Skip to main content
Log in

On the fast solution of Toeplitz-block linear systems arising in multivariate approximation theory

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

When constructing multivariate Padé approximants, highly structured linear systems arise in almost all existing definitions [10]. Until now little or no attention has been paid to fast algorithms for the computation of multivariate Padé approximants, with the exception of [17]. In this paper we show that a suitable arrangement of the unknowns and equations, for the multivariate definitions of Padé approximant under consideration, leads to a Toeplitz-block linear system with coefficient matrix of low displacement rank. Moreover, the matrix is very sparse, especially in higher dimensions. In Section 2 we discuss this for the so-called equation lattice definition and in Section 3 for the homogeneous definition of the multivariate Padé approximant. We do not discuss definitions based on multivariate generalizations of continued fractions [12, 25], or approaches that require some symbolic computations [6, 18]. In Section 4 we present an explicit formula for the factorization of the matrix that results from applying the displacement operator to the Toeplitz-block coefficient matrix. We then generalize the well-known fast Gaussian elimination procedure with partial pivoting developed in [14, 19], to deal with a rectangular block structure where the number and size of the blocks vary. We do not aim for a superfast solver because of the higher risk for instability. Instead we show how the developed technique can be combined with an easy interval arithmetic verification step. Numerical results illustrate the technique in Section 5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brent, R.P.: Stability of fast algorithms for structured linear systems. In: Kailath, T., Sayed, A.H. (eds.) Fast Reliable Algorithms for Matrices with Structure, pp. 103–116. SIAM, Philadelphia, Pennsylvania (1999)

    Google Scholar 

  2. Bultheel, A.: Epsilon and qd algorithms for matrix- and 2D-Padé approximation. Technical Report TW57, Department of Computer Science, K.U. Leuven (1982)

  3. Bultheel, A.: Low displacement-rank problems in 2-D Padé approximation. In: Outils et modèles mathématiques pour l’automatique, l’analyse de systèmes et le traitement du signal, vol. 2, pp. 563–576. Editions du CNRS, Paris (1982)

    Google Scholar 

  4. A. Bultheel. Recursive computation of triangular 2D-Padé approximants. Technical report, Department of Computer Science, K.U. Leuven (1982)

  5. Bunch, J.R.: Stability of methods for solving Toeplitz systems of equations. SIAM J. Sci. Statist. Comput. 6(2), 349–364 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chaffy, C.: \(\text{({P}ad\'e)}\sb y\) of \(\text{({P}ad\'e)}\sb x\) approximants of \({F}(x,y)\). In: Cuyt, A. (ed.) Nonlinear Numerical Methods and Rational Approximation (Wilrijk, 1987), pp. 155–166. Reidel, Dordrecht (1988)

    Google Scholar 

  7. Chisholm, J.S.R.: Rational approximants defined from double power series. Math. Comput. 27, 841–848 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  8. Critchfield, C.L., Gammel, J.L.: Rational approximants for inverse functions of two variables. Rocky Mt. J. Math. 4, 339–349 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cuyt, A.: Padé Approximants for Operators: Theory and Applications, vol. 1065 of Lecture Notes in Mathematics. Springer, Berlin Heidelberg New York (1984)

    Google Scholar 

  10. Cuyt, A.: How well can the concept of Padé approximant be generalized to the multivariate case? J. Comput. Appl. Math. 105(1–2), 25–50 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cuyt, A., Verdonk, B.: General order Newton–Padé approximants for multivariate functions. Numer. Math. 43(2), 293–307 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cuyt, A., Verdonk, B.: A review of branched continued fraction theory for the construction of multivariate rational approximants. Appl. Numer. Math. 4(2–4), 263–271 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cuyt, A., Verdonk, B.: The need for knowledge and reliability in numeric computation: Case study of multivariate Padé approximation. Acta Appl. Math. 33, 273–302 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gohberg, I., Kailath, T., Olshevsky, V.: Fast Gaussian elimination with partial pivoting for matrices with displacement structure. Math. Comput. 64(212), 1557–1576 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gohberg, I., Olshevsky, V.: Complexity of multiplication with vectors for structured matrices. Linear Algebra Appl. 202, 163–192 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gončar, A.A.: A local condition for the single-valuedness of analytic functions of several variables. Math. USSR Sb. 22(2), 305–322 (1974)

