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Abstract

Trivariate Box-splines lack an efficient and general exact evaluation technique. This
paper presents one possible and underexploited approach to solving this problem.
The algorithm we propose is based on mixed directional differences and summations
for computing the Bézier net coefficients of all trivariate four-direction Box-splines
of any degree over tetrahedral tessellations of the domain.

A Matlab package, called MDDS, for computing the Bézier net both in the trivariate
and bivariate cases, is also provided.
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1 Introduction

During the past twenty years, much research has been undertaken to study Bézier
representations of bivariate Box-spline basis functions ([6], [7], [8], [24]). In contrast,
Bézier representation of higher dimensional Box-splines has received much less at-
tention as an effective and powerful exact evaluation tool.
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In this paper we focalize our attention on trivariate Box-splines and we propose a
new efficient computational scheme for exact evaluating the four-direction class of
such functions by computation of their Bézier net over a tetrahedral tessellation of
the domain.
Trivariate Box-splines are a trivariate extension of uniform univariate B-splines. Tri-
variate Box-spline evaluation is, in general, more difficult than univariate B-spline
evaluation. General evaluation algorithms can exploit one or more of the following
properties of Box-splines: (i) two-scale subdivision, (ii) Fourier transform, (iii) re-
currence definition formula, or (iv) tetrahedral Bézier volume decomposition.
Subdivision leads to an approximate iterative technique which converges quadra-
tically. The continuous inverse Fourier transform of the Box-spline can only be
approximated with a discrete inverse Fourier transform, so inverse FFT evaluation
is also an approximation [22]. Both of the two first techniques share the property
that a large number of samples are computed at once and have similar asymptotic
complexity measures.
While procedures (i) and (ii) provide an efficient computational scheme only if an
approximate Box-spline is required, of the relevant evaluation techniques, just (iii)
and (iv) are exact. Unfortunately, (iii) can be very expensive: the value of every
Box-spline at any point is in fact computed one at a time. Only fairly low degrees
Box-splines can be computed without too much difficulty and for completely general
Box-splines the cost increases combinatorically with the number of direction vec-
tors. With care, on restricted classes of Box-splines, this explosion can be contained
somewhat, but a large amount of arithmetic is still needed for every sample.
Strangely, evaluation via tetrahedral Bézier volume decomposition has not been
looked at in the literature. Although for graphic display purposes it is worthwhile
using an approximate evaluation procedure, for analytical purposes it is sometimes
necessary to know the exact formulation of the polynomial pieces of a trivariate Box
spline basis function. Additionally, in computer aided geometric design it is com-
mon to represent a polynomial on an interval or triangle by its Bézier points, since
this is very useful (both in theory and in applications) as the appropriate piecewise
linear interpolant of the Bézier points, the so-called Bézier net, reflects the shape of
the polynomial curve or surface. Curiously, these results have not previously been
extended to more than two dimensions. Therefore it is worthwhile to investigate
this approach in the trivariate case too. Additionally, once the B-net of each poly-
nomial piece is available, the box can be evaluated and its exact value at any point
can be determined by using the regular Bézier polynomial evaluator ([25], [30]).
For the purpose of graphically displaying the volume, it is worthwhile implementing
the B-net subdivision algorithm, not only for efficiency reasons, but also for the
reason that in using B-net subdivision, we have exact values of the volume at all
the vertices of the subdivided tetrahedra. Thus, any interpolating volume based on
translates of a trivariate Box-spline, could be displayed by our algorithm to preserve
its interpolatory property.
This paper is organized as follows. Sections 2 and 3 are both introductory sec-
tions where we give notations and preliminary details. In particular, Section 2 is
devoted to the analysis of the class of trivariate Box-spline volumes to which the
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four-direction Box-splines belong, while Section 3 acquaints the reader with triva-
riate polynomials on tetrahedra, underlining the properties we need to work out the
mathematics of our algorithm. In Section 4 we describe our computational scheme
for generating the Bézier net coefficients of an arbitrary trivariate four-direction
Box-spline. Details of computation and clarifying examples are presented. Then
in Section 5 we show that a restriction of our computational scheme to the two-
dimensional case provides an alternative procedure to the computational scheme
proposed by Lai [24], Chui and Lai [6], [7], [8], for computing the Bézier net of
bivariate three-direction Box-splines. Finally Section 6 is concerned with the de-
scription of a Matlab implementation of our algorithm for generating the B-nets of
both trivariate and bivariate Box-splines.

2 Trivariate Box-spline volumes: notations and preliminary details

Box-splines represent a generalization of univariate uniform B-splines to several
variables. Therefore we can think about a Box-spline as a multivariate piecewise
polynomial function of some chosen degree, i.e. as a function that consists of diffe-
rent polynomial pieces of the same degree, defined over different parts of its domain,
that join together with a certain order of continuity.
Since Box-splines were introduced by de Boor and De Vore [13], a rich theory has
been developed and collected in “the box spline book” [18] which serves as a refe-
rence for the following exposition of these piecewise polynomial functions.
As underlined in this book there are many ways to derive Box-splines. Here we
choose the recurrence definition and we confine ourselves to analyze the trivariate
case only.

Definition 1 Let the degree-m, m ≥ 0, trivariate Box-spline Mm
Dn

: R
3 → R,

associated with the direction matrix Dn = [d1 d2 ... dn] ∈ R
3×n, n = m + 3, with

span(Dn) ≡ span(d1,d2, ...,dn) = R
3, dh ∈ R

3\{0} ∀h = 1, ..., n,

be defined ∀n > 3 (m > 0) by the recurrence relation

Mm
Dn

(x) =
1

n − 3

n∑
h=1

[th Mm−1
Dn\{dh}(x) + (1 − th) Mm−1

Dn\{dh}(x − dh)] (1)

where x =
∑n

h=1 thdh is a representation of x ∈ R
3 by some linear combination of
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the columns {dh}h=1,...,n of Dn, e.g. the least norm solution




t1
t2
...
tn


 = Dt

n(DnDt
n)−1


 x1

x2

x3


 .

