Skip to main content
Log in

A second order numerical scheme for the solution of the one-dimensional Boussinesq equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A predictor–corrector (P-C) scheme is applied successfully to a nonlinear method arising from the use of rational approximants to the matrix-exponential term in a three-time level recurrence relation. The resulting nonlinear finite-difference scheme, which is analyzed for local truncation error and stability, is solved using a P-C scheme, in which the predictor and the corrector are explicit schemes of order 2. This scheme is accelerated by using a modification (MPC) in which the already evaluated values are used for the corrector. The behaviour of the P-C/MPC schemes is tested numerically on the Boussinesq equation already known from the bibliography free of boundary conditions. The numerical results are derived for both the bad and the good Boussinesq equation and conclusions from the relevant known results are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform, SIAM Studies in Applied Mathematics 4. Society for Industrial and Applied Mathematics, Philadelphia (1981)

    Google Scholar 

  2. Ablowitz, M.J., Clarkson, P.A.: Solitons, nonlinear evolution equations and inverse scattering. London Math. Soc. Lect. Note Ser. 149 (1991)

  3. Airy, G.B.: Tides and waves. Encycl. Metrop. Lond. Art 192, 241–396 (1845)

    Google Scholar 

  4. Attili, B.S.: The Adomian decomposition method for solving the Boussinesq equation arising in water wave propagation. Numer. Methods Partial Differ. Equ. 22, 1337–1347 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bogolubsky, I.L.: Some examples of inelastic soliton interaction. Comp. Phys. Commun. 13, 149–155 (1977)

    Article  Google Scholar 

  6. Boussinesq, M.J.: Théorie de l’intumescence appelée onde solitaire ou de translation se propageant dans un canal rectangulaire. C. R. Acad. Sci. Paris 72, 755–759 (1871)

    Google Scholar 

  7. Boussinesq, M.J.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblemant perielles de la surface au fond. J. Math. Pures Appl. 17(2), 55–108 (1872)

    Google Scholar 

  8. Bratsos, A.G.: The solution of the Boussinesq equation using the method of lines. Comput. Methods Appl. Mech. Eng. 157, 33–44 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bratsos, A.G.: A parametric scheme for the numerical solution of the Boussinesq equation. Korean J. Comput. Appl. Math. 8(1), 45–57 (2001)

    MATH  MathSciNet  Google Scholar 

  10. Bratsos, A.G., Tsitouras, Ch., Natsis, D.G.: Linearized numerical schemes for the Boussinesq equation. Appl. Num. Anal. Comp. Math. 2(1), 34–53 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bratsos, A.G.: A modified predictor–corrector scheme for the two-dimensional sine-Gordon equation. Numer. Algorithms 43(2), 1–14 (2007)

    MathSciNet  Google Scholar 

  12. Bratsos, A.G.: A third order numerical scheme for the two-dimensional sine-Gordon equation. Math. Comput. Simul. (in press)

  13. Bratsos, A.G., Famelis, I.Th., Prospathopoulos, A.M.: A parametric finite-difference method for shallow sea waves. Int. J. Numer. Methods Fluids 53, 129–147 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Daripa, P., Hua, W.: A numerical study of an ill-posed Boussinesq equation arising in water waves and nonlinear lattices: filtering and regularization techniques. Appl. Math. Comput. 101(2–3), 159–207 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Defrutos, J., Ortega, T., Sanz-Sema, J.M.: A Hamiltonian explicit algorithm with spectral accuracy for the “good” Boussinesq equation. Comput. Methods Appl. Mech. Eng. 80, 417–423 (1990)

    Article  Google Scholar 

  16. Defrutos, J., Ortega, T., Sanz-Sema, J.M.: Pseudospectral method for the “good” Boussinesq equation. Math. Comput. 57, 109–122 (1991)

    Article  Google Scholar 

  17. El-Zoheiry, H.: Numerical investigation for the solitary waves interaction of the “good” Boussinesq equation. Appl. Numer. Math. 45, 161–173 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Feng, Z.S.: Traveling solitary solutions to the generalized Boussinesq equation. Wave Motion 37(1), 17–23 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fornberg, B.: A Practical Guide to Pseudospectral Methods. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  20. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)

