Skip to main content
Log in

Runge–Kutta interpolants for high precision computations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Runge–Kutta (RK) pairs furnish approximations of the solution of an initial value problem at discrete points in the interval of integration. Many techniques for enriching these methods with continuous approximations have been proposed. Here we construct C 1 continuous, eighth and ninth order interpolation methods for a recently appeared RK pair of orders 9(8). These interpolants share a very small leading truncation error making them suitable for use at quadruple precision, i.e. 32–33 decimal digits of accuracy. Extended numerical results justify our effort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baker, T.S., Dormand, J.R., Gilmore, J.E., Prince, P.J.: Continuous approximation with embedded Runge–Kutta methods. Appl. Numer. Math. 22, 51–62 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bogacki, P., Shampine, L.F.: Interpolating high-order Runge–Kutta formulas. Comput. Math. Appl. 20, 15–24 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  3. Butcher, J.C.: Coefficients for the study of Runge–Kutta integration processes. J. Aust. Math. Soc. 3, 185–201 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  4. Butcher, J.C.: Implicit Runge–Kutta processes. Math. Comput. 18, 50–64 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  5. Butcher, J.C.: On Runge–Kutta processes of high order. J. Austral. Math. Soc. 4, 179–194 (1964)

    MATH  MathSciNet  Google Scholar 

  6. Calvo, M., Montijano, J.I., Randez, L.: A fifth order interpolant for the Dormand and Prince Runge–Kutta method. J. Comput. Appl. Math. 29, 91–100 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dormand, J.R., Prince, P.J.: Runge–Kutta triples. Comput. Math. Appl. 12, 1007–1017 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dormand, J.R., Prince, P.J.: Runge–Kutta–Nystrom triples. Comput. Math. Appl. 13, 937–949 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Enright, W.H., Pryce, J.D.: Two Fortran packages for assessing initial value methods. ACM TOMS 13, 1–27 (1987)

    Article  MATH  Google Scholar 

  10. Enright, W.H., Jackson, K.R., Norsett, S.P., Thomsen, P.G.: Interpolants for Runge–Kutta formulas. ACM TOMS 12, 193–218 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. Famelis, I.Th., Papakostas, S.N., Tsitouras, Ch.: Symbolic derivation of Runge–Kutta order conditions. J. Symbolic Comput. 37, 311–327 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gladwell, I.: Initial value routines in the NAG library. ACM TOMS 5, 386–400 (1979)

    Article  MATH  Google Scholar 

  13. Gladwell, I., Shampine, L.F., Baca, L.S., Brankin, R.W.: Practical aspects of interpolation in Runge–Kutta codes. SIAM J. Sci. Statist. Comput. 8, 322–341 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hull, T.E., Enright, W.H., Fellen, B.M., Sedgwick, A.E.: Comparing numerical methods of ordinary differential equations. SIAM J. Numer. Anal. 9, 603–637 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  15. Horn, M.K.: Scaled Runge–Kutta algorithms for handling dense output. Rept. DFVLR-FB 81-13, Oberpfattenhonfen, FRG (1981)

  16. Horn, M.K.: Fourth and fifth-order, scaled Runge–Kutta algorithms for treating dense output. SIAM J. Numer. Anal. 20, 558–568 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  17. Owren, B., Zennaro, M.: Derivation of efficient continuous explicit Runge–Kutta methods. SIAM J. Sci. Statist. Comput. 13, 1488–1501 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Prince, P.J., Dormand, J.R.: High order embedded Runge–Kutta formulae. J. Comput. Appl. Math. 7, 67–75 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  19. Shampine, L.F.: Interpolation for Runge–Kutta methods. SIAM J. Numer. Anal. 22, 1014–1027 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sharp, P.W., Verner, J.H.: Generation of high-order interpolants for explicit Runge–Kutta pairs. ACM TOMS 24, 13–29 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sweetser, T.H.: An end-to-end trajectory description of the LISA mission. Classical Quant. Grav. 22, S429–S435 (2005)

    Article  Google Scholar 

  22. Tsitouras, Ch.: Optimized explicit Runge–Kutta pair of orders 9(8). Appl. Numer. Math. 38, 123–134 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Tsitouras, Ch., Papageorgiou, G.: Runge–Kutta interpolants based on values from two successive integration steps. Computing 43, 255–266 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  24. Verner, J.H.: Differentiable interpolants for high-order Runge–Kutta methods. Report 1990-9, Dept of Mathematics and Statistics, Queen’s University, Ontario, Canada (1990)

  25. Verner, J.H.: Differentiable interpolants for high-order Runge–Kutta methods. SIAM J. Numer. Anal. 30, 1446–1466 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  26. Verner, J.H.: High-order explicit Runge–Kutta pairs with low stage order. Appl. Numer. Math. 22, 345–357 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Med., Champaign, IL (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Tsitouras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsitouras, C. Runge–Kutta interpolants for high precision computations. Numer Algor 44, 291–307 (2007). https://doi.org/10.1007/s11075-007-9104-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-007-9104-4

Keywords

Navigation