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Abstract. A number of useful bivariate spline methods are global in nature,
i.e., all of the coefficients of an approximating spline must be computed at one
time. Typically this involves solving a system of linear equations. Examples
include several well-known methods for fitting scattered data, such as the mini-
mal energy, least-squares, and penalized least-squares methods. Finite-element
methods for solving boundary-value problems are also of this type. It is shown
here that these types of globally-defined splines can be efficiently computed,
provided we work with spline spaces with stable local minimal determining sets.

§1. Introduction

Bivariate splines defined over triangulations are important tools in several applica-
tion areas including scattered data fitting and the numerical solution of boundary-
value problems by the finite element method. Methods for computing spline ap-
proximations fall into two classes:

1) Local methods, where the coefficients of the spline are computed one at a time
or in small groups,

2) Global methods, where all of the coefficients of the spline have to be computed
simultaneously, usually as the solution of a single linear system of equations.

In this paper we focus on global methods, and in particular those that arise from
minimizing a quadratic form, possibly with some constraints. The purpose of this
paper is to show how such minimization problems can be efficiently solved for spline
spaces that possess stable local minimal determining sets (see Sect. 2). In particular,
we show how our approach applies to three commmonly used scattered data fitting
methods: the minimal energy method, the discrete least-squares method, and the
penalized least-squares method. In addition, we discuss how it works for solving
boundary-value problems involving partial differential equations.

The standard approach to solving global variational problems involving piece-
wise polynomials on triangulations is to use Lagrange multipliers to enforce inter-
polation and smoothness conditions, see Remark 1. This results in a linear system
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of equations for the coefficients of the spline. This approach can be used even when
the dimension of the approximating spline space is not known. In this case the
linear system may be singular, and we can only find an approximate solution. This
leads to spline fits which only satisfy the desired smoothness conditions approxi-
mately. In addition, the Lagrange multiplier approach generally leads to very large
systems of equations, which is its main disadvantage. In comparison, the method
proposed here

• involves much smaller systems of equations,
• is generally much faster,
• produces spline fits lying in the prescribed spline spaces.

Our method can be used with spline spaces of any degree and smoothness, as
long as they have stable local minimal determining sets. There are many examples
of such spaces in [13]. We discuss the method for bivariate splines, but the approach
applies to spherical splines and trivariate splines as well, see Remarks 2 and 3.

The paper is organized as follows. In Sect. 2 we recall some of the basic
theory of bivariate splines, including the concepts of minimal determining sets and
stable local bases. We also recall how to compute with bivariate splines using the
Bernstein–Bézier representation. In Sect. 3 we discuss the computation of splines
solving general quadratic minimization problems. Three explicit examples of such
problems are described in Sects. 4–6, namely, minimal energy, discrete least-squares,
and penalized least-squares spline fitting. The Galerkin method for solving elliptic
boundary-value problems is treated in Sect. 7. Sect. 8 is devoted to numerical
experiments to illustrate the performance of our method. In Sect. 9 we describe
a useful algorithm for computing all of the Bernstein basis polynomials (or their
directional derivatives) at a given point in an efficient manner. Finally, we collect
several remarks in Sect. 10.

§2. Preliminaries

In working with bivariate splines, we follow the notation used in the book [13].
For convenience, we review some key concepts here. Given d > r ≥ 0, and a
triangulation △ of a domain Ω ⊂ IR2, the associated space of bivariate splines of
smoothness r and degree d is defined to be

Sr
d(△) := {s ∈ Cr(Ω) : s|T ∈ Pd, all T ∈ △}.

Here Pd is the
(

d+2
2

)

-dimensional space of bivariate polynomials of degree at most
d. Given r ≤ ρ ≤ d, we also work with the superspline space

Sr,ρ
d (△) := {s ∈ Sr

d(△) : s ∈ Cρ(v), all v ∈ V},

where V is the set of vertices of △, and where s ∈ Cρ(v) means that all polynomial
pieces of s on triangles sharing the vertex v have common derivatives up to order
ρ at v.
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2.1. Bernstein–Bézier methods

We make use of the Bernstein–Bézier representation of splines. Given d and △,
let Dd,△ := ∪T∈△Dd,T be the corresponding set of domain points, where for each
T := 〈v1, v2, v3〉,

Dd,T :=
{

ξT
ijk :=

iv1 + jv2 + kv3
d

}

i+j+k=d
.

Then every spline s ∈ S0
d(△) is uniquely determined by its set of coefficients

{cξ}ξ∈Dd,△
, and

s|T :=
∑

ξ∈Dd,T

cξB
T
ξ ,

where {BT
ξ } are the Bernstein basis polynomials associated with the triangle T .

Suppose now that S(△) is a subspace of S0
d(△). Then a set M ⊆ Dd,△ of

domain points is called a minimal determining set (MDS) for S(△) provided it is the
smallest set of such points such that the corresponding coefficients {cξ}ξ∈M can
be set independently, and all other coefficients of s can be consistently determined
from smoothness conditions, i.e., in such a way that all smoothness conditions are
satisfied, see p. 136 of [13]. The dimension of S(△) is then equal to the cardinality
of M. Clearly, M = Dd,△ is a minimal determining set for S0

d(△), and thus the

dimension of S0
d(△) is nV +(d−1)nE +

(

d−1
2

)

nT , where nV , nE, nT are the number
of vertices, edges, and triangles of △.

