Skip to main content
Log in

Least-squares spectral collocation with the overlapping Schwarz method for the incompressible Navier–Stokes equations

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A least-squares spectral collocation scheme is combined with the overlapping Schwarz method. The methods are succesfully applied to the incompressible Navier–Stokes equations. The collocation conditions and the interface conditions lead to an overdetermined system which can be efficiently solved by least-squares. The solution technique will only involve symmetric positive definite linear systems. The overlapping Schwarz method is used for the iterative solution. For parallel implementation the subproblems are solved in a checkerboard manner. Our approach is successfully applied to the lid-driven cavity flow problem. Only a few Schwarz iterations are necessary in each time step. Numerical simulations confirm the high accuracy of our spectral least-squares scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernardi, C., Canuto, C., Maday, Y.: Generalized inf–sup condition for Chebyshev approximations to Navier–Stokes equations. C.R. Acad. Sci. Paris 303(serie I), 971–974 (1986)

    MATH  MathSciNet  Google Scholar 

  2. Bernardi, C., Maday, Y.: Approximations Spectrale de Problémes aux Limites Elliptiques. Springer, Berlin Heidelberg New York (1992)

    Google Scholar 

  3. Botella, O.: On the solution of the Navier–Stokes equations using Chebyshev projection schemes with third-order accuracy in time. Computer Fluids 26, 107 (1997)

    Article  MATH  Google Scholar 

  4. Botella, O., Peyret, R.: Benchmark spectral results on the lid-driven cavity flow. Computer Fluids 27(4), 421–433 (1998)

    Article  MATH  Google Scholar 

  5. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics. Springer, Berlin Heidelberg New York (1989)

    Google Scholar 

  6. Deang, J.M., Gunzburger, M.D.: Issues related to least-squares finite element methods for the Stokes equations. SIAM J. Sci. Comput. 20, 878–906 (1998)

    Article  MathSciNet  Google Scholar 

  7. Deville, M.O., Fischer, P.F., Mund, E.H.: High-Order Methods for Incompressible Fluid Flow, Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, New York (2002)

    Google Scholar 

  8. Eisen, H., Heinrichs, W.: A new method of stabilization for singular perturbation problems with spectral methods. SIAM J. Numer. Anal. 29, 107–122 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gerritsma, M.I., Phillips, T.N.: Discontinuous spectral element approximation for the velocity–pressure–stress formulation of the Stokes problem. Int. J. Numer. Methods Eng. 43, 1401–1419 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gerritsma, M.I., Proot, M.J.: Analysis of a discontinuous least-squares spectral element method. J. Sci. Comput. 17, 297–306 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications. CBMS-NSF Regional Conference Series in Applied Mathematics no. 26. SIAM, Philadelphia (1977)

    Google Scholar 

  12. Haschke, H., Heinrichs, W.: Splitting techniques with staggered grids for the Navier–Stokes equations in the 2D case. J. Comput. Phys. 168, 131–154 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Heinrichs, W.: A stabilized multidomain approach for singular perturbation problems. J. Sci. Comput. 7(2), 95–125 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Heinrichs, W.: Splitting techniques for the pseudospectral approximation of the unsteady Stokes equations. SIAM J. Numer. Anal. 30(1), 19–39 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Heinrichs, W.: Least-squares spectral collocation for discontinuous and singular perturbation problems. J. Comput. Appl. Math. 157, 329–345 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Heinrichs, W.: Least-squares spectral collocation for the Navier–Stokes equations. J. Sci. Comput. 21(1), 81–90 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Henderson, R.D.: Adaptive spectral element methods for turbulence and transition. In: Barth, T.J., Deconinck, H. (eds.) High Order Methods for Computational Physics, pp. 225–324. Springer, Berlin Heidelberg New York (1999)

    Google Scholar 

  18. Jiang, B.-N.: A least-squares finite element method for incompressible Navier–Stokes problems. Int. J. Numer. Methods Fluids 14, 843–859 (1992)

    Article  MATH  Google Scholar 

  19. Jiang, B.-N.: On the least-squares method. Comput. Methods Appl. Mech. Eng. 152, 239–257 (1998)

    Article  MATH  Google Scholar 

  20. Jiang, B.-N., Chang, C.L.: Least-squares finite elements for the Stokes problem. Comput. Methods Appl. Mech. Eng. 78, 297–311 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jiang, B.-N., Povinelli, L.: Least-squares finite element method for fluid dynamics. Comput. Methods Appl. Mech. Eng. 81, 13–37 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  22. Orszag, S.A.: Spectral methods for problems in complex geometries. J. Comput. Phys. 37, 70–92 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  23. Proot, M.J., Gerritsma, M.I.: A least-squares spectral element formulation for the Stokes problem. J. Sci. Comput. 17, 285–296 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Proot, M.J., Gerritsma, M.I.: Least-squares spectral elements applied to the Stokes problem. J. Comput. Phys. 181(2), 454–477 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Proot, M.J., Gerritsma, M.I.: Application of the least-squares spectral element method using Chebyshev polynomials to solve the incompressible Navier–Stokes equations. Numer. Algorithms 38, 155–172 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Rønquist, E.: Optimal spectral element methods for the unsteady three dimensional incompressible Navier–Stokes equations. PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts (1988)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilhelm Heinrichs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinrichs, W. Least-squares spectral collocation with the overlapping Schwarz method for the incompressible Navier–Stokes equations. Numer Algor 43, 61–73 (2006). https://doi.org/10.1007/s11075-006-9039-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-006-9039-1

Keywords

Mathematics Subject Classification (2000)

Navigation