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Abstract Neurophysiological signals are manifestations of the underlying brain
activity, and they contain an abundance of neural information. The decoding and
understanding of these signals is useful to develop robotic exoskeletons, benefitting
device-aided motor rehabilitation. To this date, numerous efforts have been car-
ried out to explore the relations between neurophysiological signals and locomotor
capacity. Most of these studies focused on a single modality of neurophysiological
signal and ignored its multiple modalities. In this study, the modalities from two
kinds of biosensors were fused (electroencephalogram (EEG) and electromyogram
(EMG)), and a novel deep learning model was proposed (multi-scale learning,
MSL) to classify four walking patterns. The EEG and EMG data were collected
during a walking experiment, where different walking conditions with and without
exoskeleton-aided assistance were implemented (i.e. free-walking and exoskeleton-
aided walking at zero, low, and high assistive forces). The performance achieved
by the MSL model was compared to that of existing models, and the results
show that multimodal MSL achieved the highest performance in terms of clas-
sification accuracy (89.33%). Moreover, the comparisons in our study show that
an improved classification performance was obtained when a full 62-channel EEG
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setting was used compared to using a subset of 20 channels located on the senso-
rimotor region. This work contributes to the improvement of neurophysiological
signal decoding and promotes the development of rehabilitation technologies as
well as exoskeleton-aided applications.

Keywords Convolutional Neural Network - Multi-Scale - EEG - EMG -
Exoskeleton - Walking

1 Introduction

It is well known that the central nervous system initiates movement intention,
and that this intention is then delivered to the corresponding limbs and muscles
through the peripheral nervous system. The process is achieved by transmitting
neurotransmitters between synapses, which generates bioelectricity in the nervous
system. While this happens, several kinds of neurophysiological signals can be de-
tected from around the human body, for instance, EEG [1] from the brain and
EMG [2] from limbs and muscles. These signals are closely related to the hu-
man locomotor system, and investigating them is helpful to explore its underlying
mechanisms. To this date, however, little is known about the relations between
neurophysiological signals and body movement. These need to be further studied
in order to help improve the motor abilities of people such as athletes or those
with disabilities, and a better understanding will also pave a solid foundation for
the development of rehabilitation devices such as robotic exoskeletons [3].

In the field of human-machine interface (HMI) [4,5], EEG[6] and EMG signals
are the most commonly used neurophysiological signals due to their portability and
high temporal resolution. Steady-state visual evoked potentials [7], event-related
potentials (ERP) [8,9] and motor imagery [10] are the three typical paradigms
in brain-computer interface (BCI) research. Many credible EEG processing algo-
rithms have been investigated in recent years, such as common spatial pattern
[11], principal component analysis (PCA) [12] and independent component analy-
sis (ICA) algorithms [13]. On the other hand, due to its accessibility and its close
relationship with muscular activities, EMG is often used in locomotion research.
Feature extraction and selection are critical steps in EMG classification and re-
gression. There are three types of features: time-domain features (integral EMG,
wavelength, mean absolute value and root mean square, etc.) [14], spectral domain
features [15] (mean power, mean frequency and max power spectrum, etc.) and
time-frequency domain features (wavelet packet transform [16], short-time Fourier
transform (STFT) [17], etc.). Additionally, the EEG signals can be decomposed
into frequency bands [18], namely delta (1-3 Hz), theta (4-7 Hz), alpha (8-12 Hz),
beta (13-30 Hz) and gamma (30-100Hz). In a previous study, we found that the
alpha, beta and theta bands were involved in consistently increasing EEG-EMG
correlations [19].

However, most locomotion-related studies are based on single-modality, which
has a limited performance due to having a lower classification accuracy and poor
real-time capabilities. Using multimodal neurophysiological signals has recently be-
come a popular research method [20], and our previous study found consistently
increasing and decreasing EEG-EMG PSD correlations involving different brain
regions [19]. Multimodal neurophysiological signals have also shown superiority in
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the HMI research field. Zhang et al. [21] developed a novel multimodal human-
machine interface system using combinations of electrooculography (EOG), EEG
and EMG to generate numerous control instructions. Ahmed Ben Said [22] pre-
sented a joint compression and classification approach of EEG and EMG signals
using a deep learning approach for data compression and feature learning.

