Skip to main content
Log in

Numerical treatment of a twisted tail using extrapolation methods

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Highly oscillatory integral, called a twisted tail, is proposed as a challenge in The SIAM 100-digit challenge. A Study in High-Accuracy Numerical Computing, where Drik Laurie developed numerical algorithms based on the use of Aitken’s Δ2-method, complex integration and transformation to a Fourier integral. Another algorithm is developed by Walter Gautschi based on Longman’s method; Newton’s method for solving a nonlinear equation; Gaussian quadrature; and the epsilon algorithm of Wynn for accelerating the convergence of infinite series. In the present work, nonlinear transformations for improving the convergence of oscillatory integrals are applied to the integration of this wildly oscillating function. Specifically, the \(\bar{D}\) transformation and its companion the W algorithm, and the G transformation are all used in the analysis of the integral. A Fortran program is developed employing each of the methods, and accuracies of up to 15 correct digits are reached in double precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brezinski, C.: Algorithmes d’Accélérations de la Convergence. Edition Technip, Paris (1978)

    Google Scholar 

  2. Brezinski, C., Redivo-Zaglia, M.: Extrapolation Methods: Theory and Practice. Edition North-Holland, Amsterdam (1991)

    MATH  Google Scholar 

  3. Weniger, E.J.: Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series. Comput. Phys. Rep. 10, 189–371 (1989)

    Article  Google Scholar 

  4. Weniger, E.J.: Computation of the Whittaker function of the second kind by summing its divergent asymptotic series with the help of nonlinear sequence transformations. Comput. Phys. 10, 496–503 (1996)

    Article  Google Scholar 

  5. Weniger, E.J., Kirtman, B.: Extrapolation methods for improving the convergence of oligomer calculations to the infinite chain limit of quasi-one dimensional stereoregular polymers. In: Simos, T.E., Avdelas, G., Vigo-Aguiar, J. (eds.) (Gastherausgeber) Numerical Methods in Physics, Chemistry and Engineering. Comput. Math. Appl. 45, 189–215 (2003) (special issue)

  6. Weniger, E.J.: A rational approximant for the digamma function. Numer. Algorithms 33, 499–507 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Weniger, E.J.: A convergent renormalized strong coupling perturbation expansion for the ground state energy of the quartic, sextic and octic anharmonic oscillator. Ann. Phys. (NY) 246, 133–165 (1996)

    Article  MATH  Google Scholar 

  8. Safouhi, H., Hoggan, P.E.: Efficient evaluation of Coulomb integrals: the non-linear D- and \(\bar{D}\)-transformations. J. Phys. A: Math. Gen. 31, 8941–8951 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Safouhi, H., Hoggan, P.E.: Efficient and rapid evaluation of three-center two electron Coulomb and hybrid integrals using nonlinear transformations. J. Comp. Phys. 155, 331–347 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Safouhi, H.: The properties of sine, spherical Bessel and reduced Bessel functions for improving convergence of semi-infinite very oscillatory integrals: the evaluation of three-center nuclear attraction integrals over B functions. J. Phys. A: Math. Gen. 34, 2801–2818 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Safouhi, H.: An extremely efficient approach for accurate and rapid evaluation of three- center two-electron Coulomb and hybrid integral over B functions. J. Phys. A: Math. Gen. 34, 881–902 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Berlu, L., Safouhi, H., Hoggan, P.: Fast and accurate evaluation of three-center two-electron Coulomb, hybrid and three-center nuclear attraction integrals over Slater type orbitals using the \({S}\overline{D}\) transformation. Int. J. Quantum Chem. 99, 221–235 (2004)

    Article  Google Scholar 

  13. Berlu, L., Safouhi, H.: An extremely efficient and rapid algorithm for a numerical evaluation of three-center nuclear attraction integrals over Slater type functions. J. Phys. A: Math. Gen. 36, 11791–11805 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Berlu, L., Safouhi, H.: A new algorithm for accurate and fast numerical evaluation of hybrid and three-center two-electron Coulomb integrals over Slater type functions. J. Phys. A: Math. Gen. 36, 11267–11283 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Safouhi, H.: Numerical treatment of two-center overlap integrals. J. Mol. Mod. 12, 213–220 (2006)