    Article  Google Scholar 

  17. Graves-Morris, P.R., Hughes Jones, R., Makinson, G.J.: The calculation of some rational approximants in two variables. J. Inst. Math. Appl. 13, 311–320 (1974)

    MATH  MathSciNet  Google Scholar 

  18. Guillaume, P.: Nested multivariate Padé approximants. J. Comput. Appl. Math. 82(1–2), 149–158 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Heinig, G.: Inversion of generalized Cauchy matrices and other classes of structured matrices. In: Linear algebra for signal processing (Minneapolis, MN, 1992), vol. 69 of IMA Vol. Math. Appl., pp. 63–81. Springer, Berlin Heidelberg New York(1995)

    Google Scholar 

  20. Hughes Jones, R.: General rational approximants in \({N}\)-variables. J. Approx. Theory 16(3), 201–233 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hughes Jones, R., Makinson, G.J.: The generation of Chisholm rational polynomial approximants to power series in two variables. J. Inst. Math. Appl. 13, 299–310 (1974)

    MATH  MathSciNet  Google Scholar 

  22. Kailath, T., Kung, S.Y., Morf, M.: Displacement ranks of matrices and linear equations. J. Math. Anal. Appl. 68(2), 395–407 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  23. Karan, B.M., Srivastava, M.C.: A new multidimensional rational approximant. J. Indian Inst. Sci. 67(9–10), 351–360 (1987)

    MATH  MathSciNet  Google Scholar 

  24. Karlsson, J., Wallin, H.: Rational approximation by an interpolation procedure in several variables. In: Saff, E.B., Varga, R.S. (eds.) Padé and Rational Approximation: Theory and Applications (Proc. Internat. Sympos., Univ. South Florida, Tampa, Fla., 1976), pp. 83–100. Academic Press, Berlin Heidelberg New York (1977)

    Google Scholar 

  25. Kuchminskaya, K.I.: Corresponding and associated branching continued fractions for a double power series. Dokl. Akad. Nauk Ukr. SSR, Ser. A 7, 613–617, 669 (1978)

    Google Scholar 

  26. Levin, D.: General order Padé-type rational approximants defined from double power series. J. Inst. Math. Appl. 18(1), 1–8 (1976)

    MATH  MathSciNet  Google Scholar 

  27. Levy, B., Morf, M., Kung, S.-Y.: Some algorithms for the recursive input-output modeling of 2-d systems. Technical Report LIDS-P-962, MIT, Cambridge (1979)

  28. Lutterodt, C.H.: A two-dimensional analogue of Padé approximant theory. J. Phys. A 7, 1027–1037 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lutterodt, C.H.: Addendum to: “A two-dimensional analogue of Padé approximant theory” (J. Phys. A 7 (1974), 1027–1037). J. Phys. A 8, 427–428 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lutterodt, C.H.: Rational approximants to holomorphic functions in \(n\)-dimensions. J. Math. Anal. Appl. 53(1), 89–98 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  31. Paraskevopoulos, P.N.: Padé-type order reduction of two-dimensional systems. IEEE Trans. Circuits Syst. 27, 413–416 (1980)

    Article  MATH  Google Scholar 

  32. Rump, S.M.: Kleine Fehlerschranken bei Matrixproblemen. PhD thesis, Universität Karlsruhe (1980)

  33. Rump, S.M.: INTLAB – INTerval LABoratory. In: Csendes, T. (ed.) Developments in Reliable Computing, pp. 77–104. Kluwer, Dordrecht (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Becuwe.

Additional information

Research partly funded by FWO-Vlaanderen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becuwe, S., Cuyt, A. On the fast solution of Toeplitz-block linear systems arising in multivariate approximation theory. Numer Algor 43, 1–24 (2006). https://doi.org/10.1007/s11075-006-9032-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-006-9032-8

Keywords

AMS subject classification

Navigation