In the field of HMI, analyzing EEG and EMG signals in spectral or tempo-
ral scales is a typical practice, and some traditional methods, such as the Fourier
transform [17] and feature extraction from the neurophysiological signals, are fre-
quently used for signal processing and recognition. However, most existing methods
analyze the neurophysiological signals using a single scale approach, which may
miss out on some more hidden information. At present, several studies [23-25]
have shown that analysing neurophysiological signals using a multi-scale approach
can lead to obtaining richer and more distinguishable information, and it can also
help to achieve a superior motion pattern classification.

Classical supervised machine learning algorithms are commonly used meth-
ods for motion pattern recognition and neurophysiological signal analysis. These
include support vector machines (SVMs) [26], random forests (RFs)[27] and k-
Nearest Neighbors (KNN) [28]. Wenyu Li et al [29] proposed a fusion method
to explore and verify the feasibility of human-vehicle collaborative driving, and
used KNN to classify EEG features and obtain the final control command. Deep
learning models, such as convolution neural networks (CNNs) [30] and recurrent
neural networks (RNNs) [31] are also promising in the machine learning research
field. Compared with the classical machine learning methods, deep learning avoids
the feature extraction and selection process [32], which has much higher learning
capability. Deep learning algorithms are now widely used in the fields of com-
puter vision[33,34], natural language processing and time series prediction [35]
among many others, as they usually provide a better performance than the clas-
sical algorithms. Considering the advantages that deep learning has to offer, it is
unsurprising that they are also suitable for the analysis of EEG [36], EMG [37] and
other bioelectric signals. Compared with classical machine learning methods, CNN
is an end-to-end algorithm that can avoid the feature extraction step, and it there-
fore has a much higher learning ability. Goh et al. [38] used a deep neural network
topology with shared weights to acquire the spatial and spectral representations
for walking pattern recognition. Dai et al. [39] proposed a type of CNN with the
addition of a variational autoencoder (VAE) to classify MI data and raised the
classification performance for the BCI Competition IV dataset 2b to the current
state of art. Zhai et al.’s [40] research showed that a CNN-based system consis-
tently achieved a higher absolute performance compared to a SVM classifier with
the NinaPro database of EMG.

Taking the above aspects into account, this work proposes a novel deep learn-
ing model named multi-scale learning (MSL) used to classify four walking condi-
tions (free-walking and exoskeleton-assisted walking at zero, low and high assistive
forces) using multimodal neurophysiological signals (EEG and EMG). Multi-scale
refers to temporal, spectral and spatial scales. Compared to other methods, the
wavelet transform can keep spectral and temporal multi-scale features at the same
time. The wavelet transform is extensively used in EEG [41], EMG and other neu-
rophysiological signal analysis, particularly in research related to CNN or other
deep learning models. In this research, the wavelet transform was used to process
EEG and EMG signals instead of the Fourier transform to obtain temporal and
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spectral information at the same time. Generally, the works of this study can be
summarized as follows:

— Advancing a deep learning model based on neurophysiological signals for mul-
tiple classes of walking pattern classification.

— Employing multimodal neurophysiological signals instead of single signal sources.

— Analyzing signals in temporal, spectral and spatial scales rather than in a single
scale.

The rest of the paper is organized as follows: in Section II, the steps of the
experiment and the data processing are described, and the architecture of MSL for
multimodal neurophysiological signals is introduced. In Section III, the experiment
results are presented, and in Section IV, a discussion of the research is provided.
Finally, conclusions are discussed in Section V.

