Skip to main content
Log in

Particle Swarm Optimization Algorithm with Multi-strategies for Delay Scheduling

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In order to improve the convergence speed and solution accuracy of particle swarm optimization (PSO) algorithm and avoid premature convergence, an enhanced PSO with fusing multiple strategies, namely CWBPSO is proposed in this paper. In the proposed CWBPSO algorithm, a fast convergence strategy is employed to accelerate the particles toward the optimal value. Meanwhile, an improved strategy of the acceleration factor is designed to improve the local search ability of the particles and strengthen the global search ability. A new linear decreasing strategy of inertia weight factor is designed to avoid premature maturation and oscillation phenomenon, improve the overall optimization performance and reduce the time complexity. Four typical test functions in CEC2014 and CEC2017 and a real train delay scheduling problem are selected to verify the effectiveness of the proposed CWBPSO algorithm. The comparative analysis of experimental results shows that the CWBPSO algorithm improves the convergence speed and convergence accuracy, avoids premature convergence and oscillation phenomena. The CWBPSO algorithm can effectively schedule the delay trains, reduce train delay time and avoid delay propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp 39–43

  2. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN'95 - International Conference on Neural Networks 4:1942–1948

  3. Sabir Z, Ali MR, Raja MAZ et al (2021) Computational intelligence approach using Levenberg–Marquardt backpropagation neural networks to solve the fourth-order nonlinear system of Emden-Fowler model. Eng Comput. https://doi.org/10.1007/s00366-021-01427-2

    Article  Google Scholar 

  4. Ayub A, Sabir Z, Altamirano GC et al (2021) Characteristics of melting heat transport of blood with time-dependent cross-nanofluid model using Keller-Box and BVP4C method. Eng Comput. https://doi.org/10.1007/s00366-021-01406-7

    Article  Google Scholar 

  5. Ali MR, Ma WX, Sadat R (2021) Lie symmetry analysis and invariant solutions for (2+1) dimensional Bogoyavlensky-Konopelchenko equation with variable-coefficient in wave propagation. J Ocean Eng Sci. https://doi.org/10.1016/j.joes.2021.08.006

    Article  Google Scholar 

  6. Ali MR, Sadat R, Ma WX (2021) Investigation of new solutions for an extended (2+ 1)-dimensional Calogero-Bogoyavlenskii-Schif equation. Front Math China 16(4):925–936

    Article  MathSciNet  MATH  Google Scholar 

  7. Ali MR, Ma WX (2020) New exact solutions of Bratu Gelfand model in two dimensions using Lie symmetry analysis. Chin J Phys 65:198–206

    Article  MathSciNet  Google Scholar 

  8. Wagle R, Sharma P (2021) Bio-inspired hybrid BFOA-PSO algorithm-based reactive power controller in a standalone wind-diesel power system. Int Trans Electric Energy Syst 31(3):2050–7038

    Google Scholar 

  9. Moharam A, El-Hosseini M, Ali H (2016) Design of optimal PID controller using hybrid differential evolution and particle swarm optimization with a-n aging leader and challengers. Appl Soft Comput 38:727–737

    Article  Google Scholar 

  10. Sreesudha P, Malleswari BL (2021) A hybridization approach of PSO and GSO algorithm for minimum-BER based multi-user detection in STBC-MIMO MC-CDMA systems. Multimedia Tools Appl 80(21):31967–31992

    Article  Google Scholar 

  11. Mistry K, Zhang L, Neoh S (2017) A Micro-GA embedded PSO feature selection approach to intelligent facial emotion recognition. IEEE Trans Cybern 47(6):1–14

    Article  Google Scholar 

  12. Cui HJ, Guan Y, Chen H (2021) Rolling element fault diagnosis based on VMD and sensitivity MCKD. IEEE Access 9:120297–120308

    Article  Google Scholar 

  13. Wei YY, Zhou YQ, Luo QF et al (2021) Optimal reactive power dispatch using an improved slime mould algorithm. Energy Rep 7:8742–8759

    Article  Google Scholar 

  14. Guedria N (2016) Improved accelerated PSO algorithm for mechanical engineering optimization problems. Appl Soft Comput 40:455–467

    Article  Google Scholar 

  15. Rengasamy S, Murugesan P (2021) PSO based data clustering with a different perception. Swarm Evol Comput 64:100895

    Article  Google Scholar 

  16. Zhang ZH, Min F, Chen GS et al (2021) Tri-partition state alphabet-based sequential pattern for multivariate time series. Cogn Comput. https://doi.org/10.1007/s12559-021-09871-4

