Skip to main content
Log in

An Effective Feature Extraction Approach Based on Spectral-Gabor Space Discriminant Analysis for Hyperspectral Image

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

With the development of remote sensing technology, hyperspectral sensors can record reflectance of ground objects in hundreds of bands, which undoubtedly brings great benefits for hyperspectral remote sensing image that contains abundant information of the land covers. At present, some hyperspectral images are contaminated by the noise and a lack of spatial information, this phenomenon hinders the improvement of classification accuracy. To further mine the spatial features of hyperspectral image, we propose an effective feature extraction method based on Spectral-Gabor space discriminant analysis (SGDA). The framework of SGDA is roughly divided into four steps: firstly, we obtain \(p_i\) \(\{p_i|1\le i<d\}\) principal components by PCA, where d denotes the number of features; secondly, we filter the \(p_i\) principal components with Gabor filter on five different scales and eight different orientations and obtain Gabor spatial features; thirdly, incorporating the spectral features of original hyperspectral data into the Gabor spatial features to form the Spectral-Gabor space features F; finally, we project the fusion features to a low-dimensional subspace, and then maximize the Spectral-Gabor space between-class scatter matrix (\(S_b^{SG}\)) and minimize the Spectral-Gabor space within-class scatter matrix (\(S_w^{SG}\)) at the same time inspired by the idea of Fisher line discriminant analysis. Also, in the above fusion process, the proportion of spectral and spatial information can be controlled by using a penalty factor \(\alpha \). Experimental results on three hyperspectral datasets show the better classification performance of the SGDA method than the state-of-art methods on the condition of small sample size by Maximum Likelihood Classifier (MLC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Kumar B, Dikshit O, Gupta A et al (2020) Feature extraction for hyperspectral image classification: a review [J]. International Journal of Remote Sensing 41(16):6248–6287

    Article  Google Scholar 

  2. Jia X, Kuo BC, Crawford MM (2013) Feature mining for hyperspectral image classification[J]. Proc IEEE 101(3):676–697

    Article  Google Scholar 

  3. Hosseini SA, Ghassemian H (2016) Hyperspectral Data Feature Extraction Using Rational Function Curve Fitting[J]. Int J Pattern Recognit Artif Intell 30(01):1650001. https://doi.org/10.1142/S0218001416500014

    Article  MathSciNet  Google Scholar 

  4. Hosseini SA, Ghassemian H (2016) Rational function approximation for feature reduction in hyperspectral data[J]. Remote Sensing Letters 2:101–110

    Article  Google Scholar 

  5. Imani M, Ghassemian H (2017) High-dimensional image data feature extraction by double discriminant embedding[J]. Pattern Anal Appl 20(2):473–484

    Article  MathSciNet  Google Scholar 

  6. Imani M, Ghassemian H (2016) Binary coding based feature extraction in remote sensing high dimensional data[J]. Inf Sci 342:191–208

    Article  Google Scholar 

  7. Kelam H, Venkatesan M (2019) Optimal band selection using generalized covering-based rough sets on hyperspectral remote sensing big data. Advances in big data and cloud computing. Springer, Singapore, pp 263–273

  8. Shang, R., Lan, Y., Jiao, L. et al. A dynamic local cluster ratio-based band selection algorithm for hyperspectral images. Soft Comput, 2019, 23: 8281–8289. DOI: 10.1007/s00500-018-3464-7

    Article  Google Scholar 

  9. Veera Senthil Kumar G, Vasuki S Clustering based band selection for endmember extraction using simplex growing algorithm in hyperspectral images. Multimed Tools Appl, 2017, 76: 8355–8371. DOI: 10.1007/s11042-016-3420-4

    Article  Google Scholar 

  10. Dernoncourt D, Hanczar B, Zucker JD (2014) Analysis of feature selection stability on high dimension and small sample data[J]. Comput Stat Data Anal 71:681–693

    Article  MathSciNet  Google Scholar 

  11. Agrawal N, Verma K (2020) Dimensionality reduction on hyperspectral data set. In: Proceedings of the 2020 First international conference on power, control and computing technologies (ICPC2T). IEEE, pp 139–142

  12. Hotelling H (1933) Analysis of a complex of statistical variables into principal components[J]. J Educ Psychol 24(6):417–441

    Article  Google Scholar 

  13. Liao W, Pizurica A, Scheunders P et al (2013) Semisupervised local discriminant analysis for feature extraction in hyperspectral images[J]. IEEE Trans Geosci Remote Sens 51(1):184–198