2 Methodology

2.1 Experiment
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Fig. 1 Illustration of the main steps in this study. (A) Exoskeleton power-assisted walking
experiment in 4 walking conditions (FW, ZF, AFL, AFH), collecting EEG and EMG signals
at the same time. (B) EEG signals were downsampled to 250 Hz and then bandpass-filtered
(2-400Hz), followed by an ICA-based artifacts removal and segment separation. (C) Identifi-
cation of gait cycles based on the EMG signals was carried out. The intervals between the
periodic peaks corresponded to the gait cycles. Abnormal gait cycles were removed according
to their magnitude pattern and length, and valid gait cycle markers used to separate EEG and
EMG segments were figured out. (D) EMG signals were bandpass-filtered (2-400Hz) and then
downsampled to 250 Hz. They were then split into gait-related segments. (E) EEG and EMG
gait-related segments were decomposed through the wavelet transform to later on be classified
by the MSL model.

Figure. 1 shows the workings of the main experiment of this study. During the
experiment, subjects wore an exoskeleton on their right lower limbs and walked
under four different walking conditions in a corridor of approximately 21 meters
in length. The experiment was reviewed and approved by the Institutional Review
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Board of the National University of Singapore. A total of 30 healthy males were
recruited for this study. They possessed a normal or corrected visual acuity without
a history of lower limb injury. After receiving an explanation of the procedure, all
the subjects signed the consent form.

Subjects were required to perform under four exoskeleton-assisted walking con-
ditions [42] [19], including:

e Free-walking (FW, subjects performed normal walking without an exoskeleton)

e Zero force (ZF, subjects were required to walk with an exoskeleton, but the
exoskeleton provided no torque)

e Low assistive force (AFL, subjects were required to walk with an exoskeleton
that provided a low assistive torque)

e High assistive force (AFH, subjects were required to walk with an exoskeleton
that provided a high assistive torque)

An impedance controller was used to provide the torque assistance. 0.2 Nm/deg
were implemented in the knee joint for the low assistive force condition, while 0.4
Nm/deg were implemented for the high assistive force condition.

In this study, EEG signals were recorded using an ANT ASA-Lab system
(ANT BV, Netherlands), and 62 electrodes were used altogether (the location of
electrodes is shown in Fig.2). Four EMG electrodes were stuck on the surfaces of
four major muscles of the lower limb: the semitendinosus (SM), the gastrocnemius
lateralis (GL), the tibialis anterior (TA) and the rectus femoris (RF). The sampling
frequency of both EEG and EMG signals was of 1000Hz.

2.2 Preprocessing of multimodal Neurophysiological Signals

Firstly, gait cycles were identified based on the recorded EMG signals. More specif-
ically, EMG signals were processed through the steps of detrending, centering and
filtering (using a bandpass filter with frequency cutoffs of 2-400Hz). Subsequently,
the signals were normalized using maximal voluntary contraction (MVC). Then,
peak detection was applied to identify the gait cycles. Note that the EMG data
used for gait cycle identification was not directly used for data analysis. The EEG
data was analysed after carrying out the detrending and centering steps, and to
reduce computing costs, the processed EMG signals were further downsampled to
250Hz before being used for classification purposes. A more detailed description
of the procedure can be found in [43]). Abnormal gait cycles were removed, and
the remaining gait cycles were stored with their corresponding markers indicating
their starting and ending points.

When it comes to the EEG signals, the mean value of each channel was firstly
subtracted from the amplitude of that channel to remove the mean value of the am-
plitude. Then, the EEG signals were downsampled (250Hz) and bandpass-filtered
(0.5-45Hz). The EOG artifacts were reduced through an adaptive filtering method
[44], and EMG artifacts were mitigated using our previous approach [45]. Then,
the remaining artifacts of EOG and EMG were removed through ICA.

Additionally, the classification performances of two different EEG channel set-
tings were compared: these settings included the whole brain, consisting of 62
channels, and the sensorimotor region, consisting of 20 channels. The 20-channel
setting had been adopted in a previous study [38]. Both settings were used in a
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Fig. 2 The channels included in the two settings. (A) 62 channels covering the whole brain.
(B) 20 channels covering the sensorimotor region

A

single-modal case (EEG) and in a multimodal case (combining EEG and EMG).
The channels included in these two settings are shown in Fig. 2.

