Skip to main content
Log in

Orthogonal polynomials—centroid of their zeroes

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Let c n,k (k=1,...,n) the n zeroes of the monic orthogonal polynomials family P n (x). The centroid of these zeroes: \(s_n=\frac1n \sum\limits^n_{k=1}c_{n,k}\) controls globally the distribution of the zeroes, and it is relatively easy to obtain information on s n , like bounds, inequalities, parameters dependence, ..., from the links between s n , the coefficients of the expansion of P n (x), and the coefficients β n , γ n in the basic recurrence relation satisfied by P n (x). After a review of basic properties of the centroid on polynomials, this work gives some results on the centroid of a large class of orthogonal polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Area, L., Godoy, E., Ronveaux, A., Zarzo, A.: Discrete Grosjean orthogonal polynomials. SIAM Activity Group on Orthogonal Polynomials and Special Functions, Newsletter 6(2), 15 (1996)

    Google Scholar 

  2. Buendia, E., Dehesa, J.S., Gálvez, F.J.: The distribution of zeros of the polynomial eigenfunctions of ordinary differential operators of arbitrary order. In: Alfaro, M. et al. (eds.) Orthogonal Polynomials and their Applications. Lecture Notes in Mathematics, vol. 1329, pp. 222–235. Springer (1986)

  3. Brezinski, C., Driver, K.A., Redivo-Zaglia, M.: Quasi-orthogonality with applications to some families of classical orthogonal polynomials. Appl. Numer. Math. 48, 157–168 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Case, K.M.: Sum rules for zeros of polyomials (I)–(II). J. Math. Phys. 21, 702–714 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978)

    MATH  Google Scholar 

  6. Derwidué, L.: Introduction à l’algèbre supérieure et au calcul numérique algébrique. Sciences et Lettres, Liège (1957)

  7. Dimitrov, D.J., Ronveaux, A.: Inequalities for zeros of derivative and associated of orthogonal polynomials. Appl. Numer. Math. 36, 321–331 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Elbert, A., Laforgia, A.: New properties of the zeros of a jacobi polynomial in relation to their centroid. SIAM J. Math. Anal. 18, 1563–1572 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Elbert, A., Laforgia, A.: On the zeros of associated polynomials of classical orthogonal polynomials. Differ. Integral Equ. 6(5), 1137–1143 (1993)

    MATH  MathSciNet  Google Scholar 

  10. Favard, J.: Sur les polynômes de Tchebicheff. C. R. Acad. Sci. Paris 200, 2052–2053 (1935)

    Google Scholar 

  11. Foupouagnigni, M., Hounkonnou, M.N., Ronveaux, A.: Laguerre–Freud’s equations for the recurrence coefficients of D ω semi-classical orthogonal polynomials of class one. J. Comput. Appl. Math. 99, 143–154 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Grosjean, C.C.: The weight function, generating functions and miscellaneous properties of the sequences of orthogonal polynomials of the second kind associated with the Jacobi and the Gegenbauer polynomials. J. Comput. Appl. Math. 16, 259–307 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hendriksen, E., van Rossum, H.: Semi-classical orthogonal polynomials. In: Brezinski, C. et al. (eds.) Polynômes Orthogonaux et Applications. Lecture Notes in Mathematics, vol. 1171, pp. 355–361. Springer, Berlin (1985)

    Google Scholar 

  14. Marden, M.: Geometry of Polynomials. American Mathematical Society. Providence, Rhode Island (1966)

    MATH  Google Scholar 

  15. Natalini, P.: Sul calcolo dei momenti della densità degli zeri dei polinomi ortogonali classici e semiclassici. Calcolo 31, 127–144 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Natalini, P., Ricci, P.E.: Computation of Newton sum rules for associated and co-recursive classical orthogonal polynomials. J. Comput. Appl. Math. 133, 495–505 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Nikiforov, A.F., Suslov, S.K., Uvarov, V.B.: Classical Orthogonal Polynomials of a Discrete Variable. Springer Series in Computational Physics. Springer-Verlag, Berlin (1991)

    Google Scholar 

  18. Peherstorfer, F., Schmuckenschläger, M.: Interlacing properties of zeros of associated polynomials. J. Comput. Appl. Math. 59, 61–78 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ricci, P.E.: Sum rules for zeros of polynomials and generalized Lucas polynomials. J. Math. Phys. 34, 4884–4891 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ronveaux, A.: Fourth-order differential equation for numerator polynomials. J. Phys. A.: Math. Gen. 21, 749–753 (1988)

    Article  MathSciNet  Google Scholar 

  21. Ronveaux, A.: Zeros of associate versus zeros of derivative of classical orthogonal polynomials. Open Problems, Imacs Ann. Comput. Appl. Math. 9, 419 (1991)

    Google Scholar 

  22. Ronveaux, A.: Three lectures on classical orthogonal polynomials. Contemporary problems in mathematical physics. World Sci. 283–306 (2000)

  23. Ronveaux, A., Marcellán, F.: Co-recursive orthogonal polynomials and fourth-order differential equation. J. Comput. Appl. Math. 25, 295–328 (1989)

    Article  Google Scholar 

  24. Ronveaux, A., Belmehdi, S., Dini, J., Maroni, P.: Fourth-order differential equation for the co-modified semi-classical orthogonal polynomials. J. Comput. Appl. Math. 29(2), 225–231 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ronveaux, A., Zarzo, A., Godoy, E.: Fourth-order differential equation satisfied by the generalized co-recursive of all classical orthogonal polynomials. A study of their distribution of zeros. J. Comput. Appl. Math. 59, 105–109 (1995)

    MathSciNet  Google Scholar 

  26. Ronveaux, A., Van Assche, W.: Upward extension of the Jacobi matrix for orthogonal polynomials. J. Approx. Theory 86(3), 335–357 (1996 September)

    Article  MATH  MathSciNet  Google Scholar 

  27. Szegö, S.: Orthogonal Polynomials, Vol. XXIII. American Mathematical Society, Colloquium Publications (1939)

  28. van Assche, W.: Orthogonal polynomials, associated polynomials and functions of second kind. J. Comput. Appl. Math. 37, 237–279 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  29. van Assche, W., Foupouagnigni, M.: Analysis of non-linear recurrence relations for the recurrence coefficients of generalized Charlier Polynomials. J. Nonlin. Math. Phys. 20(2), 231–237 (2003)

    Article  Google Scholar 

  30. Zarzo, A., Dehesa, J.S., Ronveaux, A.: Newton sum rules of zeros of semiclassical orthogonal polynomials. J. Comput. Appl. Math. 33(1), 85–96 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Ronveaux.

Additional information

In memory of Professor Luigi Gatteschi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ronveaux, A. Orthogonal polynomials—centroid of their zeroes. Numer Algor 49, 373–385 (2008). https://doi.org/10.1007/s11075-008-9195-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-008-9195-6

Keywords

Navigation