For each η ∈ Dd,△ \M, let Γη be the smallest subset of M such that cη can
be computed from the coefficients {cξ}ξ∈Γη

by smoothness conditions. Then M is
called local provided there exists an integer ℓ not depending on △ such that

Γη ⊆ starℓ(Tη), all η ∈ Dd,△ \M, (2.1)

where Tη is a triangle containing η. Recall that given a set U ⊂ Ω, then star(U) is
the set of triangles in △ intersecting U , while starℓ(U) := star(starℓ−1(U)). M is
said to be stable provided there exists a constant K depending only on ℓ and the
smallest angle in the triangulation △ such that

|cη| ≤ Kmax
ξ∈Γη

|cξ|, all η ∈ Dd,△ \M. (2.2)

2.2. Stable local bases

SupposeM is a stable local MDS for S(△). For each ξ ∈M, let ψξ be the spline in
S(△) such that cξ = 1 while cη = 0 for all other η ∈M. Then the splines {ψξ}ξ∈M

are clearly linearly independent and form a basis for S(△). This basis is called the
M-basis for S(△), see Sect. 5.8 of [13]. It is stable and local in the sense that for
all ξ ∈M,
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1) ‖ψξ‖Ω ≤ K,

2) suppψξ ⊆ starℓ(Tξ), where Tξ is a triangle containing ξ,

where ℓ is the integer constant in (2.1), and the constant K depends only on ℓ and
the smallest angle in △. Here and in the sequel, for any set U ⊂ IR2, ‖ · ‖U denotes
the ∞-norm over points in U . There are many spaces with stable local bases. For
example, the spaces S0

d(△) have stable local bases with ℓ = 1. The same is true

for the superspline spaces Sr,2r
4r+1(△) for all r ≥ 1. There are also several families of

macro-element spaces defined for all r ≥ 1 with the same property, see [13].

2.3. Computational methods

We now list several useful techniques for working with splines numerically.

1) Using the well-known smoothness conditions for two polynomial patches to
join together smoothly across an edge of a triangulation (see Theorem 2.28 of
[13]), for each η ∈ Dd,△ \M, we can find real numbers {aη

ξ}ξ∈Γη
such that for

every spline s ∈ S(△) with coefficients {cβ}β∈M,

cη =
∑

ξ∈Γη

aη
ξcξ. (2.3)

Note that for spaces with locally supported bases, the number of nonzero aη
ξ

in (2.3) will generally be quite small. If we intend to use the spline space S(△)
for several fitting problems, these weights can be precomputed and stored.

2) To store a particular spline s in the space S(△), we simply store its coefficient
vector c := (cξ)ξ∈M. Recall that the length of this vector is just the dimension
of S(△).

3) To evaluate s at a point (x, y) in a triangle T , we use the formulae (2.3) to
compute the B-coefficients of s corresponding to all domain points in T . Then
we can use the well-known de Casteljau algorithm to find s(x, y), see p. 26 of
[13].

4) If we need to evaluate s at many points, for example to display the surface
corresponding to s, it may be most efficient to compute and store all of the
B-coefficients {cξ}ξ∈Dd,△

of s using (2.3). The total number of B-coefficients

is equal to the dimension of S0
d(△), which is nco := nV +(d−1)nE +

(

d−1
2

)

nT ,
where nV , nE , nT are the numbers of vertices, edges, and triangles of △.

§3. Computing Splines Solving Quadratic Minimization Problems

Suppose S(△) ⊆ S0
d(△) is a space of splines with a stable local minimal deter-

mining set M. Let {ψξ}ξ∈M be the associated M-basis. In this paper we focus
on variational spline problems where the coefficients of the desired spline are the
solution of a system of equations of the form

∑

ξ∈M

〈ψξ, ψη〉cξ = rη, η ∈M, (3.1)
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where 〈·, ·〉 is some appropriate inner-product. We suppose the inner-product is
such that

〈ψ, φ〉 =
∑

T∈△

〈ψ|T , φ|T 〉, all ψ, φ ∈ S(△). (3.2)

Note that if S(△) has a local basis, then only a small number of terms in (3.1) will
be nonzero.

To find a coefficient vector c := {cξ}ξ∈M satisfying (3.1), we have to compute
the matrix

M := [〈ψξ, ψη〉]ξ,η∈M

and the vector r = (rη)η∈M. This matrix will be sparse whenever S(△) has a
local basis. To describe an efficient algorithm for finding M , we make the following
observation.

Lemma 3.1. For every ξ ∈M and every triangle T ∈ △,

ψξ|T =
∑

η∈Dd,T

aη
ξB

T
η , (3.3)

where aη
ξ are the weights in formula (2.3).

Proof: The spline ψξ is the spline with cξ = 1, and cβ = 0 for all other β ∈M. Fix
a domain point η in T . Then by (2.3), the coefficient cη of ψξ is given by cη = aη

ξ .

Algorithm 3.2.

For all T ∈ △,

• Compute the matrix [〈BT
α , B

T
β 〉]α,β∈Dd,T

.

• For all ξ, η ∈M,

〈ψξ, ψη〉 ← 〈ψξ, ψη〉+
∑

α,β∈Dd,T
aα

ξ a
β
η 〈B

T
α , B

T
β 〉.

This algorithm works by looping through the triangles of △. The entries in M
are obtained by an accumulation process. If the value rη on the right-hand side of
(3.1) involves an inner-product of a given function with ψη, it can be computed by
adding an additional accumulation step to the algorithm. We discuss this algorithm
in more detail for the particular variational spline methods treated below.