The base case of this recursion occurs when the matrix Dn is square, that is n =
3 (m = 0). In this case M0

D3
is the normalized characteristic function of the projected

half-open parallelepiped H3, spanned by the three columns of D3:

M0
D3

(x) =




1
|det(D3)| if x ∈ H3

0 otherwise.
(2)

This Box-spline is piecewise constant, has degree m = 0 and is discontinuous. In
general, by the n columns of Dn (which may be interpreted as directions in R

3) we
can determine the support of the piecewise polynomial and its continuity properties.
In particular it has been proved that:

• The support of Mm
Dn

is the set sum of the columns contained in Dn.
• Mm

Dn
is a piecewise polynomial of degree m = n − 3.

• Mm
Dn

is ρ− 2 times continuously differentiable, where ρ is the minimal number of
columns that need to be removed from Dn to obtain a matrix whose columns do
not span R

3.
• Mm

Dn
reproduces all polynomials of degree ρ − 1 and none of degree higher than

m = n − 3.

The class of trivariate Box-splines we are going to analyze is that defined by the
direction vectors

e1 =


 1

0
0


 , e2 =


 0

1
0


 , e3 =


 0

0
1


 , e123 = e1 + e2 + e3 =


 1

1
1


 (3)

which form a regular partition of R
3 into regular tetrahedra.

E3 ≡ {e1, e2, e3, e123} is only a subset of the complete direction set





 1

0
0


 ,


 0

1
0


 ,


 0

0
1


 ,


 1

1
1





−1

1
1





 1
−1
1





−1
−1
1







containing all the 7 unit vectors of the domain of a trivariate Box-spline [27] (see
figure 1).
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Fig. 1. The seven directions of the trivariate Box-spline.

The direction matrices Dn that we will associate with E3 are therefore matrices
that contain the vectors e1, e2, e3, e123 with their repetitions. More precisely, we will
use the symbol Mm

ν1ν2ν3ν4
to denote the four-direction Box-spline Mm

Dn
associated

with the direction matrix

Dn = [e1, ..., e1︸ ︷︷ ︸
ν1

, e2, ..., e2︸ ︷︷ ︸
ν2

, e3, ..., e3︸ ︷︷ ︸
ν3

, e123, ..., e123︸ ︷︷ ︸
ν4

]

where n = ν1 + ν2 + ν3 + ν4, νh ∈ Z+\{0} ∀h = 1, ..., 4.

In the bivariate case, the analogous of this class of Box-splines is the class of the
three-direction Box-splines studied in [7], [8], which are defined by the direction
vectors

E2 =
{[

1
0

]
,

[
0
1

]
,

[
1
1

]}

(see figure 2 right).

Fig. 2. Unit vectors on faces (left) - The bivariate three-direction set (right).

To represent a four-direction Box-spline by its Bézier net, we partition its support
into cubes by a regular lattice and we consider a tessellation of each cube into six
tetrahedra, as represented in figure 3. The tessellation of each cube into tetrahedra
is the one which, once projected, gives the tessellation of each square of the support
of a three-directional bivariate Box-spline into two regular triangles.
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1 2 3 4 5 6

Fig. 3. Tetrahedral tessellation of a unit cube.

3 B-form of trivariate polynomials on tetrahedra: TB volumes

Given a trivariate Box-spline, i.e. a piecewise trivariate polynomial defined on a col-
lection of tetrahedra, one can have the B-form of each polynomial piece restricted
to one tetrahedron. In this section we acquaint the reader with the Bernstein repre-
sentation of polynomials on tetrahedra. An introduction to this topic can be found
in [16].

Definition 2 Let v0,v1,v2,v3 be four vertices in R
3, whose Cartesian coordinates

(xh, yh, zh) = vh, h = 0, ..., 3, satisfy

∣∣∣∣∣∣∣∣∣
1 x0 y0 z0

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

∣∣∣∣∣∣∣∣∣
�= 0. (4)

Thus, any non-degenerate tetrahedron T , with non-zero (signed) volume

vol(T ) =
1
6

∣∣∣∣∣∣∣∣∣
1 x0 y0 z0

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

∣∣∣∣∣∣∣∣∣
, (5)

is defined by the convex hull of the four affine independent vertices v0,v1,v2,v3, as
follows:

T :=< v0,v1,v2,v3 >=

{
v ∈ R

3 : v =
3∑

h=0

λhvh, 0 ≤ λh ≤ 1 ∀h,
3∑

h=0

λh = 1

}
.

(6)

The quadruple (λ0, λ1, λ2, λ3) in (6) identifies the so-called barycentric coordinates of
the arbitrary point v = (x, y, z) ∈ R

3 relative to the tetrahedron T =< v0,v1,v2,v3 >.
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Remark 3 Since each

λh := λh(v) =
vol(T̂h)
vol(T )

, h = 0, ..., 3 (7)

with T̂h denoting the tetrahedron of vertices v0, ...,vh−1,v,vh+1, ...,v3, is a linear
polynomial in v = (x, y, z) with value 1 at the vertex vh, which vanishes on the face
opposite to vh, in the interior of the tetrahedron T we have λh > 0, ∀h = 0, ..., 3.

We next introduce the trivariate Bernstein polynomials as follows:

Bm
i,j,k,l(λ) =

(i + j + k + l)!
i!j!k!l!

