Skip to main content
Log in

Research on Robot Motion Planning Based on RRT Algorithm with Nonholonomic Constraints

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

A 1–0 Bg-RRT algorithm is proposed to reduce computational time and complexity, even in complex environments. Different from Rapidly-exploring Random Tree (RRT) and Bias-goal Rapidly-exploring Random Tree (Bg-RRT), using 1–0 Bg-RRT with 1 and 0 change probability biased to the target to construct the tree is faster and can jump out of the local minimum in time. Although unknown space path planning problem based on RRT is difficult to obtain satisfactory performance, but the improved algorithm provides a more superior compared with the basic RRT algorithm and Bg-RRT algorithm. The simulation results show that the 1–0 Bg-RRT algorithm has shorter computational time and shorter path than the traditional RRT algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Chen D, Li S, Wu Q, Luo X (2020) New disturbance rejection constraint for redundant robot manipulators: an optimization perspective. IEEE Trans Ind Inf 16(4):2221–2232. https://doi.org/10.1109/TII.2019.2930685

    Article  Google Scholar 

  2. Chen D, Li S, Wu Q (2020) Rejecting chaotic disturbances using a super-exponential-zeroing neurodynamic approach for synchronization of chaotic sensor systems. Sensors (Basel) 19(1):74. https://doi.org/10.3390/s19010074

    Article  Google Scholar 

  3. Chen D, Li S, Li W, Wu Q (2020) A multi-level simultaneous minimization scheme applied to jerk-bounded redundant robot manipulators. IEEE Trans Autom Sci Eng 17(1):463–474. https://doi.org/10.1109/TASE.2019.2931810

    Article  Google Scholar 

  4. Chen D, Li S, Lin FJ, Wu Q (2020) New super-twisting zeroing neural-dynamics model for tracking control of parallel robots: a finite-time and robust solution. IEEE Trans Cybern 50(6):2651–2660. https://doi.org/10.1109/TCYB.2019.2930662

    Article  Google Scholar 

  5. Khan AH, Li S, Luo X (2020) Obstacle avoidance and tracking control of redundant robotic manipulator: an RNN-based metaheuristic approach. IEEE Trans Ind Inf 16(7):4670–4680. https://doi.org/10.1109/TII.2019.2941916

    Article  Google Scholar 

  6. Khan AH, Li S, Cao X (2021) Tracking control of redundant manipulator under active remote center-of-motion constraints: an RNN-based metaheuristic approach. Sci China Inf Sci 64(3):132203. https://doi.org/10.1007/s11432-019-2735-6

    Article  MathSciNet  Google Scholar 

  7. Khan AH, Cao X, Li S, Katsikis VN, Liao L (2020) BAS-ADAM: an ADAM based approach to improve the performance of beetle antennae search optimizer. IEEE/CAA J Automatica Sinica 7(2):461–471. https://doi.org/10.1109/JAS.2020.1003048

    Article  Google Scholar 

  8. Wu Q, Shen X, Jin Y et al (2019) Intelligent beetle antennae search for UAV sensing and avoidance of obstacles. Sensors 19(8):1758. https://doi.org/10.3390/s19081758

    Article  Google Scholar 

  9. Liu G, Shu C, Liang Z, Peng B (2021) A modified sparrow search algorithm with application in 3d route planning for UAV. Sensors 21(4):1224. https://doi.org/10.3390/s21041224

    Article  Google Scholar 

  10. D’Silva T, Miikkulainen R (2009) Learning dynamic obstacle avoidance for a robot arm using neuroevolution. Neural Process Lett 30:59–69. https://doi.org/10.1007/s11063-009-9111-7

    Article  Google Scholar 

  11. Khan AT, Cao X, Li S et al (2021) Quantum beetle antennae search: a novel technique for the constrained portfolio optimization problem. Sci China (Inf Sci) 64(05):121–134. https://doi.org/10.1109/TII.2019.2941916

    Article  MathSciNet  Google Scholar 

  12. Khan AT, Li S, Cao X (2021) Control framework for cooperative robots in smart home using bio-inspired neural network. Measurement. https://doi.org/10.1016/j.measurement.2020.108253

    Article  Google Scholar 

  13. Khan AT, Li S, Kadry S, Nam Y (2020) Control framework for trajectory planning of soft manipulator using optimized RRT algorithm. IEEE Access 8:1730–1743. https://doi.org/10.1109/ACCESS.2020.3024630

    Article  Google Scholar 

  14. Zhang Y, Li S (2017) Perturbing consensus for complexity: a finite-time discrete biased min-consensus under time-delay and asynchronism. Automatica 85:441–447. https://doi.org/10.1016/j.automatica.2017.08.014

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang Y, Li S (2017) Distributed biased min-consensus with applications to shortest path planning. IEEE Trans Autom Control 62(10):5429–5436. https://doi.org/10.1109/TAC.2017.2694547

    Article  MathSciNet  MATH  Google Scholar 

  16. Li G, Chou W (2018) Path planning for mobile robot using self-adaptive learning particle swarm optimization. Sci China Inf Sci 61(5):267–284. https://doi.org/10.1007/s11432-016-9115-2

    Article  MathSciNet  Google Scholar 

  17. Eshaghnezhad M, Rahbarnia F, Effati S et al (2019) An artificial neural network model to solve the fuzzy shortest path problem. Neural Process Lett 50:1527–1548. https://doi.org/10.1007/s11063-018-9945-y

    Article  Google Scholar 

  18. Urmson C, Simmons R (2003) Approaches for heuristically biasing RRT growth. In: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453). IEEE, 2: 1178–1183. doi: https://doi.org/10.1109/IROS.2003.1248805

  19. LaValle SM, Kuffner Jr JJ (1999) Randomized kinodynamic planning. In: Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C). IEEE 1:473–479. Doi: https://doi.org/10.1109/ROBOT.1999.770022.