§4. Minimal Energy Interpolating Splines

In this section we discuss the minimal energy method for computing an interpolating
spline. Suppose we are given values {fi}

nd

i=1 associated with a set of nd ≥ 3 abscissae
A := {(xi, yi)}

nd

i=1 in the plane. The problem is to construct a smooth function s
that interpolates this data in the sense that

s(xi, yi) = fi, i = 1, . . . , nd. (4.1)
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To solve this problem, suppose △ is a triangulation with vertices at the points of A,
and suppose S(△) is a spline space defined over △ with dimension n ≥ nd. Then
the set of all splines in S(△) that interpolate the data is given by

Λ(f) = {s ∈ S(△) : s(xi, yi) = fi, i = 1, · · · , nd}.

Given a spline s ∈ Λ(f), we measure its energy using the well-known thin-plate
energy functional

E(s) =

∫

Ω

[(Dxxs)
2 + 2(Dxys)

2 + (Dyys)
2]dxdy. (4.2)

Definition 4.1. The minimal energy (ME) interpolating spline is the spline se in Λ
such that E(se) = min{E(s), s ∈ Λ(f)}.

It follows from standard Hilbert space approximation results that if Λ(f) is not
empty, then there exists a unique ME-spline which is characterized by the property

〈se, ψ〉E = 0, all ψ ∈ Λ(0), (4.3)

where

〈φ, ψ〉E =

∫

Ω

[DxxφDxxψ + 2DxyφDxyψ +DyyφDyyψ]dxdy.

To compute the minimal energy spline, we now suppose that there exists a
minimal determining setM for S(△) such that the correspondingM-basis {ψi}

n
i=1

is stable and local. For all standard spline spaces, we may chooseM to include the
setA, and in fact, can assume that the first nd points inM are (xi, yi), i = 1, . . . , nd.
Now suppose s is written in the form

s =
n

∑

i=1

ciψi. (4.4)

Let c := (c1, . . . , cnd
)T and c := (cnd+1, . . . , cn)T .

Theorem 4.2. The spline s is the ME interpolating spline if and only if c =
(f1, . . . , fnd

)T , and
Mc = r, (4.5)

where
Mij := 〈ψnd+i, ψnd+j〉E , i, j = 1, . . . , n− nd,

rj :=

nd
∑

i=1

fi〈ψi, ψnd+j〉E , j = 1, . . . , n− nd.

Proof: By our assumptions on the M-basis, s belongs to Λ(f) if and only if
c = (f1, . . . , fnd

)T . Since ψn+1, . . . , ψN span Λ(0), it follows that (4.3) is equivalent
to

〈

nd
∑

i=1

ciψi, ψj〉E = 0, j = nd + 1, . . . , n, (4.6)
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which can immediately be rewritten as (4.5).

The uniqueness of the ME spline insures that the matrix M in (4.5) is non-
singular. Thus, to compute the coefficient vector of the ME spline, we simply need
to compute M and r, and then solve (4.5) for c. We now discuss the assembly of
M and r, which we base on the algorithm of Sect. 3. First, we observe that in this
case the inner-product is an integral, and thus clearly satisfies (3.2). To carry out
Algorithm 3.2, all we need to do is compute the inner-products 〈BT

α , B
T
β 〉E . Deriva-

tives of the BT
α can be expressed in terms of Bernstein basis polynomials of lower

degree, see Lemma 2.11 of [13]. But inner-products of Bernstein basis polynomials
of any degree can be computed explicitly, see Theorem 2.34 in the book [13]. For
tables of the inner-products for degrees d = 1, 2, 3, see pages 46–47 of the book.

§5. Discrete Least Squares Splines

In this section we discuss a well-known method for fitting bivariate scattered data
in the case when the number nd of data locations is very large. We assume that
the data are the measurements {fi := f(xi, yi)}

nd

i=1 of an unknown function f
defined on Ω. To create a spline fit, we work with a spline space S(△) defined on
a triangulation △ with a set V of vertices which are not necessarily at the points
of A. Typically we choose the number of vertices to be (much) smaller than nd.

Definition 5.1. The discrete least-squares (DLSQ) spline fit of f is the spline sl ∈
S(△) that minimizes

‖s− f‖2A :=

nd
∑

j=1

[s(xj, yj)− fj ]
2.

It is well known that if S(△) satisfies the property

s(xi, yi) = 0, i = 1, . . . , nd, implies s ≡ 0, (5.1)

then there is a unique discrete least-squares spline sl fitting the data. This requires
that the number nd of data points be at least equal to the dimension n of the spline
space. In practice nd will typically be much larger than n. However, in general this
is not sufficient – we need the data points to be reasonably well distributed among
the triangles of △ in order to make (5.1) hold.

It follows from standard Hilbert space approximation results that there exists
a unique DLSQ-spline sl which is characterized by the property

〈sl − f, ψ〉A = 0, all ψ ∈ S(△), (5.2)

where

〈φ, ψ〉A :=

nd
∑

i=1

φ(xi, yi)ψ(xi, yi).

To compute the least-squares spline sl, we now write it in the form (4.4), where
{ψi}

n
i=1 is a stable local M-basis for S(△). Let c := (c1, . . . , cn) be the vector of

coefficients.
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Theorem 5.2. The spline sl is the DLSQ spline fit of f if and only if

Mc = r, (5.3)

where
Mij := 〈ψi, ψj〉A, i, j = 1, . . . , n,

rj := 〈f, ψj〉A, j = 1, . . . , n.

Proof: Since ψ1, . . . , ψn span S(△), it follows that (5.2) is equivalent to

〈

n
∑

i=1

ciψi − f, ψj〉A = 0, j = 1, . . . , n, (5.4)

which can immediately be rewritten as (5.3).