λi
0λ

j
1λ

k
2λ

l
3, m = i + j + k + l. (8)

Since each λh is a linear polynomial, clearly Bm
i,j,k,l are polynomials of degree m. In

fact we have that the set {Bm
i,j,k,l(λ), i + j + k + l = m} is a basis for the space of

all polynomials of total degree ≤ m. As a consequence any polynomial p of degree
m on T can be written uniquely in terms of Bm

i,j,k,l’s i.e.,

p(v) =
∑

i,j,k,l≥0 i+j+k+l=m

Pm
i,j,k,l Bm

i,j,k,l(λ), Pm
i,j,k,l ∈ R. (9)

The representation (9) for polynomials is referred to as the Bézier form (B-form for
short) of p over T . The Pm

i,j,k,l are the Bézier coefficients of p with respect to T .

Remark 4 To simplify notation, we use p(v), p(x, y, z), p(λ) and p(λ0, λ1, λ2, λ3)
to denote the same trivariate function p. p(v) is also commonly called a tetrahedral
Bézier volume (TB volume).

Remark 5 It is interesting to notice a property of trivariate Bernstein Bézier
volumes. Let inner Bézier control vertices denote control points Pm

i,j,k,l with all
i, j, k, l �= 0. The outer control points consequently denote points on the faces of
the tetrahedron. We can state that all tetrahedral Bézier volumes of degree m have
no inner control points for m ≤ 3. This follows trivially since i + j + k + l = m

implies one of i, j, k, l equal to zero if m ≤ 3.

Since the indeces i, j, k, l are respectively associated with the vertices v0,v1,v2, v3

in T , then we can associate each polynomial p(v) with its Bézier coefficients set
{Pm

i,j,k,l, i + j + k + l = m} (see figures 4-5 as example).

Definition 6 The ordinates Pm
i,j,k,l ∈ R associated with the barycentric abscissae

ξi,j,k,l = iv0+jv1+kv2+lv3

i+j+k+l ∈ R
3 with i, j, k, l ≥ 0, i + j + k + l = m,

{(
iv0 + jv1 + kv2 + lv3

m
, Pm

i,j,k,l

)
: i + j + k + l = m

}
∈ R

4,
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constitute the Bézier net of p(v) in R
4, which uniquely determines the polynomial

p(v) and contains information about the geometric feature of the volume.

In fact, like in the univariate/bivariate cases, the appropriate piecewise linear in-
terpolant of the four dimensional Bézier points (ξi,j,k,l, P

m
i,j,k,l) ∈ R

4 (obtained by
connecting them with straight lines according to their natural order), commonly
called the Bézier net, reflects the shape of the polynomial volume. This is one of the
reasons that polynomials in Bézier form have been widely used in Computer Aided
Geometric Design.

1

v

v

v v(v + v )/2

(v + v )/2

(v + v )/2
(v + v )/20

0

2 32 3

1 3

2

0 3

(v + v )/210

(v + v )/221

0200

2000

1100

1010

0110

1001

P

P
P

P
P

P

0002P0011P0020P

0101P

Fig. 4. Domain points on a degree-2 tetrahedron (left) and the corresponding Bézier
coefficients (right).

0

0

0

00

0 0

0

0

0

0 0 0

0

0 0

0

Fig. 5. A degree-2 trivariate matrix corresponding to tetrahedron no 5 in Fig.3.

Because of the linear dependence of the barycentric coordinates, the partial deriva-
tives of a TB volume do not have an obvious geometric interpretation; indeed, the
partial derivatives with respect to λ0, λ1, λ2, λ3, do not coincide with the derivatives
along parametric lines. Instead of working with partial derivatives, we must there-
fore use directional derivatives. Now we are going to give formulas for the directional
derivatives of p in a direction defined by a vector w. In particular, for

p(v) =
∑

i,j,k,l≥0 i+j+k+l=m

Pm
i,j,k,l Bm

i,j,k,l(λ)

we have

Dwp(v) = m
∑

i,j,k,l≥0 i+j+k+l=m−1

∆Pm−1
i,j,k,l(a) Bm−1

i,j,k,l(λ) (10)
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with a = (a1, a2, a3, a4), a1 +a2 +a3 +a4 = 0, and the following recurrence relation
on the coefficients:

∆Pm−1
i,j,k,l(a) = a1P

m
i+1,j,k,l + a2P

m
i,j+1,k,l + a3P

m
i,j,k+1,l + a4P

m
i,j,k,l+1. (11)

Here the ah, h = 1, ..., 4 are the so-called T -coordinates of w. That is, if w = w2−w1

is a direction vector with (β1, β2, β3, β4) and (γ1, γ2, γ3, γ4) being the barycentric
coordinates of w1 and w2 with respect to T , the T -coordinates of w are a =
(γ1 − β1, γ2 − β2, γ3 − β3, γ4 − β4) = (a1, a2, a3, a4).

4 The mixed directional difference-summation (MDDS) algorithm

As mentioned in the introduction, algorithms for evaluating Box-spline functions
can be classified into three types, depending on

• it is computed the value of the Box-spline function exactly for each fixed point
using the recurrence definition in (1);

• it is given an efficient approximation scheme which is based on another recurrence
relation, obtained via two-scale subdivision or inverse FFT;

• it is given an explicit representation, say in terms of the Bézier net, of each
polynomial piece.