    Article  Google Scholar 

  17. Ran XJ, Zhou XB, Lei MM et al (2021) A novel k-means clustering algorithm with a noise algorithm for capturing urban hotspots. Appl Sci 11:11202

    Article  Google Scholar 

  18. Deng W, Xu JJ, Gao XZ et al (2020) An enhanced MSIQDE algorithm with novel multiple strategies for global optimization problems. IEEE Trans Syst Man Cybernet. https://doi.org/10.1109/TSMC.2020.3030792

    Article  Google Scholar 

  19. Wu Q, Hu DW, Deng PY et al (2020) Non-parametric Bayesian prior inducing deep network for automatic detection of cognitive status. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2020.2977267

    Article  Google Scholar 

  20. Li TY, Qian ZJ, Deng W et al (2021) Forecasting crude oil prices based on variational mode decomposition and random sparse Bayesian learning. Appl Soft Comput 113:108032

    Article  Google Scholar 

  21. Cui H, Guan Y, Chen HY et al (2021) A novel advancing signal processing method based on coupled multi-stable stochastic resonance for fault detection. Appl Sci 11:5385

    Article  Google Scholar 

  22. Wu Q, Zhou MC, Hu DW et al (2020) Self-paced dynamic infinite mixture model for fatigue evaluation of pilots’ brain. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2020.3033005

    Article  Google Scholar 

  23. Deng W, Zhang XX, Zhou YQ et al (2022) An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems. Inf Sci 585:441–453

    Article  Google Scholar 

  24. Ali MR, Sadat R (2021) Construction of Lump and optical solitons solutions for (3+ 1) model for the propagation of nonlinear dispersive waves in inhomogeneous media. Opt Quant Electron 53(5):1–13

    Google Scholar 

  25. Ali MR, Sadat R (2021) Lie symmetry analysis, new group invariant for the (3+ 1)-dimensional and variable coefficients for liquids with gas bubbles models. Chin J Phys 71:539–547

    Article  MathSciNet  Google Scholar 

  26. Shi Y, Eberhart, RC (1998) Parameter selection in particle swarm optimization. Int Conf Evolut Program 1447:591–600

    Google Scholar 

  27. Chen B, Qi J, Zhang D (2021) An adaptive parameters adjustment and planning method for robotic belt grinding using modified quality model. Proc Inst Mech Eng Part B 235(4):605–615

    Article  Google Scholar 

  28. Liu M, Lin R, Yang M (2021) Active disturbance rejection motion control of spherical robot with parameter tuning. Ind Robot. https://doi.org/10.1108/IR-05-2021-0099

    Article  Google Scholar 

  29. Nobile M, Cazzaniga P, Besozzi D (2018) Fuzzy self-tuning PSO: A settings-free algorithm for global optimization. Swarm Evol Comput 39:70–85

    Article  Google Scholar 

  30. Marinakis Y, Migdalas A, Sifaleras A (2017) A hybrid particle swarm optimization–variable neighborhood search algorithm for constrained shortest pa-th problems. Eur J Oper Res 261(3):819–834

    Article  MATH  Google Scholar 

  31. Liang J, Suganthan P (2005) Dynamic multi-swarm particle swarm optimizer with local search. IEEE Congress Evolut Comput 1:522–528

    Google Scholar 

  32. Lim W, Isa N (2014) Particle swarm optimization with increasing topology connectivity. Eng Appl Artif Intell 27:80–102

    Article  Google Scholar 

  33. Chen Y, Li L, Peng H (2017) Dynamic multi-swarm differential learning particle swarm optimizer. Swarm Evol Comput 39:209–221

    Article  Google Scholar 

  34. Wang L, Yang B, Chen Y (2014) Improving particle swarm optimization using multi-layer searching strategy. Inf Sci 274:70–94

    Article  Google Scholar 

  35. Xia X, Xie C, Wei B (2017) Particle swarm optimization using multi-level adaptation and purposeful detection operators. Inform Sci 385–386:174–195

    Article  Google Scholar 

  36. Liu Q, Wei W, Yuan H (2016) Topology selection for particle swarm optimization. Inf Sci 363:154–173

    Article  Google Scholar 

  37. Liu ZH, Wei HL, Zhong QC (2016) Parameter estimation for VSI-fed PMSM based on a dynamic PSO with learning strategies. IEEE Trans Power Electron 32(4):3154–3165

    Article  Google Scholar 

  38. Xu G, Cui Q, Shi X (2019) Particle swarm optimization based on dimensional learning strategy. Swarm Evol Comput 45:33–51