The preprocessed data was checked, and the gait cycles were identified as being
invalid when their magnitude pattern did not follow the standard pattern, or when
their duration was extremely long or short. The data of subjects which had less
than 30 valid gait cycles in any of the walking conditions was removed from the
study. This resulted in data from 23 subjects, who were included in this study

2.3 Multi-Scale Learning

In this work, we propose a novel CNN-based deep learning model, named Multi-
Scale Learning (MSL), which here was used to classify different walking conditions
based on multimodal neurophysiological signals. MSL analysed EEG and EMG
signals in the time and frequency domains simultaneously. Compared to the single
scale analysis, MSL showed a higher learnability for multimodal neurophysiological
signals. Figure. 3 presents the architecture of the MSL model.

2.8.1 Wawvelet Transform

The wavelet transform is a practical algorithm used in digital signal processing
with many interesting applications. It is considered to be an extension of the
Fourier transform, since it works on a multi-scale basis rather than at a single
scale. The Morlet wavelet[46] was selected as the wavelet basis in this research.

P (t) = Cet’ 2 cos (5t) (1)

Preprocessed EEG and EMG signals would be decomposed into multi-scale
tensors (temporal, spectral and spatial scales) through the wavelet transform. The
optimal frame and spectral width was investigated in this study, as these deter-
mine the temporal and spectral resolution ratio of the decomposed signals. The
parameters of the wavelet transform are summarized in TABLE 1.
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Fig. 3 The architecture of the MSL. This deep learning model was trained to classify four
different walking conditions using EEG and EMG signals. Signals are decomposed into time
and frequency domains through the wavelet transform. For EEG and EMG signals, the model is
comprised of two different convolution-pooling layers, fully connected layers (FC) and softmax
layers. After the convolution and max-pooling layers, EEG and EMG signals are flattened into
vectors and are combined into multimodal signals. ReLU activation functions and dropout
technology are employed in each hidden layer.

Table 1 Morlet Wavelet Transform Parameters

EEG EMG
Frequency Band (Hz) 1-45 2-125
Spectral Width (Hz) 0.5-2.0 0.5-2.0
Frame Width (s) 0.10-0.19  0.10-0.19

2.8.2 Convolutional Neural Networks

CNN is a novel neural network model with several convolution-pooling layer pairs
and fully connected layers, designed for tensor analysis of data such as images. In
this research, the multi-scale tensors, which had been decomposed from EEG and
EMG signals, were used as inputs for the CNN model.

Convolutional layers can extract local features on temporal and spectral scales
simultaneously, which is important for signal classification and motion recognition.
The convolution can be expressed as follows:

n—1lm-—1

l ! -1
Ti,j Z Z Wa,b X Yati,btj (2)

a=0 b=0

The convolutional kernel w! has size n x m and is applied across sub-regions
of output layer | — 1, yl_1 of size N x M, producing output layer [, z! of size
(N—n+1)x(M-m+1). wfhb denotes the element of w' in the a'® row and b*"
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Table 2 Model Parameters

Parameters 20 Channels EEG 62 Channels EEG EMG
Number of Convolution Filters 40, 80 124, 124 8, 16
SGD Learning Rate 0.01 0.01 0.01
Momentum Coefficient 0.9 0.9 0.9
Epoch 200 200 200
Batch Size 32 32 32
Parameters 20 Channels EEG & EMG 62 Channels EEG & EMG
Number of Convolution Filters 40, 80 & 8, 16 124, 124 & 8, 16

SGD Learning Rate 0.01 0.01 0.01
Momentum Coefficient 0.9 0.9 0.9
Epoch 200 200 200
Batch Size 32 32 32

column, and xﬁj denotes the element of the output layer 2! in the i*" row and ;"

column.