Algorithms of the third type depend on yet another form of recurrence relation
(11). In this section we represent a trivariate Box-spline basis function over a regu-
lar tetrahedron partition ∆ of its polygonal domain Ω ∈ R

3, with piecewise planar
boundary ∂Ω, and we give a computational scheme to determine the Bézier coeffi-
cients of each polynomial piece of the trivariate function.
To be more precise, trivariate Box-spline basis functions Mm

ν1ν2ν3ν4
, ν1+ν2+ν3+ν4 =

n, are piecewise polynomials in three variables that consist of 6 ∗ (ν1 + ν4)(ν2 +
ν4)(ν3 + ν4) different polynomial pieces of the same degree m = n− 3, defined over
a tetrahedral tesselation of their domain.
Let x0 < . . . < xp < xp+1 < . . . < xν1+ν4−1, y0 < . . . < yq < yq+1 < . . . < yν2+ν4−1 ,
z0 < . . . < zr < zr+1 < . . . < zν3+ν4−1 and let the planes x = xp, y = yq, z = zr,
p = 0, . . . , ν1 + ν4 − 1, q = 0, . . . , ν2 + ν4 − 1, r = 0, . . . , ν3 + ν4 − 1 partition the
3D space into cubic cells. Drawing in all cells, the tetrahedral partition described
in figure 3, we get a tetrahedral tessellation of the Box-spline domain.

(x      , y  , z  )p+1         q        r

(x     , y  , z     )p+1       q        r+1

p        q+1        r(x  , y     , z  )

(x      , y      , z     )p+1        q+1          r+1

(x     , y     , z   )p+1       q+1         r

p       q+1        r+1(x  , y     , z    )

(x  , y  , z  )p       q        r

(x  , y  , z    )p       q        r+1
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Consider the cube of vertices (xp, yq, zr), (xp, yq, zr+1), (xp, yq+1, zr), (xp, yq+1, zr+1),
(xp+1, yq, zr), (xp+1, yq, zr+1), (xp+1, yq+1, zr), (xp+1, yq+1, zr+1) and denote by Pm

i,j,k,l,
i+ j +k + l = m, the Bézier coefficients of the degree-m trivariate polynomial p(v),
defined by restricting Mν1ν2ν3ν4 , ν1+ν2+ν3+ν4 = m+3, to one of the six tetrahedra
in the cube.

Hence it trivially follows

Ddh
MDn(x) =

∑
i, j, k, l ≥ 0

i + j + k + l = m − 1

Qm−1
i,j,k,lB

m−1
i,j,k,l(λ)

where λ ≡ (λ0, λ1, λ2, λ3) are the barycentric coordinates associated with x ∈ T .
Now recalling that a Box-spline is a linear combination of Bézier basis functions,
we can exploit (10)-(11) and write

m
∑

i, j, k, l ≥ 0
i + j + k + l = m − 1

∆Pm−1
i,j,k,l(a) Bm−1

i,j,k,l(λ) =
∑

i, j, k, l ≥ 0
i + j + k + l = m − 1

Qm−1
i,j,k,lB

m−1
i,j,k,l(λ). (12)

From (12) it can be easily derived

Qm−1
i,j,k,l = m(a1P

m
i+1,j,k,l + a2P

m
i,j+1,k,l + a3P

m
i,j,k+1,l + a4P

m
i,j,k,l+1) (13)

where a ≡ (a1, a2, a3, a4) is a vector with the T-coordinates of the direction dh =
x − (x − dh):

ai = γi − βi i = 1, . . . , 4,

with (γ1, γ2, γ3, γ4) and (β1, β2, β3, β4) being the barycentric coordinates of x and
x − dh respectively 1 . The construction of the B-net requires to work out the un-
knowns Pm

i,j,k,l from equation (13). From now on, the factor m is omitted in order
to keep the numbers integral (see Prop.7).
In conclusion, the mathematical ideas and formulations of finding the B-nets of a
trivariate four-direction Box-spline can be summerized as follows.

Starting with the B-net of the degree-1 Box-spline M1
1111, (see figure 6) we can

compute the B-net of any other Box-spline Mm
ν1ν2ν3ν4

, with ν1 + ν2 + ν3 + ν4 > 4,
by applying the algorithm summarized in the following steps:

(1) Express each polynomial piece of the Box-spline in (unknown) Bézier represen-
tation;

(2) Use the recurrence (see [29])

1 Since we always integrate along the directions e1, e2, e3, e123, generated by tetra-
hedra, we only have two non-zero barycentric coordinates which typically assume
values 1 and -1.
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Ddh
Mm

Dn
(x) = Mm−1

Dn\{dh}(x) − Mm−1
Dn\{dh}(x − dh) h = 1, . . . , n (14)

to represent the degree-m Box-spline with respect to the degree-(m − 1) one
generated by the direction matrix Dn\{dh}, with span(Dn\{dh}) = R

3;
(3) Determine the coefficients Pm in the B-net of Mm

Dn
by using the derivative

formula of TB-polynomials in (11), with (a1, a2, a3, a4) being the T-coordinates
of dh and Qm−1 the coefficients of the B-net of Mm−1

Dn\{dh}.

0

0

0

0 0

0

0

0

0

0

0 0

0 1 0

Fig. 6. B-net of M1
1111.

Thus, starting with the known B-net of M1
1111, the key idea to construct the B-net of

an arbitrary degree Box-spline, is applying the derivative formula (14) recursively.
In this way the Bézier coefficients Qm−1

i,j,k,l of Ddh
Mm

Dn
can be obtained by applying

a shift and subtract procedure on the B-net of Mm−1
Dn\{dh}(x).

Note that the B-nets of all trivariate four-direction Box-splines generated by the
procedure described above can be computed once for all. This derives from the
following proposition.

Proposition 7 Let Mm
Dn

be a trivariate four-direction Box-spline. Then the B-net
of its polynomial pieces consists of rational numbers.

