement learning.

The conceptual diagram and pseudo-code of the proposed method are shown in Fig. 1 and
Algorithm 1, respectively.

5 Experiments

This section describes the evaluation of the proposed active learning method via a set of
multi-class classification experiments with both artificial and real-world datasets2. We first
investigate which dataset is useful for learning the acquisition function. Then, the proposed
method is compared with existing methods over six datasets obtained from the UCI Machine

2 Source code implemented by the first author to reproduce the experimental results is available from https://
github.com/dxa0010/FBCA.
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Fig. 1 One epoch in reinforcement learning for learning an acquisition function

Algorithm 1 Training DQN
Input: Dataset D, number of epochs (iteration for learning DQN) Ne , initial random parameter for DQN θ ,

budget T .
1: for j = 1 to Ne do
2: Split D to training dataset and pool dataset
3: for t = 1 to T do
4: Train RF model using the training dataset, and calculate state s by Eq. (10)
5: Calculate action value from Q(s, a; θ) and select data from the pool according to Eq. (12).
6: Calculate immediate reward by Eq. (13)
7: end for
8: Train DQN. Find θ j that minimizes Eq. (3), and update the parameter: θ = θ j
9: end for
Output: θ

Learning Repository. Finally, through a simple experiment, we demonstrate that the proposed
method is able to select appropriate samples considering the context of the learning process.
Throughout the experiments, the architecture of DQN is fixed as follows:

– input layer: 10 dimension for the above defined state features.
– three times repetition of 16dimensional fully connected layer followedbyRelu activation.
– output layer: 2 dimension for the above defined action features.

The architecture is relatively small and the performance could be improved by neural archi-
tecture search [11], which is left for our future work. The network is trained using Adam
[24] with learning rate 0.001 and the cost function is the mean absolute error.

To define the state vector s in Eq. (10), the parameterm should be determined. Throughout
the experiments, we set m = 6, which is the smallest number of dimensions of all of the
datasets used in the experiments. In our preliminary experiments, we saw that largerm tends
to offer better classification performance, but the difference were not significant.
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Table 1 Number of classes,
feature dimensions, and samples
in the datasets used for training
the acquisition function

Name # of classes # of features # of samples

Dataset A 2 6 10,000

Dataset B 10 8 10,000

Dataset 1 5 7 10,000

Dataset 2 10 8 10,000

Dataset 3 15 10 10,000

Dataset 4 25 17 10,000

5.1 Dependence on the pre-training dataset

In the proposed method, as in [28], the data selection criterion (the acquisition function) is
learned beforehand using datasets from other domains. In this study, we created six datasets
for classification problems following the procedure proposed in [16]. Details of the generated
artificial datasets are reported in Table 1.

Of these datasets, datasets A andBwere used for training theDQN, and the remaining four
datasets were used for verification. For all datasets, in the active learning experiment, 1,000
data were used as verification data, and the remaining 9,000 data were divided into training
data and pool data. During learning, the number of training data for DQN was randomly
varied to enable it to handle various situations. The budget for active learning was set to 100
samples, and the training of the DQN was completed when 100 samples were taken. The
result of experimenting under these conditions is shown in Fig. 2.

Of all four types of datasets, the proposed method trained with dataset A yielded superior
performance. This experiment shows that there is a large difference in performance depending
on the learning source dataset. In the following experiment, the model trained with dataset
A was used.

5.2 Experiments with Real-World datasets

In this section, we compare the performance of the proposed method with those of existing
methods over six datasets from the UCI Machine Learning Repository: adult [27], car [5],
winequality-red, white [8], googletrip-review, and tripadvisor-review [34]. Profile of the used
datasets are summarized inTable 2. These datasets are popular benchmark datasets inmachine
learning and active learning, range from classical (adult, car, winequality) to relatively new
(googetrip-review and tripadvisor-review), various input dimensionalities (6–23), includes
both qualitative and quantitative features. In particular, the latter four datasets are considered
as suitable for active learning where annotation is hard, namely, evaluating wine quality
requires tasting by expert sommeliers, and giving a review to a tourist spot require visiting
the place actually.

US, QBC, LAL, and random sampling were used as comparison methods. A similar
method [33] relies on a two-class support vector machine as a learning model, so it is not
suitable for an experiment with a multi-class discriminant. As stated in Sect. 5.1, the number
of data to be acquired (the budget) from the pool data is 100. The result of the experiment
using this setting is shown in Fig. 3.

The proposed method performed significantly better than the other methods on the
googletrip-review and tripadvisor-review datasets, and it performed comparably to the other
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(a) (b)

(c) (d)

Fig. 2 Difference in performance depending on the dataset for learning the acquisition function. Of the 6
types of datasets shown in the Table 1, “1” is the one learned with datasetA, and “2” is the one learned with
datasetB (line types are described in (a)). The vertical axis is the correct answer rate and the horizontal axis
is the number of data to be acquired. Each plot is the averaged values in 5 times

Table 2 Profile of the datasets used for evaluation

Dataset Dimension # of initial samples # of test samples # of pools Attribute type