    Article  Google Scholar 

  16. Safouhi, H.: Efficient and rapid numerical evaluation of the two-electron four-center Coulomb integrals using nonlinear transformations and practical properties of sine and Bessel functions. J. Comp. Phys. 176, 1–19 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Berlu, L., Safouhi, H.: Multicenter two-electron Coulomb and exchange integrals over Slater functions evaluated using a generalized algorithm based on nonlinear transformations. J. Phys. A: Math. Gen. 37, 3393–3410 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Safouhi, H.: Highly accurate numerical results for three-center nuclear attraction and two-electron Coulomb and exchange integrals over Slater type functions. Int. J. Quantum Chem. 100, 172–183 (2004)

    Article  Google Scholar 

  19. Duret, S., Safouhi, H.: The W algorithm and the \(\bar{D}\) transformation for the numerical evaluation of three-center nuclear attraction integrals. Int. J. Quantum Chem. 107, 1060–1066 (2007)

    Article  Google Scholar 

  20. Davis, P.J., Rabinowitz, P.: Methods of numerical integration. Academic Press, Orlando (1994)

    Google Scholar 

  21. Evans, G.: Practical numerical integration. Wileys, Chichester (1993)

    MATH  Google Scholar 

  22. Wynn, P.: On a device for computing the e m (S n ) transformation. Math. Tables Aids Comput. 10, 91–96 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  23. Poincaré, H.: Sur les intégrales irrégulières des équations linéaires. Acta. Math. 8, 295–344 (1886)

    Article  MathSciNet  Google Scholar 

  24. Wagon, S., Bornemann, F., Laurie, D., Waldvogel, J.: The SIAM 100-Digit Challenge. A Study in High-Accuracy Numerical Computing. SIAM, Philadelphia (2004)

    MATH  Google Scholar 

  25. Gautschi, W.: The Numerical Evaluation of a Challenging Integral. Manuscript, Purdue University (2005). URL:http://www.cs.purdue.edu/homes/wxg/

  26. Wynn, P.: Upon a second confluent form the ε-algorithm. Proc. Glascow Math. Assoc. 5, 160–165 (1962)

    MathSciNet  MATH  Google Scholar 

  27. Levin, D., Sidi, A.: Two new classes of non-linear transformations for accelerating the convergence of infinite integrals and series. Appl. Math. Comput. 9, 175–215 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sidi, A.: Extrapolation methods for oscillating infinite integrals. J. Inst. Maths. Applics. 26, 1–20 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sidi, A.: An algorithm for a special case of a generalization of the Richardson extrapolation process. Numer. Math. 38, 299–307 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gray, H.L., Atchison, T.A.: Nonlinear transformation related to the evaluation of improper integrals. I. SIAM J. Numer. Anal. 4, 363–371 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gray, H.L., Atchison, T.A., McWilliams, G.V.: Higher order G-transformations. SIAM J. Numer. Anal. 8, 365–381 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gray, H.L., Wang, S.: A new method for approximating improper integrals. SIAM J. Numer. Anal. 29, 271–283 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Faà di Bruno, C.F.: Note sur une nouvelle formule de calcul différentiel. Quarterly J. Pure Appl. Math. 1, 359–360 (1857)

    Google Scholar 

  34. Huang, H.-N., Marcantognini, S.A.M., Young, N.J.: Chain rules for higher derivatives. The Mathematical Intelligencer 28, 61–69 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Safouhi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slevinsky, M., Safouhi, H. Numerical treatment of a twisted tail using extrapolation methods. Numer Algor 48, 301–316 (2008). https://doi.org/10.1007/s11075-008-9199-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-008-9199-2

Keywords

Navigation