Proof. This trivially derives from the fact that we start our method from the linear
B-net with all integral coefficients and we combine the 1

m factors, coming from (13),
into a single 1

m! which can be carried out at the end of a sequence of operations
which are indeed only integer additions and subtractions. �

Corollary 8 Thus we can compute the B-net of those Box-splines in exact arith-
metic. This guarantees the numerical stability property of the proposed algorithm.

To clarify the presentation, we first illustrate the procedure above with the following
example and successively we present a Matlab package for computing the B-net
coefficients of an arbitrary trivariate four-direction Box-spline (see Section 6).

Example. Consider the degree-2 Box-spline defined by the direction matrix D5 =
{e1, e1, e2, e3, e123}. Following the algorithm given above, the B-net of M2

D5
turns

out to be defined by shifting and subtracting the B-net of M1
D4

(see figure 6), with
D4 ≡ E3 = {e1, e2, e3, e123}, along the direction e1 (see figure 7) and integrating
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0 0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

00

0

−11

Fig. 7. Shift and subtraction of the coefficients of the linear Box-spline M1
D4

.

the resulting coefficients along the same direction. This last step (which allows
us to work out the Bézier coefficients of M2

D5
) is expressed in relation (13) with

(a1, a2, a3, a4) being the T-coordinates of e1, that is

a1 = γ1 − β1 = 0 − 1 = −1

a2 = γ2 − β2 = 1 − 0 = 1

a3 = γ3 − β3 = 0 − 0 = 0

a4 = γ4 − β4 = 0 − 0 = 0.

In other words, relation (13) results simplified as follows:

Q1
1000 = P 2

1100 − P 2
2000

Q1
0100 = P 2

0200 − P 2
1100

Q1
0010 = P 2

0110 − P 2
1010

Q1
0001 = P 2

0101 − P 2
1001

(15)

and thus

P 2
1100 = Q1

1000 + P 2
2000

P 2
0200 = Q1

0100 + P 2
1100

P 2
0110 = Q1

0010 + P 2
1010

P 2
0101 = Q1

0001 + P 2
1001.

(16)

Since the integral of a TB-volume of degree 1 is a TB-volume of degree 2, equation
(16) can be viewed as an integration of the Q1 coefficients, starting along the trian-
gular face of the tetrahedron with vertices P 2

2000, P 2
1010, P 2

1001, P 2
0020, P 2

0011, P 2
0002.

However, since the value of such constants of integration is unknown, we make them
assume the coefficient values in the adjacent tetrahedron sharing the face containing
those constants, until we get the box boundary, where the coefficients are equal to
zero (as we are looking for basis functions with a bounded non-zero region). In this
way we can compute the expression for the remaining four coefficients P 2

1100, P 2
0200,

12



P 2
0110, P 2

0101 by a sequence of successive additions, like:

P 2
1100 = Q1

1000 + P 2
2000

P 2
0200 = Q1

0100 + Q1
1000 + P 2

2000

P 2
0110 = Q1

0010 + P 2
1010

P 2
0101 = Q1

0001 + P 2
1001.

Applying these equalities to the whole Box-spline M2
D5

and exploiting adjacencies
of tetrahedra, we are capable to work out all the Bézier coefficients of its B-net.
From now on we will use the double apex 2, (c1, c2) to denote the Bézier coefficients
of the c2-th degree-2 tetrahedral volume belonging to the cube c1. For example, in
order to compute the coefficient P

2,(1,5)
0101 of the 5-th tetrahedron in cube 1 (the one

on the right in figure 8), we exploit the relation

P
2,(1,5)
0101 = Q

1,(1,5)
0001 + P

2,(1,5)
1001

where P
2,(1,5)
1001 coincides with the coefficient P

2,(2,1)
0101 of the 1-st tetrahedron in the

2-nd cube (the one on the left in figure 8).

3 2 1

(1,5)

(2,1)

P P

P

P1100 0200

P0002

0011P

0020P

0101
1010P

1001
P

0110
P

2000 P

P
P

P
P

P

PPP2000

0011

1100

0002

1010

0200

0020

1001
0101

0110P

Fig. 8.

Therefore

P
2,(1,5)
0101 = Q

1,(1,5)
0001 + Q

1,(2,1)
0001 + P

2,(2,1)
1001

13



and going on substituting until integration constant reaches the box boundary, we
get

P
2,(1,5)
0101 = Q

1,(1,5)
0001 + Q

1,(2,1)
0001 + Q

1,(2,5)
0001 + Q

1,(3,1)
0001 + Q

1,(3,5)
0001 + P

2,(3,5)
1001 . (17)

In this way all the intermediate coefficients are easily computed:

Q
1,(3,5)
0001 Q

1,(3,1)
0001 Q

1,(2,5)
0001 Q

1,(2,1)
0001 Q

1,(1,5)
0001

↗+ ↘= ↗+ ↘= ↗+ ↘= ↗+ ↘= ↗+ ↘=

P
2,(3,5)
1001 P

2,(3,5)
0101 P

2,(2,5)
1001 P

2,(2,5)
0101 P

2,(1,5)
1001 P

2,(1,5)
0101 .

2,(3,5) 2,(2,5) 2,(1,5)
0101P0101P0101P

1001
P2,(1,5)2,(2,5)

P10011001
2,(3,5)

P

Q1,(3,1)

0001
Q

0001

1,(2,1)

1,(1,5)

0001
Q1,(2,5)Q

0001

1,(3,5)

0001
Q

Fig. 9. The mixed direction worked out for determining the Bézier coefficients
P

2,(3,5)
1001 , P

2,(3,5)
0101 , P

2,(2,5)
1001 , P

2,(2,5)
0101 , P

2,(1,5)
1001 , P

2,(1,5)
0101 of M2

2111.