The assumption (5.1) insures that the matrix M in (5.3) is nonsingular. Thus,
to compute the coefficient vector of the least-squares spline, we simply need to
compute M and r, and then solve (5.3) for c. Note that here the matrix M is of size
n×n in contrast to the minimal-energy case where it is of size (n−nd)×(n−nd). For
spline spaces S(△) with stable local minimal determining setsM, the computation
of M can be done efficiently using Algorithm 3.2. To apply it, we need to compute
the inner-products 〈BT

α , B
T
β 〉A. For this, we simply need the values of the Bernstein

basis polynomials at all of the points of A that lie in T . These values can also be
used to compute the vector r in (5.3). We give an efficient algorithm in Sect. 9 for
computing the values of all Bernstein-Basis polynomials at a fixed point.

§6. Penalized Least-Squares Splines

In this section we discuss a method for fitting bivariate scattered data which is
preferable to least-squares when the data {fi}

nd

i=1 are noisy. It is a generalization of
the least-squares fitting method in Sect. 5. Suppose A := {xi, yi}

nd

i=1, and S(△) are
as in the previous section. For each s ∈ S(△), let E(s) be its associated thin-plate
energy defined in (4.2).

Definition 6.1. Given λ ≥ 0, the penalized least-squares (PLSQ) spline fit of f is
the spline sλ in S(△) that minimizes

Eλ(s) := ‖s− f‖A + λE(s).

It is well known that if the spline space S(△) satisifies (5.1), then there exists
a unique PLSQ-spline sλ. Moreover, sλ is characterized by

〈sλ − f, s〉A + λ〈sλ, s〉E = 0, all s ∈ S(△).

To compute the PLSQ spline sλ, we write it in the form (4.4), where {ψi}
n
i=1 is a

stable local M-basis for S(△). Let c := (c1, . . . , cn) be the vector of coefficients.
We immediately have the following result.
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Theorem 6.2. The spline sλ is the PLSQ fit of f if and only if

Mc = r, (6.1)

where
Mij := 〈ψi, ψj〉A + λ(ψi, ψj〉E , i, j = 1, . . . , n,

and r is the vector in (5.3).

The assumption (5.1) insures that the matrix M in (6.1) is nonsingular. We
can efficiently compute both M and r by the methods of the previous two sections.
Note that when λ = 0, we get the least-squares spline fit.

§7. Solution of Boundary-Value Problems

In this section we describe how Algorithm 3.2 can be used to compute Galerkin
approximations to solutions of elliptic boundary-value problems.

7.1. Second order problems with homogeneous boundary conditions

We first describe the method for the simple model problem

−∇ · (κ∇u) = f, on Ω,

u = 0, on ∂Ω,
(7.1)

where f and κ are given functions on Ω. Suppose that △ is a triangulation of Ω,
and let S(△) be a bivariate spline space defined on △ with a stable MDS M. Let

U0 := {s ∈ S(△) : s(x, y) = 0, all (x, y) ∈ ∂Ω}.

We look for an approximation sg of u in U0. Suppose ψ1, . . . , ψn is a stable local
basis for U0, and suppose sg is written in the form (4.4). Then by the Galerkin
method, see [8], the coefficients of sg should be chosen to be the solution of the
system of equations

Mc = r, (7.2)

where

Mij = 〈ψi, ψj〉G :=

∫

Ω

κ(x, y)∇ψi(x, y) · ∇ψj(x, y)dxdy,

for i, j = 1, . . . , n, and

ri = 〈f, ψi〉2 :=

∫

Ω

f(x, y)ψi(x, y)dxdy, i = 1, . . . , n.

Since ∇ψi · ∇ψj = DxψiDxψj +DyψiDyψj , the computation of M involves
computing inner-products of first derivatives of the Bernstein basis polynomials.
If κ ≡ 1, these inner-products can be computed explicitly. For general κ and for
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the computation of the vector r, we will need to use a quadrature rule. We use
Gaussian quadrature, see Remark 7.

We emphasize that for this problem, to use Algorithm 3.2 we need a stable
local minimal determing set for the subspace of splines U(0). In particular, all
spline coefficients associated with domain points on the boundary of Ω must be
set to 0. Thus, for example, if the approximating spline space is S1,2

5 (△), then for
each boundary vertex v whose exterior angle is less than π, only one of the domain
points in the disk D2(v) of radius 2 around v can be included in M. Recall, that
for the full space, we chose six points in each D2(v), see Fig. 1. When the exterior
angle at v is equal to π, we must choose three points in D2(v) to include inM.

7.2. Second order problems with inhomogeneous boundary conditions

Only minor modifications are required to solve the inhomogeneous boundary-value
problem

−∇ · (κ∇u) = f, on Ω,

u = g, on ∂Ω,
(7.3)

where f and κ are given function on Ω, and g is a given function on ∂Ω. As before,
we choose a spline space S(△) defined on a triangulation △ of Ω with a stable
local M-basis {ψi}

n
i=1. As is well known, see e.g. [8], in this case we look for an

approximation to u of the form s = sb + sh, where sb is a spline such that sb ≈ g
on ∂Ω, and sh is the Galerkin approximation of the solution of the boundary-value
problem with homogeneous boundary conditions and right-hand side f−sb. Writing
sh in the form (4.4), we can compute its coefficients from the equations

Mc = r̃,

where M is as in (7.2) and

r̃j = 〈f, ψj〉2 − 〈sb, ψj〉G, j = 1, . . . , n.

It is straightforward to construct sb. We first choose its Bernstein–Bézier
coefficients associated with domain points on the boundary edges of △ so that sb

does a good job of approximating g on ∂Ω. For example, we may interpolate g at an
appropriate number of points on each edge of △. Then we set as many remaining
coefficients to zero as possible while observing all smoothness conditions.