    Article  MATH  Google Scholar 

  21. Goursat, E.: Le problème de Bäcklund. Mem. Sci. Math. Fasc. 6, Gauthier-Villars, Paris (1925)

    MATH  Google Scholar 

  22. Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave. J. Math. Phys. 14, 805–809 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hirota, R.: Exact N-soliton solutions of the wave of long waves in shallow-water and in nonlinear lattices. J. Math. Phys. 14, 810–814 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ismail, M.S., Bratsos, A.G.: A predictor–corrector scheme for the numerical solution of the Boussinesq equation. J. Appl. Math. Comput. 13(1–2), 11–27 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Korteweg, D.J., de Vries, G.G.: On the change of form of long-waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39(5), 422–443 (1895)

    Google Scholar 

  26. Lamb, G.L.: Elements of Soliton Theory. Wiley, New York (1980)

    MATH  Google Scholar 

  27. McKean H.P.: Boussinesq’s equation on a circle. Commun. Pure Appl. Math. 34, 599–691 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  28. Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60(7), 650–654 (1992)

    Article  MathSciNet  Google Scholar 

  29. Manoranjan, V.S., Mitchell, A.R., Morris, J.LI.: Numerical solutions of the Good Boussinesq equation. SIAM J. Sci. Statist. Comput. 5, 946–957 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  30. Matsuo, T.: New conservative schemes with discrete variational derivatives for nonlinear wave equations. J. Comput. Appl. Math. 203, 32–56 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. Miura, R.M.: Bäcklund transformations. In: Dold, A., Eckman, B. (eds.) Lecture Notes in Mathematics, vol. 515. Springer, Berlin (1976)

    Google Scholar 

  32. Nimmo, J.J.C., Freeman, N.C.: A method of obtaining the N-soliton solutions of the Boussinesq equation in terms of a Wronskian. Phys. Lett. 95A, 4–6 (1983)

    MathSciNet  Google Scholar 

  33. Nimmo, J.J.C., Freeman, N.C.: The use of Bäcklund transformation in obtaining the N-soliton solutions in Wronskian form. J. Phys. A 17, 1415–1424 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  34. Olver, P.J.: Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, vol. 107. Springer, Berlin (1986)

    Google Scholar 

  35. Pani, A.K., Saranga, H.: Finite element Galerkin method for the “Good” Boussinesq equation. Nonlinear Anal. 29(8), 937–956 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  36. Rayleigh, J.W.S.: On waves. Philos. Mag. Ser. 1(5), 257–279 (1876)

    Google Scholar 

  37. Scott, R.J.: Report of the Committee of Waves, Report of the 7th Meeting of the British Association for the Advancement of Science, pp. 417–496. Murray, Liverpool (1838)

    Google Scholar 

  38. Scott, R.J.: Report on Waves, Report of the 14th Meeting of the British Association for the Advancement of Science, pp. 311–390. Murray, London (1844)

    Google Scholar 

  39. Stokes, G.: On the theory of oscillatory waves. Trans. Camb. Phil. Soc. 8, 441–455 (1847)

    Google Scholar 

  40. Twizell, E.H.: Computational Methods for Partial Differential Equations. Ellis Horwood Limited, England (1984)

    MATH  Google Scholar 

  41. Wahlquist, H., Estabrook, F.B.: Bäcklund transformation for solutions of the Korteweg-de Vries equation. Phys. Rev. Lett. 31, 1386–1390 (1973)

    Article  MathSciNet  Google Scholar 

  42. Wazwaz, A.M.: Constructions of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method. Chaos, Solitons Fractals 12, 1549–1556 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  43. Wazwaz, A. M.: A sine-cosine method for handling nonlinear wave equations. Math. Comput. Model. 40, 499–508 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  44. Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)

    MATH  Google Scholar 

  45. Zabusky, N.J., Kruskal, M.D.: Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    Article  Google Scholar 

  46. Zakharov, V. E.: Randomization problem for 1-dimensional chains of nonlinear operators. Z. Eksp. Teor. Fiz. 65, 219–228 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanassios G. Bratsos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bratsos, A.G. A second order numerical scheme for the solution of the one-dimensional Boussinesq equation. Numer Algor 46, 45–58 (2007). https://doi.org/10.1007/s11075-007-9126-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-007-9126-y

Keywords

Mathematics Subject Classifications (2000)

Navigation