The coefficients Q1
i,j,k,l in (17) identify a particular mixed direction in R

3(see figure
9). Such direction allows us to store the Q1

i,j,k,l coefficients in a vector that has to be
integrated by applying a sequence of summations (that starts with the integration
constant P

2,(3,5)
1001 ), in order to generate the P

2,(1,5)
0101 coefficient of the degree-2 Box-

spline M2
2111. The name ”mixed direction” derives from the fact that the direction

of integration, identified by the coefficients Q1
i,j,k,l, is a composition of some linear

combinations of the directions e1, e2, e3, e123 (e123, e2 + e3 in this case). The same
procedure can be applied for determining all the mixed directions we need to work
out all the B-net coefficients of M2

2111. Obviously, the mixed directions by which
they are determined are not always the same, although there is a common pattern
for all of them. In figure 10 you can see the mixed directions set originating the
B-net of M2

2111.
The number and path of such directions depend on the degree of the Box. As
you can see, the mixed directions set is composed of one uni-dimensional direction
(figure 10-a), two two-dimensional directions (with two branches each), respectively
on the planes y = constant (figure 10-b) and z = constant (figure 10-c), and one
three-dimensional direction (figure 10-d) composed of four branches. Each branch
is just a translation in the vertices indicated in the pictures, of the given mixed
direction with origin in the vertex marked by 0. The uni-dimensional one, defined
by a single straight direction along e1, corresponds to the direction dh along which

14



we are integrating. For this reason we are going to refer to such direction by the
term main direction. In the given example, such direction identifies the coefficient
P

2,(1,5)
0200 , since its value is computed in the following way:

Q
1,(3,5)
0001 Q

1,(3,5)
0100 Q

1,(2,5)
1000 Q

1,(2,5)
0100 Q

1,(1,5)
1000 Q

1,(1,5)
0100

↗+ ↘= ↗+ ↘= ↗+ ↘= ↗+ ↘= ↗+ ↘= ↗+ ↘=

P
2,(3,5)
2000 P

2,(3,5)
1100 P

2,(2,5)
2000 P

2,(2,5)
1100 P

2,(1,5)
2000 P

2,(1,5)
1100 P

2,(1,5)
0200

As it can be observed, because Q
1,(3,5)
0100 = Q

1,(2,5)
1000 and Q

1,(2,5)
0100 = Q

1,(1,5)
1000 , the main

direction contains two duplicated coefficients. In general, a main direction for gene-
rating a degree-m Box-spline, contains exactly m duplicated coefficients.

a b

0

1

c

0

1

0

1

2

3

d

Fig. 10. All the integration paths (mixed directions) sufficient for computing the
B-net of the quadratic trivariate Box-spline M2

2111.

5 Restricting the scheme to the two-dimensional case

In this section we are going to show that a restriction of our computational scheme
to the two-dimensional case provides an alternative procedure to the computational
scheme proposed by Lai [24], Chui and Lai [6], [7], [8], for computing the Bézier net
of bivariate three-direction Box-splines. In fact following the Box-spline definition
proposed in [29] we can use mathematical induction on the degree m to prove that

Mm(x, y, z)
∣∣∣∣
plane

= Mm(u, v) ∀m ≥ 1

and in particular

Mν1+ν3−1
ν11ν31 (x, y, z)

∣∣∣∣
y=1

= Mν1+ν3−1
ν1ν31 (x, z)

Mν1+ν2−1
ν1ν211 (x, y, z)

∣∣∣∣
z=1

= Mν1+ν2−1
ν1ν21 (x, y)

Mν2+ν3−1
1ν2ν31 (x, y, z)

∣∣∣∣
x=1

= Mν2+ν3−1
ν2ν31 (y, z)
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Mν3+ν4−1
11ν3ν4

(x, y, z)
∣∣∣∣
x=y

= Mν3+ν4−1
1ν3ν4

(x, z).

We now confine ourselves to the first case and for sake of simplicity we choose
ν3 = 1, focusing our attention on the restriction of the trivariate Box-spline Mν1

ν1111

to the plane y = 1. The initial step is the linear case:

M1
E3

(x, y, z)
∣∣∣∣
y=1

= M1
E2

(x, z).

According to the recurrence Box-spline definition given in Section 2,

M1
E3

(x, y, z) = t1M
0
E3\{e1}(x, y, z) + (1 − t1)M0

E3\{e1}(x − 1, y, z) (18)

+ t2M
0
E3\{e2}(x, y, z) + (1 − t2)M0

E3\{e2}(x, y − 1, z)

+ t3M
0
E3\{e3}(x, y, z) + (1 − t3)M0

E3\{e3}(x, y, z − 1)

+ t4M
0
E3\{e123}(x, y, z) + (1 − t4)M0

E3\{e123}(x − 1, y − 1, z − 1).

Figure 11 illustrates the computation in (18).

Fig. 11. The four branches related to t1, t2, t3, t4 contributions.

Further, one notes that the only branches of the tree which contribute to the com-
putation are those for which (x, y, z) lies in the support of the corresponding shifted
Box-spline. In this case (x, y, z) is chosen in the area delimited by the gray hexagon
(figure 11). To compare corresponding trivariate and bivariate Box-splines, we have
to consider all the six triangles contained in the hexagonal marked area. In this pa-
per we show, for example, the computation on one of them. In particular if (x, y, z)
lies in the darkest triangle, M1

E3
(x, y, z) = t1 + 1 − t2.
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Applying relation (1) we get M1
E3

(x, y, z)
∣∣∣∣
y=1

= x.

In a similar way we have evaluated the bivariate Box-spline in the same triangle,
obtaining

M1
E2

(x, z) = x.