7.3. Fourth order problems

As an example of a fourth order problem, consider the biharmonic equation

△2u = f, on Ω, (7.4)

subject to the boundary conditions

u = g, on ∂Ω,

∂u

∂n
= h, on ∂Ω,

(7.5)
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where ∂n stands for the normal derivative to the boundary. As before, we con-
struct an approximation sg := sb + sh to u by first constructing a spline sb that
approximately satisfies the boundary conditions. We then compute sh as the
Galerkin spline for the corresponding problem with homogeneous boundary con-
ditions. Starting with a spline space S(△), we define the subspace

U0 := {s ∈ S(△) : s satisfies the boundary conditions (7.5) with g ≡ h ≡ 0.}

Assuming ψ1, . . . , ψn is a stable local basis for U0, and writing sh in the form
(4.4), the Galerkin method provides the following linear system of equations for the
coefficients of sh:

Mc = r,

where

Mij :=

∫

Ω

△ψi△ψjdxdy, i, j = 1, . . . , n,

and

rj = 〈f, ψj〉2 −

∫

Ω

△sg△ψj dxdy, j = 1, . . . , n.

Note that although we are allowed to use C0 splines in the Galerkin method for
solving second order boundary-value problems, for fourth order problems the well-
known conformality conditions require that we use a space of splines that is C1 at
least.

§8. Examples

In this section we give several numerical examples. Given a triangulation △, we
write V and E for the sets of vertices and edges of △. We also write nV , nE , and nT

for the numbers of vertices, edges, and triangles of △. We work with the following
spline spaces:

1) S0
d(△). The dimension of this space is nV +(d−1)nE +

(

d−1
2

)

nT . A stable local
MDS is given by the full set Dd,△ of domain points. This space approximates
smooth functions up to order O(|△|d+1), see Remark 5.

2) S1,2
5 (△). This space has dimension 6nV +nE , and as shown in Theorem 6.1 of

[13], a stable local minimal determining set M is given by the set of domain
points

M :=
⋃

v∈V

Mv ∪
⋃

e∈E

Me,

where for each vertex v of△,Mv is the set of six domain points inD2(v)∪Tv for
some triangle attached to v. For each edge e of △,Me consists of the domain
point ξTe

122 for some triangle Te containing the edge e and with first vertex
opposite e. Fig. 1 (left) shows the points in M for a typical triangulation,
where points in the sets Mv are marked with black dots, while those in the
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Fig. 1. Minimal determining sets for S
1,2
5 (△) and S

2,4
9 (△).

sets Me are marked with triangles. Since S1,2
5 (△) has a stable local basis, it

approximates smooth functions up to order O(|△|6), see Remark 5.

3) S2,4
9 (△). This space has dimension 15nV + 3nE + nT , and as shown in Theo-

rem 7.1 of [13], a stable local minimal determining set M is given by the set
of domain points

M :=
⋃

v∈V

Mv ∪
⋃

e∈E

Me ∪
⋃

T∈△

MT ,

where for each vertex v, Mv is the set of fifteen domain points in D4(v) ∪ Tv

for some triangle attached to v. For each edge e of △,Me consists of the three
domain points ξTe

144, ξ
Te

243, ξ
Te

234 for some triangle Te containing the edge e and
with first vertex opposite e. For each triangle T , MT consists of the domain
point ξT

333. Fig. 1 (right) shows M for a typical triangulation. Here squares
are used to mark points in the setMT . Since S2,4

9 (△) has a stable local basis,
it approximates smooth functions up to order O(|△|10), see Remark 5.

8.1. Minimal Energy Fit

Example 8.1. We construct a C1 surface based on measurements of the height of
a nose cone at 803 points in the domain shown in Fig. 2 (left). The figure shows
the Delaunay triangulation △nose associated with the data points.

Discussion: For this application we choose the minimal energy interpolating spline
in the space S1,2

5 (△nose). This triangulation has nE = 2357 edges and nT = 1555
triangles. Thus, the dimension of the space is 7175, and finding the minimal energy
fit requires solving a system of 6372 equations. The associated matrix is sparse
with only 243,402 of the 40,602,384 entries being nonzero. The computation took
34 seconds on a desktop, but see Remark 8. The resulting spline fit is shown in
Fig. 2 (right).
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Fig. 2. The minimal energy fit of Example 8.1.

To further illustrate the behavior of minimal energy spline fits, we give a second
example involving a known function where we can compute errors. We use the well-
known Franke function

F (x, y) = 0.75 exp(−0.25(9x− 2)2 − 0.25(9y − 2)2)

+ 0.75 exp(−(9x+ 1)2/49− (9y + 1)/10)

+ 0.5 exp(−0.25(9x− 7)2 − 0.25(9y − 3)2)

− 0.2 exp(−(9x− 4)2 − (9y − 7)2)

(8.1)

defined on the unit square. The surface corresponding to F is shown in Fig. 3.

Fig. 3. The Franke function.

Example 8.2. We construct minimal energy spline fits of F from the spaces
S1,2

5 (△k) based on type-I triangulations △k with k = 9, 25, 81, and 289 vertices.