    Article  Google Scholar 

  14. Dong P, Liu J (2011) Hyperspectral Image Classification Using Support Vector Machines with an Efficient Principal Component Analysis Scheme. Foundations of Intelligent Systems. Advances in Intelligent and Soft. Computing 122:131–140. https://doi.org/10.1007/978-3-642-25664-6-17

    Article  Google Scholar 

  15. Fauvel M, Chanussot J, Benediktsson JA (2009) Kernel principal component analysis for the classification of hyperspectral remote sensing data over urban areas [J]. EURASIP Journal on Advances in Signal Processing 2009(1):783194

    Article  Google Scholar 

  16. Scholkopf B, Smola A, Muller KR (1998) Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Comput 10:1299–1319

    Article  Google Scholar 

  17. Villa A, Chanussot J, Benediktsson JA et al (2013) Unsupervised methods for the classification of hyperspectral images with low spatial resolution[J]. Pattern Recogn 46(6):1556–1568

    Article  Google Scholar 

  18. Wen J, Tian Z, Liu X et al (2013) Neighborhood preserving orthogonal PNMF feature extraction for hyperspectral image classification. IEEE J Select Top Appl Earth Observ Remote Sens 6(2):759–768

    Article  Google Scholar 

  19. Hosseini A, Ghassemian H (2012) Classification of hyperspectral and multispectral images by using fractal dimension of spectral response curve. In: Proceedings of the 2012 20th Iranian conference on electrical engineering (ICEE). IEEE, pp 1452–1457

  20. Hosseini SA, Ghassemian H (2013) A new hyperspectral image classification approach using fractal dimension of spectral response curve. In: Proceedings of the 2013 21st Iranian conference on electrical engineering (ICEE). IEEE, pp 1–6

  21. Li L, Ge H, Gao J et al (2019) Hyperspectral Image Feature Extraction Using Maclaurin Series Function Curve Fitting[J]. Neural Process Lett 49(1):357–374

    Article  Google Scholar 

  22. Chang CI, Ren H (2000) An experiment-based quantitative and comparative analysis of target detection and image classification algorithms for hyperspectral imagery[J]. IEEE Trans Geosci Remote Sens 38(2):1044–1063

    Article  Google Scholar 

  23. Landgrebe DA (2005) Signal theory methods in multispectral remote sensing[M]. John Wiley and Sons

    Google Scholar 

  24. Kuo BC, Landgrebe DA (2004) Nonparametric weighted feature extraction for classification[J]. IEEE Trans Geosci Remote Sens 42(5):1096–1105

    Article  Google Scholar 

  25. Mika S, Ratsch G, Weston J (1999) Fisher discriminant analysis with kernels. Neural networks for signal processing IX, et al (1999). In: Proceedings of the 1999 IEEE signal processing society workshop. IEEE pp 41–48

  26. Baudat G, Anouar F (2000) Generalized discriminant analysis using a kernel approach[J]. Neural Comput 12(10):2385–2404

    Article  Google Scholar 

  27. Imani M, Ghassemian H (2015) Feature space discriminant analysis for hyperspectral data feature reduction[J]. ISPRS J Photogramm Remote Sens 102:1–13

    Article  Google Scholar 

  28. Cai D, He X, Han J (2007) Semi-supervised discriminant analysis. In: Proceedings of the IEEE 11th international conference on computer vision, 2007. ICCV 2007. IEEE, pp 1–7

  29. Chen S, Zhang D (2011) Semisupervised dimensionality reduction with pairwise constraints for hyperspectral image classification[J]. IEEE Geosci Remote Sens Lett 8(2):369–373

    Article  Google Scholar 

  30. Sugiyama M, Nakajima S et al (2010) Semi-supervised local Fisher discriminant analysis for dimensionality reduction[J]. Mach Learn 78(1–2):35

    Article  MathSciNet  Google Scholar 

  31. He X, Cai D, Yan S (2005) Neighborhood preserving embedding. Computer Vision, et al (2005) ICCV 2005. Tenth IEEE International Conference on. IEEE (2):1208–1213

  32. He X, Niyogi P (2004) Locality preserving projections. Advances in neural information processing systems, pp 153–160

  33. He X, Cai D, Han J (2008) Learning a maximum margin subspace for image retrieval[J]. IEEE Trans Knowl Data Eng 20(2):189–201

    Article  Google Scholar 

  34. Li L, Ge H, Gao J (2017) A spectral-spatial kernel-based method for hyperspectral imagery classification[J]. Adv Space Res 59(4):954–967

    Article  Google Scholar 

  35. Gao J, Xu L (2016) A novel spatial analysis method for remote sensing image classification[J]. Neural Process Lett 43(3):805–821

    Article  Google Scholar 

  36. Gao J, Xu L, Shen J et al (2015) A novel information transferring approach for the classification of remote sensing images[J]. EURASIP Journal on Advances in Signal Processing 2015(1):38

