Skip to main content
Log in

A fully discrete H 1-Galerkin method with quadrature for nonlinear advection–diffusion–reaction equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We propose and analyze a fully discrete H 1-Galerkin method with quadrature for nonlinear parabolic advection–diffusion–reaction equations that requires only linear algebraic solvers. Our scheme applied to the special case heat equation is a fully discrete quadrature version of the least-squares method. We prove second order convergence in time and optimal H 1 convergence in space for the computer implementable method. The results of numerical computations demonstrate optimal order convergence of scheme in H k for k = 0, 1, 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aitbayev, R.: Multilevel preconditioners for a quadrature Galerkin solution of a biharmonic problem. Numer. Methods Partial Differ. Equ. 22, 847–866 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aitbayev, R.: Convergence analysis of a quadrature finite element Galerkin scheme for a biharmonic problem. IMA J. Numer. Anal. (to appear)

  3. Baker, G.: Simplified proofs of error estimates for the least squares method for Dirichlet’s problem. Math. Comput. 327, 229–235 (1973)

    Google Scholar 

  4. Bramble, J., Schatz, A.: Rayleigh–Ritz–Galerkin methods for Dirichlet’s problem using subspaces without boundary conditions. Commun. Pure Appl. Math. 23, 653–675 (1970)

    MATH  MathSciNet  Google Scholar 

  5. Bramble, J., Schatz, A.: Least-squares methods for 2mth order elliptic boundary value problems. Math. Comput. 25, 1–32 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bialecki, B., Ganesh, M., Mustapha, K.: A Petrov-Galerkin method with quadrature for elliptic boundary value problems. IMA J. Numer. Anal. 24, 157–177 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bialecki, B., Fairweather, G.: Orthogonal spline collocation methods for partial differential equations. J. Comput. Appl. Math. 128, 55–85 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Blum, H., Rannacher, R.:On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2, 556–581 (1980)

    MATH  MathSciNet  Google Scholar 

  9. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  10. Douglas, J., Dupont, T.: Collocation method for parabolic equations in a single variable. In: Lecture Notes in Math, vol. 385. Springer, Berlin Heidelberg New York (1974)

    Google Scholar 

  11. Douglas, J., Dupont, T., Rachford, H.H., Wheeler, M.F.: Local H –1 Galerkin and adjoint local H –1 Galerkin procedures for elliptic equations. RAIRO Anal. Numer. 11, 3–12 (1977)

    MATH  MathSciNet  Google Scholar 

  12. Fairweather, G.: Finite element Galerkin methods for differential equations. In: Lecture Notes in Pure and Applied Mathematics, vol. 34. Marcel Dekker, New York (1978)

    Google Scholar 

  13. Grigorieff, R., Sloan, I.H., Brandts, J.H.: Superapproximation and commutator properties of discrete orthogonal projections for continuous splines. J. Approx. Theory 107, 244–267 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin Heidelberg New York (1977)

    MATH  Google Scholar 

  15. He, Y., Jin, M., Gu, X., Qin, H.: A \(\mathcal{C}\) globally interpolatory spline of arbitrary topology. Lect. Notes Comput. Sci. 3752, 295–306 (2005)

    Article  Google Scholar 

  16. He, Y., Gu, X., Qin, H.: Automatic shape control of triangular B-splines of arbitrary topology. J. Comput. Sci. Technol. 21, 232–237 (2006)

    Article  Google Scholar 

  17. Hackbusch, W.: Elliptic Differential Equations, Theory and Numerical Treatment. Springer, Berlin Heidelberg New York (1992)

    MATH  Google Scholar 

  18. Ladyzhenskaya, O., Uraltseva, N.: Linear and Quasilinear Elliptic Equations. Academic, New York (1968)

    MATH  Google Scholar 

  19. Ma, N., Lu, T., Yang, D.: Analysis of incompressible miscible displacement in porous media by characteristics collocation method. Numer. Methods Partial Differ. Equ. 22, 797–814 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Percell, P., Wheeler, M.F.: A \(\mathcal C^1\) finite element collocation method for elliptic equations. SIAM J. Numer. Anal. 17, 605–622 (1980)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ganesh.

Additional information

Support of the Australian Research Council is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganesh, M., Mustapha, K. A fully discrete H 1-Galerkin method with quadrature for nonlinear advection–diffusion–reaction equations. Numer Algor 43, 355–383 (2006). https://doi.org/10.1007/s11075-007-9066-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-007-9066-6

Keywords

Mathematics Subject Classifications (2000)

Navigation