Skip to main content
Log in

Multi-view Subspace Clustering via Joint Latent Representations

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Multi-view data are usually collected from distinct sources or domains which lead to each view owning both specific physical attributes and shared attributes. How to make better use of the consistency and complementarity of multiple views to improve clustering performance is a challenging problem in multi-view subspace clustering task. In this paper, we propose a novel multi-view subspace clustering method which learns shared and specific latent representations, and corresponding self-representations with local structure preserving by projecting all views to their respective low-dimensional latent spaces, called multi-view subspace clustering via joint latent representations. Related optimization problem is effectively solved utilizing the alternating direction method of multipliers. The consistency and complementary information of multiple views is captured by the learned shared and specific representations, respectively, which strengthens the performance of our proposed approach. Experimental results on real datasets demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://research.microsoft.com/en-us/projects/objectclassrecognition/.

  2. http://www.vision.caltech.edu/Image_Datasets/Caltech101/.

  3. http://mlg.ucd.ie/datasets/.

  4. http://cvc.yale.edu/projects/yalefaces/yalefaces.html.

  5. http://archive.ics.uci.edu/ml/datasets/Multiple+Features.

  6. https://github.com/dwh517/MSCLR.

References

  1. Amini MR, Usunier N, Goutte C (2009) Learning from multiple partially observed views-an application to multilingual text categorization. In: Advances in neural information processing systems, vol 22. pp 28–36

  2. Bartels RH, Stewart GW (1972) Solution of the matrix equation AX+ XB= C. Commun ACM 15(9):820–826

    Article  Google Scholar 

  3. Belkin M, Niyogi P (2001) Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv Neural Inf Process Syst 14:585–591

    Google Scholar 

  4. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2010) Distributed optimization and statistical learning via the alternating direction method of multipliers. Mach Learn 3(1):1–122

    MATH  Google Scholar 

  5. Brbic M, Kopriva I (2018) Multi-view low-rank sparse subspace clustering. Pattern Recogn 73:247–258

    Article  Google Scholar 

  6. Cao X, Zhang C, Fu H, Liu S, Zhang H (2015) Diversity-induced multi-view subspace clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 586–594

  7. Chao G (2019) Discriminative k-means Laplacian clustering. Neural Process Lett 49(1):393–405

    Article  Google Scholar 

  8. Chao G, Sun J, Lu J, Wang AL, Langleben DD, Li CS, Bi J (2019) Multi-view cluster analysis with incomplete data to understand treatment effects. Inf Sci 494:278–293

    Article  MathSciNet  Google Scholar 

  9. Chao G, Sun S, Bi J (2021) A survey on multi-view clustering. IEEE Trans Artif Intell. https://doi.org/10.1109/TAI.2021.3065894

    Article  Google Scholar 

  10. Du L, Zhou P, Shi L, Wang H, Fan M, Wang W, Shen YD (2015) Robust multiple kernel k-means using l21-norm. In: Twenty-fourth international joint conference on artificial intelligence, pp 3476–3482

  11. Elhamifar E, Vidal R (2013) Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans Pattern Anal Mach Intell 35(11):2765–2781

    Article  Google Scholar 

  12. Gao H, Nie F, Li X, Huang H (2015) Multi-view subspace clustering. In: Proceedings of the IEEE international conference on computer vision, pp 4238–4246

  13. Hofmann T, Buhmann JM (1998) Active data clustering. Adv Neural Inf Process Syst 10:528–534

    Google Scholar 

  14. Hu H, Lin Z, Feng J, Zhou J (2014) Smooth representation clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3834–3841

  15. Huang J, Nie F, Huang H (2013) Spectral rotation versus k-means in spectral clustering. In: Twenty-seventh AAAI conference on artificial intelligence. Citeseer

  16. Kang Z, Zhou W, Zhao Z, Shao J, Han M, Xu Z (2020) Large-scale multi-view subspace clustering in linear time. In: Proceedings of the AAAI conference on Artificial Intelligence, vol 34. pp 4412–4419

  17. Kumar A, Rai P, Daume H (2011) Co-regularized multi-view spectral clustering. In: Advances in neural information processing systems, pp 1413–1421

  18. Li CG, Vidal R (2015) Structured sparse subspace clustering: a unified optimization framework. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 277–286

  19. Li Y, Nie F, Huang H, Huang J (2015) Large-scale multi-view spectral clustering via bipartite graph. In: Proceedings of the twenty-ninth AAAI conference on artificial intelligence, pp 2750–2756

  20. Lin Z, Liu R, Su Z (2011) Linearized alternating direction method with adaptive penalty for low-rank representation. In: Advances in neural information processing systems, pp 612–620

  21. Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184

    Article  Google Scholar 

  22. Liu X, Li M, Tang C, Xia J, Xiong J, Liu L, Kloft M, Zhu E (2020) Efficient and effective regularized incomplete multi-view clustering. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2020.2974828