Discussion: Type-I triangulations are obtained by first forming a rectangular grid,
and then drawing in the northeast diagonals. We show the results of our computa-
tions in the table in Fig. 4, where the columns labelled nt and nsys give the number

13



k nt nsys e∞ e2 time
9 8 61 1.5(−1) 1.9(−1) .02
25 32 181 8.8(−2) 3.0(−2) .09
81 128 613 5.0(−2) 6.2(−3) .5
289 512 2245 3.9(−3) 4.0(−4) 3.7

S1,2
5 (△k)

Fig. 4. Minimal energy fits of F from S
1,2
5 (△k), see Example 8.2.

of triangles in △k and the size of the linear system being solved, respectively. The
columns labelled e∞ and e2 give the maximum error and the RMS errors measured
over a grid of 640,000 points. The last column contains the computational times in
seconds. To illustrate the quality of the fits, we give contour plots for each of the
four cases. Clearly, the fit on △9 is not very good, and completely misses the peaks
and valley in the function. On the other hand, the contour plot for △289 is almost
identical to the contour plot of f itself. In comparing Figs. 3 and 4, note that the
3D view of F in Fig. 3 is from behind the surface so that the peaks do not obscure
the valley. The results here are very comparable to those obtained for the space of
C2 quintic splines on Powell-Sabin splits, see Table 3 of [10], which were computed
by the Lagrange multiplier method of [4].

8.2. Least-squares Fitting

In this section we give examples of least-squares fitting with splines. Let F be the

14



k nd nsys e∞ e2 time
9 289 70 4.5(−2) 9.5(−3) .1
25 289 206 1.6(−2) 1.9(−3) .12
25 1089 206 1.1(−2) 1.6(−3) .43
81 1089 694 5.3(−4) 5.1(−5) .44
81 4225 694 5.0(−4) 4.8(−5) 1.8

S1,2
5 (△k)

k nd nsys e∞ e2 time
9 289 191 1.8(−2) 1.9(−3) 2.5
9 1089 191 1.1(−2) 1.4(−3) 11
25 1089 575 5.2(−4) 4.4(−5) 12
25 4225 575 3.5(−4) 4.1(−5) 51
81 4225 1967 1.3(−6) 1.1(−7) 57

S2,4
9 (△k)

Fig. 5. Least-squares fits of F from S
1,2
5 (△k) and S

2,4
9 (△k), see Example 8.3.

Franke function (8.1) defined on the unit square.

Example 8.3. We construct least-squares fits of F using the spaces S1,2
5 (△k) and

S2,4
9 (△k) defined on type-I triangulations based on measurements on rectangular

grids of nd := 289, 1089 and 4225 points.

Discussion: The table in Fig. 5 shows the results of our computations, where the
columns labelled e∞ and e2 give the maximum error and RMS errors on a grid of
640,000 points. The column labelled nsys gives the size of the linear system being
solved. The last column contains the computational times in seconds. We show
contour plots of the fits based on 289 data points, where the plot on the left is the
fit from S1,2

5 (△9) while the one on the right is the fit from S2,4
9 (△9).

8.3. Penalized least-squares

Let F be the Franke function (8.1) defined on the unit square. We approximate F
based on measurements on a grid of 1089 points. However, here we add random

15



Fig. 6. Penalized least-squares fits of F with λ = .01, .005, .001, 0.

errors εi to the measurements fi, where the εi are uniformly distributed in [−.1, .1].
This is a rather significant amount of noise since the values of F lie in the interval
[−.2, 1.1].

Example 8.4. We compute the penalized least-squares spline fits sλ ∈ S
1,2
5 (△25)

for λ = .01, .005, .001 and 0.

Discussion: The maximum errors for these choices of λ were .127, .111, .08, and
.10. The corresponding surfaces are shown in Fig. 6. Clearly, the value of λ makes
a big difference. If it is too small, the fit follows the noise, and is not very smooth.
If it is too large, some of the shape is lost.

8.4. Solution of boundary-value problems

Example 8.5. Compute a solution to the boundary-value problem (7.3) with

f(x, y) := 4 cos(x2 + y2)− 4(x2 + y2) sin(x2 + y2)

+ 10 cos(25(x2 + y2))− 250 sin(25(x2 + y2)),

g(x, y) := sin(x2 + y2) + .1 sin(25(x2 + y2)),

16



and κ ≡ 1 on the unit square Ω.

Discussion: In this case, the solution of the boundary-value problem (7.3) is

u(x, y) := sin(x2 + y2) + .1 sin(25(x2 + y2)).

We computed spline approximations of u by the Galerkin method using spline spaces
defined on type-I triangulations △k with k = 81, 289, 1089 and 4225 vertices. The
results are shown in the tables in Fig. 7, where k and nt are the number of vertices
and triangles, and dim is the dimension of the associated space. We give results
not only for S1,2

5 (△k), but also for S0
1 (△k) for comparison purposes. As above, e∞

and e2 are the maximum and RMS errors on a grid of 25,600 points, and the last
column shows the computational time in seconds. The figure on the left shows the
traditional C0 linear fit with k = 1089, while the one on the right shows the fit
with S1,2

5 (△k) with k = 289. In addition to having much smaller errors, it is much
smoother. The results here can be compared with those in Table 13 of [4] which
were computed with C1 quintic splines, but with f and g multiplied by 10.

Finally, we give an example involving a fourth-order differential equation.

Example 8.6. Compute a solution to the fourth-order boundary-value problem
(7.4)–(7.5) with

f(x, y) := 4 exp(x+ y), g(x, y) = h(x, y) := exp(x+ y),

on the unit square Ω.

Discussion: The solution of this boundary-value problem is u(x, y) := exp(x+y).
We computed spline approximations of u by the Galerkin method using the space
S1,2

5 (△k) defined on type-I triangulations with n = 9, 25, and 81 vertices. The
errors are shown in Tab. 1 along with the computational times. For a compari-
son with an approximation computed using S1

5 (△25) using the Lagrange multiplier
method, see Example 26 in [4].