    Article  Google Scholar 

  39. Wu G, Qiu D, Yu Y (2014) Superior solution guided particle swarm optimization combined with local search techniques. Expert Syst Appl 41(16):7536–7548

    Article  Google Scholar 

  40. Tanweer M, Suresh S, Sundararajan N (2015) Self regulating particle swarm optimization algorithm. Inf Sci 294:182–202

    Article  MathSciNet  MATH  Google Scholar 

  41. Tanweer M, Suresh S, Sundararajan N (2016) Dynamic mentoring and self-regulation based particle swarm optimization algorithm for solving comple-x real-world optimization problems. Inf Sci 326:1–24

    Article  Google Scholar 

  42. Liang B, Zhao Y, Li Y (2021) A hybrid particle swarm optimization with crisscross learning strategy. Eng Appl Artif Intell 105:104418

    Article  Google Scholar 

  43. Cheng R, Jin Y (2015) A social learning particle swarm optimization algorithm for scalable optimization. Inf Sci 291:43–60

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang H, Jin Y, Doherty J (2017) Committee-Based active learning for surrogate-assisted particle swarm optimization of expensive problems. IEEE Trans Cybern 47(9):2664–2677

    Article  Google Scholar 

  45. Shieh H, Kuo C, Chiang C (2011) Modified particle swarm optimization algorithm with simulated annealing behavior and its numerical verification. Appl Math Comput 218(8):4365–4383

    MATH  Google Scholar 

  46. Li J, Zhang J, Jiang C (2015) Composite particle swarm optimizer with historical memory for function optimization. IEEE Trans Cybern 45(10):2350–2363

    Article  Google Scholar 

  47. Ouyang H, Gao L, Kong X (2016) Hybrid harmony search particle swarm optimization with global dimension selection. Inf Sci 346–347:318–337

    Article  Google Scholar 

  48. Chen X, Tianfield H, Mei C (2018) Biogeography-based learning particle swarm optimization. Appl Soft Comput 21:7519–7541

    Article  Google Scholar 

  49. Aydilek I (2018) A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems. Appl Soft Comput 66:232–249

    Article  Google Scholar 

  50. Chen YG, Li LX, Peng HP (2017) Particle swarm optimizer with two differential mutation. Appl Soft Comput 61:314–330

    Article  Google Scholar 

  51. Bouyer A, Hatamlou A (2018) An efficient hybrid clustering method based on improved cuckoo optimization and modified particle swarm optimization algorithms. Appl Soft Comput 67:172–182

    Article  Google Scholar 

  52. Lynn N, Suganthan P (2015) Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation. Swarm Evol Appl Soft Comput 24:11–24

    Article  Google Scholar 

  53. Haklı H, Guz HU (2014) A novel particle swarm optimization algorithm with Levy flight. Appl Soft Comput 23:333–345

    Article  Google Scholar 

  54. Tanabe R, Fukunaga A (2013) Success-history based parameter adaptation for differential evolution. In Proceedings of IEEE Congress on Evolutionary Computation, 7: 71–78

  55. Mallipeddi R, Suganthan P, Pan Q (2010) Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl Soft Comput 11(2):1679–1696

    Article  Google Scholar 

  56. Draa A, Bouzoubia S, Boukhalfa I (2014) A sinusoidal differential evolution algorithm for numerical optimization. Appl Soft Comput 27:99–126

    Article  Google Scholar 

  57. Wang H, Wu Z, Rahnamayan S (2014) Multi-strategy ensemble artificial bee colony algorithm. Inf Sci 279:587–603

    Article  MathSciNet  MATH  Google Scholar 

  58. Naik M, Nath M, Wunnava A (2015) A new adaptive cuckoo search algorithm. In IEEE 2nd International Conference on Recent Trends inInformation Systems, 7, pp 1–5

  59. Zhang X (2018) A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer. Appl Soft Comput 67:197–214

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant U2133205, U2033214 and 61771087, the Research and Innovation Funding Project for Postgraduates of Tianjin (Aviation Project) under Grant 2021YJSO2S12, the China National Key R&D Program under Grant 2018YFB1601200, the Research Foundation for Civil Aviation University of China under Grant 3122022PT02 and 2020KYQD123, and the Central University Basic Scientific Research Business Fee Project of Civil Aviation University of China under Grant 2000420534.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu Deng.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Xu, J., Liu, Y. et al. Particle Swarm Optimization Algorithm with Multi-strategies for Delay Scheduling. Neural Process Lett 54, 4563–4592 (2022). https://doi.org/10.1007/s11063-022-10821-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-022-10821-w

Keywords

Navigation