Skip to main content
Log in

Polyharmonic multiresolution analysis: an overview and some new results

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper first presents a condensed state of art on multiresolution analysis using polyharmonic splines: definition and main properties of polyharmonic splines, construction of B-splines and wavelets, decomposition and reconstruction filters; properties of the so-obtained operators, convergence result and applications are given. Second this paper presents some new results on this topic: scattered data wavelet, new polyharmonic scaling functions and associated filters. Fourier transform is of extensive use to derive the tools of the various multiresolution analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bacchelli, B., Bozzini, M., Rabut, C., Varas, M.L.: Decomposition and reconstruction of multidimensional signals using polyharmonic pre-wavelets. Appl. Comput. Harmon. Anal. 18, 282–299 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bacchelli, B., Bozzini, M., Rabut, C.: A fast wavelet algorithm for multidimensional signal using polyharmonic splines. In: Cohen, A., Merrien, J.L., Schumaker, L.L. (eds.) Curves and Surfaces Fitting, pp. 21–30. NashboroPress, Brentwood, TN (2003)

    Google Scholar 

  3. Bacchelli, B., Bozzini, M., Rossini, M.: On the errors of a multidimensional MRA based on non separable scaling functions. Int. J. Wavelets, Multiresolution Inf. Process. 4(3), 475–488 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bozzini, M., Rabut, C., Rossini, M.: A multiresolution analysis with a new family of polyharmonic B-splines. In: Cohen, A., Merrien, J.L., Schumaker, L. (eds.) Curve and Surface Fitting: Avignon 2006. Nashboro Press (2007)

  5. Bozzini, M., Rossini, M.: Approximating surfaces with discontinuities. Math. Comput. Model. 31(6/7), 193–216 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Buhmann, M.: Radial Basis Functions. Cambridge University Press (2003)

  7. Duchon, J.: Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces. R.A.I.R.O. Anal. Numer. 10(12), 345–369 (1976)

    MathSciNet  Google Scholar 

  8. Kon, M.A., Raphael, L.A.: Characterizing convergence rates for muliresolution. In: Zeevi, Y.Y., Coifman, R.R. (eds.) Approximations, Signal and Image Representation in Compined Spaces, pp. 415–437 (1998)

  9. Kon, M.A., Raphael, L.A.: A Characterization of wavelet convergence in Sobolev spaces. Appl. Anal. 78(3–4) 271–324 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Madych, W.R.: Polyharmonic Splines, Multiscale Analysis and Entire Functions. Multivariate Approximation and Interpolation, Duisburg, 1989. Intern. Er. Numer. Math., vol. 94, pp. 205–216. Birkhauser, Basel (1990)

    Google Scholar 

  11. Madych, W.R., Nelson, S.A.: Polyharmonic cardinal splines. J. Approx. Theory 60, 141–156 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Madych, W.R.: Some Elementary Properties of Multiresolution Analyses of L 2(R n). Wavelets, Wavelet Anal. Appl., vol. 2, pp. 259–294. Academic Press, Boston, MA (1992)

    Google Scholar 

  13. Micchelli, C., Rabut, C., Utreras, F.: Using the refinement equation for the construction of pre-wavelets, III: elliptic splines. Numer. Algorithms 1, 331–352 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Patel, R.S., Van De Ville, D., Bowman, F.D.: Determining significant connectivity by 4D spatiotemporal wavelet packet resampling of functional neuroimagin data. NeuroImage 31, 1142–1155 (2006)

    Article  Google Scholar 

  15. Rabut, C.: B-splines Polyarmoniques Cardinales: Interpolation, Quasi-interpolation, Filtrage, Thèse d’Etat. Université de Toulouse (1990)

  16. Rabut, C.: Elementary polyharmonic cardinal B-splines. Numer. Algorithms 2, 39–62 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rabut, C.: High level m-harmonic cardinal B-splines. Numer. Algorithms 2, 63–84 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Renka, R.J., Brown, R.: Algorithm 792: accuracy tests of ACM algoritm for interpolation of scattered data in the plane. ACM TOMS 25, 78–94 (1999)

    Article  MATH  Google Scholar 

  19. Rossini, M.: On the construction of polyharmonic B-splines. J. Comput. Appl. Math. (available online, 22 Oct 2007)

  20. Rossini, M., Detecting discontinuities in two dimensional signal sampled on a grid. JNAIAM (in press)

  21. Blu, T., Unser,M.: Self-similarity: part II–optimal estimation of fractal processes. IEEE Trans. Signal Process. 55(4), 1364–1378 (2007), April

    Article  MathSciNet  Google Scholar 

  22. Van De Ville, D., Blu, T., Unser, M.: Isotropic polyharmonic B-Splines: scaling functions and wavelets. IEEE Trans. Image Process. 14(11), 1798–1813 (2005)

    Article  Google Scholar 

  23. Vo-Khac, K.: Distributions, Analyse de Fourier, Opérateurs aux Dérivées Partielles. tome 2, Vuibert, Paris (1972)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Rabut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabut, C., Rossini, M. Polyharmonic multiresolution analysis: an overview and some new results. Numer Algor 48, 135–160 (2008). https://doi.org/10.1007/s11075-008-9173-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-008-9173-z

Keywords

Mathematics Subject Classifications (2000)

Navigation