    Article  Google Scholar 

  37. Gao J, Xu L, Huang F (2016) A spectral-textural kernel-based classification method of remotely sensed images[J]. Neural Comput Appl 27(2):431–446

    Article  Google Scholar 

  38. Gao J, Xu L (2015) An efficient method to solve the classification problem for remote sensing image. AEU-Int J Elect Commun 69(1):198–205

    Article  Google Scholar 

  39. Gao J, Xu L, Shi A et al (2014) A kernel-based block matrix decomposition approach for the classification of remotely sensed images[J]. Appl Math Comput 228:531–545

    MathSciNet  MATH  Google Scholar 

  40. Huang X, Zhang L (2012) An SVM ensemble spproach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery[J]. IEEE Trans Geosci Remote Sens 51(1):257–272

    Article  Google Scholar 

  41. Wan WM (2018) A band selection method for airborne hyperspectral image based on chaotic binary coded gravitational search algorithm[J]. Neurocomputing 273(1):57–67

    Google Scholar 

  42. Huang H, Shi G, He H et al (2019) Dimensionality reduction of hyperspectral imagery based on spatial-spectral manifold learning. IEEE Trans Cybern 50(6). https://doi.org/10.1109/TCYB.2019.2905793

  43. Fauvel M, Chanussot J, Benediktsson JA et al (2007) Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. In: Proceedings of the 2007 IEEE international geoscience and remote sensing symposium. IEEE, pp 4834–4837

  44. Tuia D, Volpi M et al (2014) Automatic feature learning for spatio-spectral image classification with sparse SVM[J]. IEEE Trans Geosci Remote Sens 52(10):6062–6074

    Article  Google Scholar 

  45. Jia S, Zhang X et al (2015) Spectral-Spatial Hyperspectral Image Classification Using 1/2 Regularized Low-Rank Representation and Sparse Representation-Based Graph Cuts[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8(6):2473–2484

    Article  Google Scholar 

  46. Li J, Marpu PR, Plaza A et al (2013) Generalized composite kernel framework for hyperspectral image classification[J]. IEEE Trans Geosci Remote Sens 51(9):4816–4829

    Article  Google Scholar 

  47. Saqui, D; Saito, JH; Jorge, LADC; Ferreira, EJ; Lima, DC (2017) Methodology for band selection of hyperspectral images using genetic algorithms and gaussian maximum likelihood classifier. Int Conf Comput Sci Comput Intell 51(1): 733-738

    Google Scholar 

  48. Jia S, Wu K, Zhu J et al (2018) Spectral-spatial Gabor surface feature fusion approach for hyperspectral imagery classificationa. IEEE Trans Geosci Remote Sens 99:1–13

    Google Scholar 

  49. Meshgini S, Aghagolzadeh A, Seyedarabi H (2013) Face recognition using Gabor-based direct linear discriminant analysis and support vector machine[J]. Comput Electr Eng 39(3):727–745

    Article  Google Scholar 

  50. Koc M, Barkana A (2011) A new solution to one sample problem in face recognition using FLDA[J]. Appl Math Comput 217(24):10368–10376

    MathSciNet  MATH  Google Scholar 

  51. Gao J, Fan L, Xu L (2013) Median null (Sw)-based method for face feature recognition[J]. Appl Math Comput 219(12):6410–6419

    MathSciNet  MATH  Google Scholar 

  52. Jain A, Zongker D. Feature selection: evaluation, application, and small sample performance. IEEE Trans Pattern Anal Mach Intell, 1997, 19(2):153–158

    Article  Google Scholar 

  53. Purdue Research Foundation (2015) Hyperspectral images by multiSpec. https://engineering.purdue.edu/biehl/MultiSpec/

  54. Universidad-del-Pais-Vasco (2014) Hyperspectral remote sensing scenes. http://www.ehu.eus/ccwintco/index.php?title=HyperspectralRemoteSensingScenes

Download references

Acknowledgements

This work is partly supported by the Doctoral Research Foundation of Jining Medical University under Grant No.2018JYQD03, and the Doctoral Research Foundation of Jining Medical University for Dr. Li Li, and a Project of Shandong Province Higher Educational Science and Technology Program under Grant No.J18KA217, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqiang Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Gao, J., Ge, H. et al. An Effective Feature Extraction Approach Based on Spectral-Gabor Space Discriminant Analysis for Hyperspectral Image. Neural Process Lett 54, 909–959 (2022). https://doi.org/10.1007/s11063-021-10665-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-021-10665-w

Keywords

Mathematics Subject Classification

Navigation