Skip to main content
Log in

Fast evaluation of trigonometric polynomials from hyperbolic crosses

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The discrete Fourier transform in d dimensions with equispaced knots in space and frequency domain can be computed by the fast Fourier transform (FFT) in \({\cal O}(N^d \log N)\) arithmetic operations. In order to circumvent the ‘curse of dimensionality’ in multivariate approximation, interpolations on sparse grids were introduced. In particular, for frequencies chosen from an hyperbolic cross and spatial knots on a sparse grid fast Fourier transforms that need only \({\cal O}(N \log^d N)\) arithmetic operations were developed. Recently, the FFT was generalised to nonequispaced spatial knots by the so-called NFFT. In this paper, we propose an algorithm for the fast Fourier transform on hyperbolic cross points for nonequispaced spatial knots in two and three dimensions. We call this algorithm sparse NFFT (SNFFT). Our new algorithm is based on the NFFT and an appropriate partitioning of the hyperbolic cross. Numerical examples confirm our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Baszenski and F.-J. Delvos, A discrete Fourier transform scheme for Boolean sums of trigonometric operators, in: Multivariate Approximation Theory IV, ISNM 90, eds. C.K. Chui, W. Schempp and K. Zeller (Birkhäuser, Basel, 1989) pp. 15–24.

    Google Scholar 

  2. G. Beylkin, On the fast Fourier transform of functions with singularities, Appl. Comput. Harmon. Anal. 2 (1995) 363–381.

    Article  MATH  MathSciNet  Google Scholar 

  3. H.-J. Bungartz and M. Griebel, Sparse grids, Acta Numerica 13 (2004) 147–269.

    Article  MathSciNet  Google Scholar 

  4. J.W. Cooley and J.W. Tukey, An algorithm for machine calculation of complex Fourier series, Math. Comput. 19 (1965) 297–301.

    Article  MATH  MathSciNet  Google Scholar 

  5. A.J.W. Duijndam and M.A. Schonewille, Nonuniform fast Fourier transform, Geophysics 64 (1999) 539–551.

    Article  Google Scholar 

  6. A. Dutt and V. Rokhlin, Fast fourier transforms for nonequispaced data, SIAM J. Sci. Stat. Comput. 14 (1993) 1368–1393.

    Article  MATH  MathSciNet  Google Scholar 

  7. B. Elbel and G. Steidl, Fast Fourier transform for nonequispaced data, in: Approximation Theory IX, eds. C.K. Chui and L.L. Schumaker (Vanderbilt University Press, Nashville, 1998).

    Google Scholar 

  8. M. Fenn and D. Potts, Fast summation based on fast trigonometric transforms at nonequispaced nodes, Numer. Linear Algebra Appl. 12 (2005) 161–169.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Fessler and B. Sutton, NUFFT – nonuniform FFT toolbox for Matlab. http://www.eecs.umich.edu/fessler/code/index.html, 2002.

  10. M. Frigo and S.G. Johnson, FFTW, a C subroutine library. http://www.fftw.org/.

  11. K. Hallatschek, Fourier transformation auf dünnen Gittern mit hierarchischen Basen, Numer. Math. 63 (1992) 83–97.

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Kunis and D. Potts, NFFT, Softwarepackage, C subroutine library. http://www.math.uni-luebeck.de/potts/nfft, 2002–2005.

  13. D. Potts, G. Steidl and M. Tasche, Fast Fourier transforms for nonequispaced data: A tutorial, in: Modern Sampling Theory: Mathematics and Applications, eds. J.J. Benedetto and P.J.S.G. Ferreira (Birkhäuser, Boston, 2001) pp. 247–270.

    Google Scholar 

  14. F. Sprengel, A class of function spaces and interpolation on sparse grids, Numer. Funct. Anal. Optim. 21 (2000) 273–293.

    Article  MATH  MathSciNet  Google Scholar 

  15. G. Steidl, A note on fast Fourier transforms for nonequispaced grids. Adv. Comput. Math. 9 (1998) 337–353.

    Article  MATH  MathSciNet  Google Scholar 

  16. A.F. Ware, Fast approximate Fourier transforms for irregularly spaced data, SIAM Rev. 40 (1998) 838–856.

    Article  MATH  MathSciNet  Google Scholar 

  17. C. Zenger, Sparse grids, in: Parallel algorithms for partial differential equations (Kiel, 1990), volume 31 of Notes Numer. Fluid Mech. (Vieweg, Braunschweig, 1991) pp. 241–251.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Potts.

Additional information

Communicated by C. Brezinski

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fenn, M., Kunis, S. & Potts, D. Fast evaluation of trigonometric polynomials from hyperbolic crosses. Numer Algor 41, 339–352 (2006). https://doi.org/10.1007/s11075-006-9017-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-006-9017-7

Key words and phrases

AMS subject classification

Navigation