Googletrip 23 10 1000 4446 Quantitative

Tripadvisor 10 10 1000 31551 Quantitative

Wine white 11 200 1000 3698 Mixed

Wine red 11 100 500 999 Mixed

Car 6 10 500 1218 Quantitative

Adult 14 10 1000 47742 Mixed

methods for wine-white and adult datasets. Among six datasets, our proposed method does
not perform well compared to other methods for wine-red and car datasets. From Table 2,
these two datasets have relatively smaller pool datasets, and it is possible that our pro-
posed method requires larger pool datasets than other methods to ensure that the actual and
pre-trained datasets have large enough intersection. The difference in performance between
datasets could be partly due to the similarity between the dataset used for pre-training and the
dataset used for active learning. We also conjecture the similarity of feature distribution to
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(a) (b)

(d)(c)

(e) (f)

Fig. 3 Comparison of active learning methods on six real-world datasets. The vertical axis shows the correct
answer rate and the horizontal axis shows the number of data acquired. Results for a googletrip-review, b
tripadvisor-review, c winequality-white, d winequality-red, e car, and f adult. Each plot is the average result
of five-fold cross-validation

the datasets for pre-training is the most important factor to the performance of the proposed
method. Investigation of the feature similarity and selection of the best dataset for learning
acquisition functions is our important future work.

5.3 Evaluation of the Context Awareness

In this subsection, we compare the active learning methods with the oracle data selector to
demonstrate that the proposedmethod considers the context of data selection. Here, the oracle
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Table 3 Performance comparison
of the oracle and proposed
method after acquiring five data

Method Accuracy mean±std Index match rate

Oracle 93.59 ± 2.792 –

Proposed 93.59 ± 2.792 32.0%

Random 91.60 ± 2.939 16.0%

is amethod that selects themost appropriate set of data. Tomake the combinatorial calculation
feasible, the size of the pool dataset is restricted to 25 and the number of acquisitions (the
budget) is set to five. For this setting, the acquisition function was trained using dataset A,
and the active learner was tested on the tripadvisor-review dataset. In this experiment, we
compare the classification accuracy of the final models and the matching rate of the selected
subset of data. Table 3 shows the results of five-fold cross-validation.

When comparing the proposed method with the oracle, the averages of the five trials are
exactly the same. The matching rate of the data selected by the proposed method is 32%,
which is higher than that of random sampling. This indicates that the probability of obtaining
a combination close to that of the oracle is increased by considering the context. The five data
points actually selected are different to those obtained by the oracle because the data were
acquired so that the performance is maximized over the combination of all five. Although
the number of pool data was very low (25), the number of combinations of data acquisition
(25C5 = 53, 130) is sufficiently large.When acquiring data at random, the probability that all
five selected data would match that of the oracle is 0.000019%. Hence, the results obtained
by the proposed method are much better than the expected value of those obtained at random.

5.4 Computational Costs

Active learning is a methodology required in situations where measurement and experiments
are costly, and it is unlikely that the calculation cost of the acquisition function will become
a problem. For reference, Fig. 4 shows the time required to evaluate the acquisition function
for eachmethod used in our comparative experiment. Since computational time is affected by
various factors such as the dimensionality of data, size of pooled dataset and distribution of
pool or population dataset, we consider the relative computational times to those of random
sampling, which is of the order of milliseconds3. We note that for our LAL and the proposed
method,we have to train acquisition functions in advance. The computational cost for training
acquisition function for LAL is around one hour, and that for DQN (Ne = 5000 epochs) in
our method is around 20 hours. The acquisition functions can be trained in advance and the
computational cost for training the acquisition function does not affect the running time for
active learning. Also, the computational time would be reduced by parallel computation.

From Fig. 4, we see that the uncertainty sampling method is consistently faster than other
methods. For the other three methods, the computational time is comparable.

6 Conclusion and FutureWork

We proposed an active learning method suitable for a fixed budget regime. The proposed
method considers the context of data acquisition using a random forest as a learning model

3 We used Intel(R) core i7-4712MQ CPU 2.30GHz with 8GB RAM.
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Fig. 4 Relative computational time to random sampling

and a reinforcement-learningDQN.When the data used for reinforcement learning in advance
matches the data at the time of operation, a significant improvement in accuracy was seen
when compared with the results of the existing method.

In the proposed method, learning is performed by extracting features from the target
learning model and dataset. However, because this part relies on human-generated heuristics,
it may affect performance depending on how the features are selected. In the future, we will
make this part automatically learnable. In addition, we used a single dataset for training
the acquisition function, but the generalization would be improved by mixing datasets from
different domains. For that purpose, it will be necessary to investigate the difference in
performance depending on the dataset used for learning the acquisition function.

As an important future work, theoretical underpinning of the proposed approach remains
to be investigated. For example, sample complexity of active learning is established when the
disagreement-based acquisition functions is employed [17,21,51]. However, the approach of
learning acquisition function is recently proposed and its learning theory is yet to be devel-
oped.We expect that to develop a learning theory for the proposedmethod, combination of the
analysis of online learning (which requires treatment as stochastic processes and martingale
analysis) and a regret analysis for assessing the quality of the acquisition function trainedwith
reinforcement learning would be necessary, making the problem difficult. Another impor-
tant direction of future research is the strategy of multiple-selection or batch selection from
pooled dataset. When we consider deep neural network as a predictive model, adding only
one sample per iteration of active learning is not reasonable because of high cost for training
the model. Also, it is unlikely that performance of a CNN changes with only one additional
training datum. Several selection methods of multiple samples at a time in active learning is
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recently studies [37,48], and incorporating the notion of context to multiple sample selection
method would be of great practical importance.
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