Compared to the sigmoid or tanh activation functions, the Rectified Linear
Unit (ReLU) function [47] can solve the vanishing gradient and explosion gradient
problems. In this study, the ReLU function was used between convolutional layers
and fully connected (FC) layers. ReLU is defined as follows:

o(x) = z = max (0, )

(3)

The softmax activation function is used at the output layer to turn the output
array z into predicted class probabilities:

softmaz(z;)

Zi

o e
= 7Zk e

where z;is an element in array z.
Cross-entropy was selected as the cost function:

Li = ~log(f(21))

(4)

(5)

As a classical and efficient optimization technique, the stochastic gradient de-
scent (SGD) algorithm was used to optimize the cost function. The Nesterov accel-
erated gradient method is an improved form of the classical momentum algorithm
which can accelerate convergency efficiently. The expression of SGD with Nesterov

momentum is shown below:

vy = oy~ + (1= )

(4)

oL
AW + Buli™)

Wvenvq(‘f)

(6)

(7)

where vy, is velocity; 8 is the momentum parameter, which controls how quickly
the velocity can change and how much the local gradient influences long term
movement; W represents the weights and bias of the neural network, and finally,

7 is the learning rate.

The computing platform used in this study was an Alienware(R) R17 with
i9-8950H, 32GB ram, GTX1080, and the operating system used was Ubuntu 18.04
with Pytoch 1.40. All parameters of the model are listed in TABLE II. All classifi-
cation results reported in this paper were obtained using five-fold cross-validation.
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In summary, the structure of the MSL model can be described as a sequence:
EEG&EMG signals - Morlet wavelet transform - Convolution - ReLLU - Convolu-
tion - ReLLU - FC - Dropout - ReLLU - FC - Dropout - ReLU - FC - Softmax -
Class Prediction.

2.8.8 Multimodal Neurophysiological Signal Fusion

In this study, a comparison of the classification performances between two EEG
channel settings was also carried out: these two settings included the whole brain,
containing 62 channels, and the sensorimotor region, containing 20 channels (the
channels included in these two settings are shown in Fig.2). The 20-channel setting
had been adopted in a previous study [38]. The EMG signals came from the tib-
ialis anterior, gastrocnemius lateralis, rectus femoris and semitendinosus muscles.
Since the EEG and EMG signals have a different number of channels, and also
have different output sizes after the wavelet transform (according to TABLE I),
these two signals should be combined. Specifically, two kinds of convolutional layer
pairs were used to process EEG and EMG signals separately and then flatten and
combine them. This process is illustrated in the right-hand part of Fig. 3.

3 Results
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Fig. 4 5-fold cross-validation accuracy (%) map of MSL using different frame and spectral
widths for 62 EEG channels with a multimodal neurophysiological signal source.

To investigate the optimal coefficients of the wavelet transform, the frame and
spectral widths were tested on a range from 0.1 to 0.19 (with a 0.01 interval) for
the frame width, and from 0.5 to 2 (with a 0.5 interval) for the spectral width.
The classification accuracy of the different parameters based on 62-channel and
20-channel multimodal signals is shown in Fig. 4 and Fig. 5. The parameters
which corresponded to the highest classification accuracy of the two kinds of mul-
timodal signals were selected as the optimal coefficients. According to the two-way
ANOVA results, the effect of the frame width on the classification accuracy was
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Fig. 5 5-fold cross-validation accuracy (%) map of MSL using different frame and spectral
widths for 20 EEG channels with a multimodal neurophysiological signal source.

not significant (p > 0.05), while the spectral width had a significant effect on the
classification accuracy (p < 10_6). As shown in Fig. 4 and Fig. 5, for the 62-
channel setting, the best parameters correspond to a frame width of 0.15 and a
spectral width of 1, while for the 20-channel setting, these correspond to 0.17 and
1.5, respectively. Therefore, a frame width of = 0.17 and a spectral width of =
1.5 were used for the 20 EEG channel multimodal signals, while a frame width of
=0.15 and a spectral width of = 1 were used for the 62 EEG channels multimodal
signals.
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<70.00% |
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55.00% |
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EEG Multimodality
20 Channels EEG m 62 Channels EEG