  20. Jordan M, Perez A (2013) Optimal bidirectional rapidly-exploring random trees. series/report no. MIT-CSAIL-TR-2013–021. https://dspace.mit.edu/handle/1721.1/79884

  21. Qureshi AH, Ayaz Y (2015) Intelligent bidirectional rapidly-exploring random trees for optimal motion planning in complex cluttered environments. Robot Auton Syst 68:1–11. https://doi.org/10.1016/j.robot.2015.02.007

    Article  Google Scholar 

  22. Shiarlis K, Messias J, Whiteson S (2017) Rapidly exploring learning trees. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE pp. 1541–1548. Doi: https://doi.org/10.1109/ICRA.2017.7989184

  23. Pérez-Higueras N, Caballero F, Merino L (2018) Learning human-aware path planning with fully convolutional networks. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 5897–5902. Doi: https://doi.org/10.1109/ICRA.2018.8460851

  24. Qureshi A H, Simeonov A, Bency M J, Yip M C (2019) Motion planning networks. In: 2019 International Conference on Robotics and Automation (ICRA). IEEE, pp. 2118–2124. Doi: https://doi.org/10.1109/ICRA.2019.8793889

  25. Naderi K, Rajamäki J, Hämäläinen P (2015) RT-RRT*: a real-time path planning algorithm based on RRT. In: Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games. ACM, pp. 113–118. Doi: https://doi.org/10.1145/2822013.2822036

  26. Ichter B, Harrison J, Pavone M (2018) Learning sampling distributions for robot motion planning. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE pp. 7087–7094. Doi: https://doi.org/10.1109/ICRA.2018.8460730

  27. Yang K, Sukkarieh S (2008). 3D smooth path planning for a UAV in cluttered natural environments. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp 794–800. Doi: https://doi.org/10.1109/IROS.2008.4650637

  28. Li S, Wang Z, Li Y (2013) Using laplacian eigenmap as heuristic information to solve nonlinear constraints defined on a graph and its application in distributed range-free localization of wireless sensor networks. Neural Process Lett 37:411–424. https://doi.org/10.1007/s11063-012-9255-8

    Article  Google Scholar 

  29. Rama P, Murugan S (2020) Localization approach for tracking the mobile nodes using FA based ANN in subterranean wireless sensor networks. Neural Process Lett 51:1145–1164. https://doi.org/10.1007/s11063-019-10128-3

    Article  Google Scholar 

  30. Lü E, Ruan Q, Liu Y et al (2019) Obstacle avoidance path planning for intelligent forklift truck based on dynamic identification zone and B-Spline curve. Trans Chin Soc Agric Mach 50(1):359–366. https://doi.org/10.6041/j.issn.1000-1298.2019.01.041

    Article  Google Scholar 

  31. Noreen I (2020) Collision free smooth path for mobile robots in cluttered environment using an economical clamped cubic B-Spline. Symmetry 12(9):1567. https://doi.org/10.3390/sym12091567

    Article  Google Scholar 

  32. Chiaravalli D, Califano F, Biagiotti L et al (2018) Physical-consistent behavior embodied in B-spline curves for robot path planning. IFAC-Pap OnLine 51(22):306–311. https://doi.org/10.1016/j.ifacol.2018.11.559

    Article  Google Scholar 

  33. Keller J, Thakur D, Gallier J, Kumar V (2016) Obstacle avoidance and path intersection validation for UAS: a B-spline approach. In: 2016 IEEE Intenational Copnference on Unmanned Aircraft Systems (ICUAS). IEEE, pp: 420–429. Doi: https://doi.org/10.1109/ICUAS.2016.7502631

  34. Berglund T, Brodnik A, Jonsson H, Staffanson M, Soderkvist I (2010) Planning smooth and obstacle-avoiding B-Spline paths for autonomous mining vehicles. IEEE Trans Autom Sci Eng 7(1):167–172. https://doi.org/10.1109/TASE.2009.2015886

    Article  Google Scholar 

  35. Mohamed E, Milan S, Reza N (2015) Continuous path smoothing for car-like robots using B-Spline curves. J Intell Rob Syst 80(1):23–56. https://doi.org/10.1007/s10846-014-0172-0

    Article  Google Scholar 

  36. Chen WJ, Jhong BG, Chen MY (2016) Design of path planning and obstacle avoidance for a wheeled mobile robot. Int J Fuzzy Syst 18(6):1080–1091. https://doi.org/10.1007/s40815-016-0224-7

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research was funded by the National Natural Science Foundation of China (No. 51375314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, Y., Zhang, B., Ke, C. et al. Research on Robot Motion Planning Based on RRT Algorithm with Nonholonomic Constraints. Neural Process Lett 53, 3011–3029 (2021). https://doi.org/10.1007/s11063-021-10536-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-021-10536-4

Keywords

Navigation