    Article  Google Scholar 

  23. Luo S, Zhang C, Zhang W, Cao X (2018) Consistent and specific multi-view subspace clustering. Proc AAAI Conf Artif Intell 32:3730–3737

    Google Scholar 

  24. Manjunath BS, Ohm JR, Vasudevan VV, Yamada A (2001) Color and texture descriptors. IEEE Trans Circuits Syst Video Technol 11(6):703–715

    Article  Google Scholar 

  25. Ng A, Jordan M, Weiss Y (2001) On spectral clustering: analysis and an algorithm. Adv Neural Inf Process Syst 14:849–856

    Google Scholar 

  26. Robles-Kelly A, Hancock ER (2004) Spanning tree recovery via random walks in a riemannian manifold. In: Iberoamerican congress on pattern recognition. Springer, pp 303–311

  27. Sun S, Xie X, Dong C (2018) Multiview learning with generalized eigenvalue proximal support vector machines. IEEE Trans Cybern 49(2):688–697

    Article  Google Scholar 

  28. Tang W, Lu Z, Dhillon IS (2009) Clustering with multiple graphs. In: 2009 Ninth IEEE international conference on data mining. IEEE, pp 1016–1021

  29. Wang S, Liu X, Zhu E, Tang C, Liu J, Hu J, Xia J, Yin J (2019) Multi-view clustering via late fusion alignment maximization. In: IJCAI, pp 3778–3784

  30. Wang X, Guo X, Lei Z, Zhang C, Li SZ (2017) Exclusivity-consistency regularized multi-view subspace clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 923–931

  31. Wen J, Zhang Z, Zhang Z, Fei L, Wang M (2020) Generalized incomplete multiview clustering with flexible locality structure diffusion. IEEE Trans Cybern 51(1):101–114

    Article  Google Scholar 

  32. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2(1–3):37–52

    Article  Google Scholar 

  33. Xia R, Pan Y, Du L, Yin J (2014) Robust multi-view spectral clustering via low-rank and sparse decomposition. In: Proceedings of the AAAI conference on artificial intelligence, vol 28

  34. Xie X (2018) Regularized multi-view least squares twin support vector machines. Appl Intell 48(9):3108–3115

    Article  Google Scholar 

  35. Xie X, Sun S (2019) Multi-view support vector machines with the consensus and complementarity information. IEEE Trans Knowl Data Eng 32(12):2401–2413

    Article  Google Scholar 

  36. Xie X, Sun S (2020) General multi-view semi-supervised least squares support vector machines with multi-manifold regularization. Inf Fusion 62:63–72

    Article  Google Scholar 

  37. Xu J, Han J, Nie F (2016) Discriminatively embedded k-means for multi-view clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5356–5364

  38. Yang J, Yin W, Zhang Y, Wang Y (2009) A fast algorithm for edge-preserving variational multichannel image restoration. SIAM J Imag Sci 2(2):569–592

    Article  MathSciNet  Google Scholar 

  39. Yin H, Li F, Zhang L, Zhang Z (2019) Multi-view clustering via spectral embedding fusion. Soft Comput 23(1):343–356

    Article  Google Scholar 

  40. Zhang C, Fu H, Hu Q, Cao X, Xie Y, Tao D, Xu D (2018) Generalized latent multi-view subspace clustering. IEEE Trans Pattern Anal Mach Intell 42(1):86–99

    Article  Google Scholar 

  41. Zhang C, Hu Q, Fu H, Zhu P, Cao X (2017) Latent multi-view subspace clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4279–4287

  42. Zhang Z, Liu L, Shen F, Shen HT, Shao L (2018) Binary multi-view clustering. IEEE Trans Pattern Anal Mach Intell 41(7):1774–1782

    Article  Google Scholar 

  43. Zhao J, Xie X, Xu X, Sun S (2017) Multi-view learning overview: recent progress and new challenges. Inf Fusion 38:43–54

    Article  Google Scholar 

  44. Zhou P, Shen YD, Du L, Ye F, Li X (2019) Incremental multi-view spectral clustering. Knowl Based Syst 174:73–86

    Article  Google Scholar 

  45. Zhou T, Zhang C, Peng X, Bhaskar H, Yang J (2019) Dual shared-specific multiview subspace clustering. IEEE Trans Cybern 50(8):3517–3530

    Article  Google Scholar 

  46. Zhu W, Lu J, Zhou J (2019) Structured general and specific multi-view subspace clustering. Pattern Recogn 93:392–403

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China (Grant Nos. 61672265, U1836218, 62020106012), in part by the National Key Research and Development Program of China under Grant 2017YFC1601800, and the 111 Project of Ministry of Education of China (Grant No. B12018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-jun Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, W., Wu, Xj. & Xu, T. Multi-view Subspace Clustering via Joint Latent Representations. Neural Process Lett 54, 1879–1901 (2022). https://doi.org/10.1007/s11063-021-10710-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-021-10710-8

Keywords

Navigation