§9. Computing Bernstein Basis Polynomials and Their Derivatives

In this section we describe algorithms for efficiently evaluating Bernstein basis poly-
nomials of degree d and their derivatives. Fix a triangle T := 〈v1, v2, v3〉 with ver-
tices vi = (xi, yi) for i = 1, 2, 3. The associated Bernstein basis polynomials are
defined by

Bd
ijk(x, y) :=

d !

i ! j ! k !
bi1b

j
2b

k
3 , i+ j + k = d, (9.1)

where b1, b2, b3 are the barycentric coordinates of (x, y) relative to the triangle T .
Specifically,

b1(x, y) :=
1

det

∣

∣

∣

∣

∣

∣

1 1 1
x x2 x3

y y2 y3

∣

∣

∣

∣

∣

∣

, det :=

∣

∣

∣

∣

∣

∣

1 1 1
x1 x2 x3

y1 y2 y3

∣

∣

∣

∣

∣

∣

, (9.2)
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k nt dim e∞ e2 time
81 128 590 2.1(−2) 2.2(−3) 0.2
289 512 2334 1.4(−3) 8.1(−5) .9
1089 2048 9278 2.5(−5) 1.0(−6) 4.3
4225 8192 36990 3.8(−7) 1.5(−8) 24

S1,2
5 (△k)

k nt dim e∞ e2 time
81 128 169 1.8(−1) 6.5(−2) .006
289 512 225 9.6(−2) 2.6(−3) .02
1089 2048 961 9.6(−2) 2.6(−3) .13
4225 8192 3969 7.0(−3) 1.8(−3) .90
16641 32768 16129 1.9(−3) 3.6(−4) 7.2

S0
1 (△k)

Fig. 7. Spline approximations of the BVP of Example 8.5.

k nt dim e∞ e2 time
9 8 18 3.4(−5) 1.1(−5) .01
25 32 106 3.7(−8) 8.9(−9) .07
81 128 498 6.1(−10) 1.3(−10) .46

S1,2
5 (△k)

Tab. 1. Spline approximations of the BVP of Example 8.6.

with similar definitions for b2 and b3. This shows that b1, b2, b3 are linear functions
of x and y.

The following algorithm simultaneously computes the values of all of the Bern-
stein basis polynomials {Bd

ijk}i+j+k=d at a fixed point (x, y). Suppose the barycen-
tric coordinates of (x, y) relative to T are b1, b2, b3.

Algorithm 9.1. Computation of all Bernstein basis polynomials at a point (x, y).

• Set B(0, 0) = 1

18



b1

b2 b3

b3 b2

b1
b21

b22 b23

2b1b2 2b1b3

2b2b3

⇒

Fig. 8. One step of Algorithm 9.1.

• For k = 1 to d
For i = k to 0
For j = i to 0

B(i, j) = b1B(i, j) + b2B(i− 1, j) + b3B(i− 1, j − 1)

A simple inductive proof shows that the following lemma holds.

Lemma 9.2. Algorithm 9.1 produces the values









Bd
d,0,0(x, y)

Bd
d−1,1,0(x, y) Bd

d−1,0,1(x, y)
· · · · · ·

Bd
0,d,0(x, y) Bd

0,1,d−1(x, y) · · · Bd
0,0,d(x, y)









.

We illustrate one step of this algorithm (k = 2) in Fig. 8. It shows how the
six Bernstein basis polynomials of degree 2 are computed from the three of degree
1. The idea is to use the inverted triangle with b1, b2, b3 at its vertices as a mask
which is applied at six different positions to the triangular array of 1st degree
Bernstein basis polynomials on the left to get the triangular array of Bernstein
basis polynomials of degree 2 on the right. Applying the mask again would lead to
an array containing the 10 values of the cubic Bernstein basis polynomials, etc.

For the applications in Sect. 7, we also need an algorithm for evaluating deriva-
tives of the Bernstein basis polynomials at a given point (x, y). We now show
that Algorithm 9.1 can be easily adapted to produce the values of arbitrary direc-
tional derivatives of the Bernstein basis polynomials. Recall (see e.g. [13]) that if
u = u1 − u0 is a vector in IR2, then its directional coordinates (a1, a2, a3) relative
to T are just the differences of the barycentric coordinates of u1 and u0 relative to
T . This implies a1 + a2 + a3 = 0. The following lemma shows how Algorithm 9.1
can be used to compute the values of the set of functions {Dm

u B
d
ijk(x, y)}i+j+k=d

at a fixed point (x, y) whose barycentric coordinates relative to T are b1, b2, b3.

Lemma 9.3. Fix 0 ≤ m ≤ d. Suppose that in carrying out Algorithm 9.1, in the
first m times through the k-loop we use a1, a2, a3 in place of b1, b2, b3. Then the

19



algorithm produces (d−ν) !
d ! times the matrix









Dm
u B

d
d,0,0(x, y)

Dm
u B

d
d−1,1,0(x, y) Dm

u B
d
d−1,0,1(x, y)

· · · · · ·
Dm

u B
d
0,d,0(x, y) Dm

u B
d
0,1,d−1(x, y) · · · Dm

u B
d
0,0,d(x, y)









.

Proof: It is well known that

DuB
d
ijk = d

[

a1B
d−1
i−1,j,k + a2B

d−1
i,j−1,k + a3B

d−1
i,j,k−1

]

,

see e.g. Lemma 2.11 of [13], The result then follows from a minor variant of the
inductive proof of Lemma 9.2.