Fig. 6 The average classification accuracy of the 20-channel EEG and 62-channel EEG settings
for a single EEG signal source and for a multimodal signal source.
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The classification performance of the 20 channels that cover the sensorimotor
region was compared with that of all 62 channels covering the whole brain re-
gion, with all the signals being based on the optimal coefficients of the wavelet
transform found prior. The results are shown in Fig. 6. The average classification
accuracy of the 20 EEG channels was 60.344+10.48% for single EEG signals, and
88.82+7.13% for multimodal signals, while the accuracy of the 62 EEG channels
was 74.26+8.62% for single EEG signals and 89.33+6.07% for multimodal signals.
The results show that the classification accuracy of the 62-channel EEG setting is
always better than the 20-channel EEG setting, regardless of whether the EMG
signal is used or not. Therefore, in this study, the EEG channel setting of 62
channels was used.
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Fig. 7 The average 5-fold cross-validation classification accuracies of three kinds of signal
sources for the 23 subjects.

The classification accuracies of MSL for all subjects based on EEG, EMG
and multimodal neurophysiological signals (using the 62-channel EEG setting) are
shown in Fig. 7. The accuracies of the three kinds of signals for every subject are
shown in Fig. 8. The average classification accuracy was 85.8749.70% when only
using EMG, 74.264-8.62% when only using EEG and 89.3346.07% when using
multimodal neurophysiological signals. According to one-way analysis of variance
(ANOVA), the effect of using the whole signals was significant for Fi3 g6y = 21.99,
p < 1075, The classification accuracy values of all the subjects between the three
signal groups were compared with a one tail t-test. Suppose the population means
of the three signal groups were pu1(EEG), p2(EMG), and pa(multimodal). The
p-values of the three hypotheses were p < 1073 for pr < p2, p < 1076 for p1 <
p3 and p < 0.05 for pue < ps. The input signal is a key factor for MSL, and
multimodal neurophysiological signals were found to be more discriminative than
a single neurophysiological signal. Figure. 9 shows the confusion matrix of MSL
for multimodal neurophysiological signals. It can be observed that the diagonal
elements of the matrix show a higher accuracy than the other elements, which is a
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Fig. 8 The average classification accuracy of three kinds of signal sources. One-tailed paired
t-tests of the three signal sources are shown. (* indicates p < 0.05, ** indicates p < 1073, ***
indicates p < 1079)

clear demonstration of the effectiveness of the proposed algorithm. Compared with
the other assistive walking conditions, AFH and AFL are difficult to discriminate
between each other, while FW shows a significantly high accuracy. The loss-epoch
curve of MSL is shown in Fig. 10

In previous studies, researchers proposed several algorithms to classify these
four gait patterns based on the same dataset. The previous methods had lower
classification accuracies, such as 73.80% for SVM, 75.90% for random forest-F-
score (RF-FS), 76.20% for SVM-PCA, 76.30% for SVM-FS and 77.80% for Spa-
tio—Spectral Representation Learning (SSRL) [38] (shown in Fig. 11). MSL, on
the other hand, achieved a much higher classification performance with a 89.33%
average accuracy.

In addition, before the paired t-test, all accuracy results from the different
signal sources were proven to correspond to the normal distribution through the
Kolmogorov—Smirnov test.

4 Discussion

In this present study, we proposed a novel deep learning model named Multi-Scale
Learning for multimodal neurophysiological signals and used it to classify four
exoskeleton assistive gait patterns. We tested the MSL based using EEG, EMG
and multimodal neurophysiological signals. Compared with single EEG and sin-
gle EMG signal sources, the multimodal neurophysiological signal source showed
a higher capacity to separate between the different walking conditions. Further-
more, to determine the effect of different EEG settings on the classification ac-
curacy, 20-channel EEG signals covering the sensorimotor region were compared
to 62-channel EEG signals covering the whole brain. The results showed that
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Fig. 9 The confusion matrix of MSL for multimodal neurophysiological signals.