Exploiting the inductive definition suggested in [29] we have

M2
E3∪{e1}(x, y, z)

∣∣∣∣
y=1

=
1∫

0

M1
E3

(x − t, y, z)dt
∣∣∣
y=1

=
1∫

0

M1
E3

(x − t, y, z)
∣∣∣∣
y=1

dt (∗)

and for the inductive hypothesis M1
E3

(x − t, 1, z) = M1
E2

(x − t, z),

(∗) =
1∫

0

M1
E2

(x − t, z)dt = M2
E2∪{e1}(x, z). �

From this property it easily derives that the B-net of a bivariate three-direction
Box-spline Mm

ν1,ν2,ν3
(with one of the multiplicities ν1, ν2, ν3 set equal to 1) can

be obtained by restriction of the Bézier coefficients of the corresponding trivariate
four-direction Box-spline to a specified plane. For example the B-net of M2

211

1
2




0 0 0 0 0 0 0

0 0 0 1 1 0 0

0 0 1 2 1 0 0

0 0 1 1 0 0 0

0 0 0 0 0 0 0




is exactly the restriction of the B-net of M2
2111 to the plane y = 1. This is explained

by observing that in the bivariate case the mixed directions we use for generating
the B-nets are exactly the 2D mixed directions of the corresponding trivariate Box-
spline, belonging to the section plane.
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6 The MDDS package

This section is concerned with the description of a Matlab package, called MDDS
(available in the NUMERALGO library [4]), designed to compute the B-net coeffi-
cients of all trivariate four-direction Box-splines and additionally to exact evaluate
and visualize them.
The user interface is provided by three main functions:

1. the function bnet_mdds() that allows to compute the Bézier net coefficients of
trivariate four-direction Box-splines of any degree;

2. the function pointeval_mdds3d() that allows to exact evaluate any trivariate
four-direction Box-spline in an arbitrary set of 3D points;

3. the function visual_mdds3d() that allows to visualize any trivariate four-direction
Box-spline Mm

ν1ν2ν3ν4
either through the s-set (s ∈ Imm(Mm

ν1ν2ν3ν4
)) extraction

of the Box-spline volume or through the contour lines of the regions obtained
by intersecting the Box-spline volume with three families of planes respectively
parallel to yz, xz, xy.

The function bnet_mdds() implements the algorithm presented in Section 4 for
generating the mixed directions set of Mm

ν1ν2ν3ν4
and computing its Bézier net.

The general procedure proposed consists in representing the B-net of the linear
Box-spline M1

1111 by the tri-dimensional array

B(:,:,1)=




0 0 0

0 0 0

0 0 0


 B(:,:,2)=




0 0 0

0 1 0

0 0 0


 B(:,:,3)=




0 0 0

0 0 0

0 0 0


 ,

and generating the B-net of Mm
ν1ν2ν3ν4

by successive differences-summations of the
linear Box-spline along the four directions e1, e3, e2, e123, respectively ν1, ν3, ν2, ν4

times:

M1
1111 −→I Mν1

ν1111 −→II Mν1+ν3−1
ν11ν31 −→III Mν1+ν2+ν3−2

ν1ν2ν31 −→IV Mm
ν1ν2ν3ν4

.

At the end of these four steps, the Bézier coefficients of Mm
ν1ν2ν3ν4

are stored in the
tri-dimensional array A(iA, jA, kA), where 1 ≤ iA ≤ m(ν3 + ν4) + 1, 1 ≤ jA ≤
m(ν1 + ν4) + 1, 1 ≤ kA ≤ m(ν2 + ν4) + 1 (noting that we have zero coefficients
outside of the support of Mm

ν1ν2ν3ν4
). Steps I, II, III, IV are summarized respectively

in the four function modules step1_mdds3d(), step2_mdds3d(), step3_mdds3d(),
step4_mdds3d(). They are devised to generate the mixed directions set MD needed
to work out the intermediate Bézier coefficients set A, starting with the one degree
less coefficients matrix B = A(·|Dn\{dh}) − A(· − dh|Dn\{dh}).
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I. First step: M1111 −→ Mν1111

for i=1, . . . , ν1

A=step1_mdds3d(i, 1, 1, 1, B)
B=A

end

Number of MD: m2

Number of branches: (2ν1 − 1)2

II. Second step: Mν1111 −→ Mν11ν31

for i=1, . . . , ν3

A=step2_mdds3d(ν1, 1, i, 1, B)
B=A

end

Number of MD: m2

Number of branches: (2m − 1)(m(ν1 + 1) − 1)

III. Third step: Mν11ν31 −→ Mν1ν2ν31

for i=1, . . . , ν2

A=step3_mdds3d(ν1,i, ν3, 1, B)
B=A

end

Number of MD: m2

Number of branches: (m(ν3 + 1) − 1)(m(ν1 + 1) − 1)

IV. Fourth step: Mν1ν2ν31 −→ Mν1ν2ν3ν4

for i=1, . . . , ν4

A=step4_mdds3d(ν1, ν2, ν3, i, B)
B=A

end

Number of MD: 3m(m − 1) + 1
Number of branches: m2(ν1ν2 + ν2ν3 + ν1ν3) − m(ν1 + ν2 + ν3) + 1

To perform the calculations in the four steps above, two additional modules named
dupl_mdds() and integ_mdds(), are needed. While the first one is required for the
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computation of the duplicated coefficients in the main mixed directions (as previou-
sly explained at the end of Section 4), the second one is required to compute the
integration step along any direction.
To exact evaluate any trivariate four-direction Box-spline in an arbitrary set of 3D
points, an additional function, named pointeval_mdds3d(), is provided. This func-
tion is supported by the function modules findcube_mdds3d() and findtetra_mdds