This result can be generalized to compute arbitrary mixed directional deriva-
tives. In particular, suppose we are givenm directional vectors u1, . . . , um whose di-

rection coordinates relative to T are a(ν) := (a
(ν)
1 , a

(ν)
2 , a

(ν)
3 ), for ν = 1, . . . , m. Then

we can compute (d − m) ! /d ! times the matrix of values [Du1
. . .Dum

Bd
ijk(x, y)]

by running Algorithm 9.1, but using a(ν) in place of (b1, b2, b3) in the ν-th pass
through the k-loop for ν = 1, . . . , m.

Since we are interested in computing the derivatives in the directions of the
Cartesian axes, we now give formulae for the direction coordinates of the special
directional derivatives Dx and Dy.

Lemma 9.4. Suppose T := 〈v1, v2, v3〉 where vi := (xi, yi) for i = 1, 2, 3. Then
the direction coordinates of Dx are

ax
1 = (y2 − y3)/det, ax

2 = (y3 − y1)/det, ax
3 = (y1 − y2)/det, (9.3)

while those of Dy are

ay
1 = (x3 − x2)/det, ay

2 = (x1 − x3)/det, ay
3 = (x2 − x1)/det, (9.4)

where det is the determinant in (9.2).

These quantities are just the derivatives of the barycentric coordinate functions
b1, b2, b3 with respect to x and y.
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§10. Remarks

Remark 1. My first work on programs to compute minimal energy splines was
done with Ewald Quak in the mid 1980’s during his stay at Texas A&M. Our
programs used C1 cubic and quartic splines, although even to this day the di-
mension of S1

3 (△) has not been determined for arbitrary triangulations △. The
Bernstein–Bézier representation was used, and smoothness conditions were simply
incorporated with Lagrange multipliers. The codes were not made public, but the
details of how to compute energies were published in [15]. This approach was later
used in [7] in connection with the construction of minimal energy surfaces with
C1 cubic parametric splines, where in some cases certain C2 smoothness conditions
were also incorporated via Lagrange multipliers. The Lagrange multiplier approach
was further developed in [4], where the Bernstein–Bézier representation is based on
the space of piecewise polynomials rather than on S0

d(△) as in our earlier papers.
A useful iterative method for solving the resulting systems of equations was also
developed in [4], see also the survey [11].

Remark 2. There is an extensive theory of splines defined on spherical triangu-
lations which is remarkably similar to the theory of bivariate splines, see [1–3] and
Chapters 13–14 of [13]. Such splines are piecewise spherical harmonics. The tech-
niques described here also work for solving variational problems involving spherical
spline spaces with stable local minimal determining sets. A number of such spaces
are described in [13]. For some computational experiments with minimal energy
spherical splines based on Lagrange multiplier methods, see [2] and [5].

Remark 3. There has been considerable recent work on trivariate splines defined
on tetrahedral partitions, see Chapters 15–18 of [13]. The methods described here
can also be carried over to solve variational problems associated with trivariate
splines with stable local minimal determining sets. A number of such spaces are
described in [13].

Remark 4. The global methods described here are not the only way to fit scattered
data using splines. There are a host of local methods that work with various macro-
element spaces. For numerical experiments with some of these methods in the
spherical case, see [2].

Remark 5. It is well known, see Chap. 10 of [13], that if a spline space S(△)
has a stable local basis, then it approximates sufficiently smooth functions to order
O(|△|d+1), where |△| is the mesh size of △, i.e., the diameter of the largest triangle
in △. However, the minimal energy interpolation method does not attain this
optimal approximation order for d ≥ 2 since it only reproduces linear functions.
Indeed, the results of [10] show that the order of approximation using minimal
energy splines is only O(|△|2). This can be seen in the table in Fig. 4, which is
based on a nested sequence of type-I triangulations whose mesh sizes decrease by
a factor of .5 at each step.
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Remark 6. Our method can also be applied to compute minimal energy fits using
the spaces S0

d(△). However, it doesn’t really make sense to minimize energy for
splines in C0 spline spaces, since minimizing energy leads to splines which are as
close to piecewise linear as possible. Even though S0

d(△) is a much larger space

than S1,2
5 (△), the minimal energy fit from S0

d(△) is much worse that the one from

S1,2
5 (△).

Remark 7. A Gaussian quadrature rule for approximating integrals of functions
over a triangle T is defined by a set of positive numbers {wk, rk, sk, tk}

m
k=1 where

rk + sk + tk = 1 for all k. Then for any function g defined on T , its integral is
approximated by

∫

T

g(x, y)dxdy ≈
m

∑

k=1

wkg(x
T
k , y

T
k ), (10.1)

where

xT
k = rkx1 + skx2 + tkx3, yT

k = rky1 + sky2 + tky3.

For each m, there is a dm such that the corresponding Gaussian quadrature rule
integrates all polynomials up to degree dm exactly. Formulae for various values of
m can be found in the literature. In our experiments we use rules from [6] with
m = 25 and m = 79 which integrate bivariate polynomials up to degree 10 and 20
exactly.

Remark 8. The numerical experiments presented here were performed on a Mac-
intosh G5 computer using Fortran. The programs were not optimized for perfor-
mance, and the times reported are only meant to give a general impression of the
speed of computation and to provide a basis for comparing different methods with
various parameters.

Remark 9. The programs used for the experiments presented here work with
spline spaces up to smoothness C2. However, it is straightforward to write sim-
ilar programs for spline spaces with higher smoothness. For example, we could
work with any of the macro-element spaces discussed in [13] which are defined for
arbitrary smoothness r.

Remark 10. While it may appear that the practical use of global spline fitting
methods is limited by the need to solve linear systems of equations which can
become very large, in [14] we recently described a method for decomposing large
variational spline problems into smaller more managable pieces.
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