14 r
"
1.2
L ]
1 b
[ ]
0.8
«
é )
0.6 s
L ]
04 &
3
02 "\'
0 “"‘v_..".?‘:“‘ _a P NPTy
0 25 50 75 100 125 150 175 200
Epoch

Fig. 10 The loss-epoch curve of MSL.

62-channel EEG signals can achieve a higher classification accuracy for either sin-
gle EEG signal sources and for the multimodal neurophysiological signal source.
Furthermore, note that the method presented in this work achieved the best classi-
fication performance among all the other methods previously used in other studies
based on this database. Collectively, these results demonstrate that multi-scale
learning for multimodal neurophysiological signals displays its superiority for gait

pattern classification.

According to a previous study ([38])
, SSRL only used the EEG signal from the sensorimotor region. The differ-
ences in pattern recognition abilities between different brain regions indicate that
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Fig. 11 The average classification accuracy of MSL for multimodal neurophysiological signals
compared to that achieved by former algorithms.

although the sensorimotor region is the most relevant area when it comes to mo-
tion, the other regions also contain some important information, and the global
brain signal as a whole leads to a higher separability between the types of motion.
However, it is worth noticing that the use of fewer channels would bring benefits
in practical applications due to its ease and simplicity. Thus, a 20-channel EEG
setting may be more efficient in clinical trials. In 7, it can be seen that using multi-
modal signals did not always result in the highest classification accuracy out of the
three kinds of signal sources. This might be due to the larger signal mismatch be-
tween EEG and EMG. In a future study, we will take this into consideration when
designing a classification model, or will adopt adaptive approaches to mitigate this
issue.

The classification accuracy results for different signal sources suggests that a
multimodal neurophysiological signal source has a better classification performance
than single signal sources, as it contains more motion-related information. It should
be noted that the EMG signal is more separable than the EEG signal, which is
indicative that EMG may have a higher correlation with body movement than
EEG. This inference is also in accordance with common sense.

It is worth noting that in the confusion matrix, the FW condition shows a sig-
nificantly higher accuracy in contrast to the AFH and AFL conditions. This sug-
gests that neurophysiological signal patterns differ greatly depending on whether
an exoskeleton is being worn or not, but that this difference becomes relatively
insignificant for varying degrees of power assistance.

The major strength of this study was the novel algorithm which combined EEG
and EMG as a multimodal signal source to improve the classification accuracy, and
used the wavelet transform and CNN to process signals in temporal and spectral
dimensions concurrently. Nevertheless, our study had several limitations. Firstly,
only male subjects took part in the experiment; therefore, we should employ both
more male and female subjects in future studies. Secondly, the relationship between
brain regions and classification accuracy was not explored completely, and should
be further researched.
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In summary, the results prove that MSL used for multimodal neurophysiolog-
ical signals has a higher classifiability compared to previously used methods. In
future gait-related or other HMI research, using multimodal neurophysiological
signals may be a better choice than using a single signal source. Meanwhile, the
structure of MSL can provide reference and guidance for further studies.

5 Conclusion

Based on this study, it was demonstrated that the multimodality of the combina-
tion of EEG and EMG signals provided a superior performance compared to using
a single modality of EEG or EMG in the classification of walking patterns. In order
to effectively extract the walking-related features of the multimodal signals, a novel
deep learning model was proposed, named Multi-Scale Learning (MSL). Accord-
ing to the results evaluated in the 4-class walking pattern classification, the MSL
with multimodal signals achieved the highest classification accuracy (89.33%). The
proposed model can be transferred to analogous classification scenarios and could
benefit the development of a closed-loop motor rehabilitation system. In the fu-
ture, we plan to adapt the proposed model to perform regression tasks to obtain
continuous estimations of variables such as joint angle or moment, and plan to
employ data augmentation methods to improve the model’s performance.
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