3d(), which respectively identify the unit cube and the tetrahedron type (see figure
3) that contain the evaluation point.
If, instead, there is an interest to visualize a trivariate four-direction Box-spline, the
function visual_mdds3d() will make the job. Exploiting the trivariate Bernstein-
Bézier polynomials evaluation procedure in computebez_mdds3d(), it allows to vi-
sualize a s-set extraction (with s ∈ Imm(Mm

ν1ν2ν3ν4
)) of the Box-spline volume

Mm
ν1ν2ν3ν4

and (if required) its contour lines.
To demonstrate the use of all such functions, the M-file demo_mdds3d.m is included.
Three examples of four-direction Box-splines on R

3 are examined: the cubic Box-
spline M3

2112, the quintic Box-spline M5
2222 and the sextic Box-spline M6

3222. Their
Bézier coefficients matrix and their evaluation in an arbitrary point of the domain
are provided. Furthermore a visualization through the s-set extraction and the three
families of contour lines is available. We show here the 0-set and 0.01-set extraction
of the Box-spline volume M3

2112 (figure 12), the 0-set and the 0.005-set extraction
of M5

2222 (figure 13) and the 0-set and the 0.001-set extraction of M6
3222 (figure 14).
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Fig. 12. Visualization through 0-set extraction (left) and 0.01-set extraction (right)
of the Box-spline volume M3

2112.

Figures 15 and 16 illustrate, instead, the mixed-directions set computed for gene-
rating the Bézier net of M3

2112.
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Fig. 13. Visualization through 0-set extraction (left) and 0.005-set extraction (right)
of the Box-spline volume M5

2222.
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Fig. 14. Visualization through 0-set extraction (left) and 0.001-set extraction (right)
of the Box-spline volume M6

3222.

Indeed, through our mixed directional difference-summation algorithm, we can ob-
tain also the B-net of any arbitrary bivariate three-direction Box-spline (see Section
5). In fact, also for computing the B-net of the very general Box-spline Mm

ν1,ν2,ν3

we can exploit the idea proposed for generating the Bézier coefficients of an arbi-
trary trivariate Box-spline and work out a similar 2D mixed directions set. Such a
procedure, alternative to the computational scheme proposed by Lai [24], Chui and
Lai [6],[7],[8], instead of computing the complete B-net of a bivariate three-direction
Box-spline by starting at the upstream edge and integrating successively triangle
by triangle, identifies special mixed directions on the support region which allow to
work out the integration step in the univariate case. Since calculations are reduced
to univariate calculations along paths, our algorithm is shown to compare favorably
over the other existing algorithms. For this reason in the MDDS package we have
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Fig. 15. The 2D mixed-directions set used for computing the B-net of the cubic
trivariate Box-spline M3

2112.

a

(1)(1)

(2)

b

(4)(4)

(3)(3)

c

(6)

(5)(5)

Fig. 16. The 3D mixed-directions set used for computing the B-net of the cubic
trivariate Box-spline M3

2112.

added a Matlab code [4] that exploits the mixed directions set procedure to compute
the B-net coefficients of all bivariate three-direction Box-splines and additionally to
exact evaluate and visualize them.
More precisely, the computation of the Bézier net coefficients of bivariate three-
direction Box-splines of any degree, is performed by the main function bnet_mdds()

itself. In fact, if the input parameter is a three-component vector with the mul-
tiplicities of the directions in E2, the three function modules step1_mdds2d(),
step2_mdds2d(), step3_mdds2d() are called in order to generate the mixed di-
rections set MD in R

2.
Conversely, the exact evaluation of any bivariate three-direction Box-spline in an
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arbitrary set of 2D points, is implemented in the function pointeval_mdds2d(),
by means of the functions findsquare_mdds2d() and findtria_mdds2d(), where
the unit square and the triangle type (see figure 2, right) containing the evalua-
tion point are respectively identified. Finally, the visualization of a bivariate three-
direction Box-spline and its B-net, is carried out in the function visual_mdds2d(),
which exploits the function computebez_mdds2d() for the evaluation of bivariate
Bernstein-Bézier polynomials. The use of all such functions is demonstrated in the
M-file demo_mdds2d.m, where the quadratic Box-spline M2

211, the quartic Box-spline
M4

222 and the quintic Box-spline M5
322 are taken as examples for the computation

of the Bézier coefficients matrix and the evaluation in an arbitrary point of the
domain. Furthermore a visualization of these Box-spline surfaces and their B-nets
is provided, as shown in figures 17, 18 and 19. Figure 20, instead, illustrates the
mixed directions set used to generate the B-net of M4

222.
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Fig. 17. B-net (left) and surface graph (right) of the bivariate quadratic
three-direction Box-spline M2

211.
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Fig. 18. B-net (left) and surface graph (right) of the bivariate quartic three-direction
Box-spline M4

222.
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Fig. 19. B-net (left) and surface graph (right) of the bivariate quintic three-direction
Box-spline M5

322.

Fig. 20. Generation of the B-net of M4
222 by successive summations of the coefficients

of De1M
1
111, De2M

2
211, De12M

3
221 along the marked mixed directions.

7 Conclusions

In this work we have proposed a new computational scheme for determining the
Bézier net of any trivariate four-direction Box-spline and we have given a concise
Matlab implementation of it [4]. The results obtained show that our algorithm is
stable and efficient and, although reproducing consisting results with the existing
evaluation algorithms [20], it has no comparison in the field of exact evaluation
techniques.
In addition, if restricted to the two-dimensional case, it provides a novel and sim-
plified procedure for computing the Bézier net coefficients of any bivariate three-
direction Box-spline.
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