Skip to main content
Log in

Equivalent operator preconditioning for elliptic problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The numerical solution of linear elliptic partial differential equations most often involves a finite element or finite difference discretization. To preserve sparsity, the arising system is normally solved using an iterative solution method, commonly a preconditioned conjugate gradient method. Preconditioning is a crucial part of such a solution process. In order to enable the solution of very large-scale systems, it is desirable that the total computational cost will be of optimal order, i.e. proportional to the degrees of freedom of the approximation used, which also induces mesh independent convergence of the iteration. This paper surveys the equivalent operator approach, which has proven to provide an efficient general framework to construct such preconditioners. Hereby one first approximates the given differential operator by some simpler differential operator, and then chooses as preconditioner the discretization of this operator for the same mesh. In this survey we give a uniform presentation of this approach, including theoretical foundation and several practically important applications for both symmetric and nonsymmetric equations and systems, and some nonlinear examples in the context of Newton linearization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antal, I., Karátson, J.: A mesh independent superlinear algorithm for some nonlinear nonsymmetric elliptic systems. Comput. Math. Appl. (2008, in press)

  2. Ashby, S.F., Manteuffel, T.A., Saylor, P.E.: A taxonomy for conjugate gradient methods. SIAM J. Numer. Anal. 27(6), 1542–1568 (1990)

    MATH  MathSciNet  Google Scholar 

  3. Axelsson, O.: A generalized conjugate gradient least square method. Numer. Math. 51, 209–227 (1987)

    MATH  MathSciNet  Google Scholar 

  4. Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  5. Axelsson, O.: On iterative solvers in structural mechanics; separate displacement orderings and mixed variable methods. Math. Comput. Simul. 50(1–4), 11–30 (1999)

    MATH  MathSciNet  Google Scholar 

  6. Axelsson, O., Barker, V.A., Neytcheva, M., Polman, B.: Solving the Stokes problem on a massively parallel computer. Math. Model. Anal. 6(1), 7–27 (2001)

    MATH  MathSciNet  Google Scholar 

  7. Axelsson, O., Blaheta, R., Neytcheva, M.: Preconditioning of boundary value problems using elementwise Schur complements. Technical Report 2006-048, Department of Information Technology, Uppsala University, November (2006)

  8. Axelsson, O., Blaheta, R., Neytcheva, M.: A black-box generalized conjugate gradient minimum residual method based on variable preconditioners and local element approximations. TR 2007-033, Institute for Information Technology, Uppsala University, December (2007)

  9. Axelsson, O., Faragó, I., Karátson, J.: Sobolev space preconditioning for Newton’s method using domain decomposition. Numer. Linear Algebr. Appl. 9, 585–598 (2002)

    MATH  Google Scholar 

  10. Axelsson, O., Gololobov, S.V.: A combined method of local Green’s functions and central difference method for singularly perturbed convection-diffusion problems. J. Comput. Appl. Math. 161(2), 245–257 (2003)

    MATH  MathSciNet  Google Scholar 

  11. Axelsson, O., Gustafsson, I.: Iterative methods for the solution of the Navier equations of elasticity. Comput. Methods Appl. Mech. Eng. 15(2), 241–258 (1978)

    MATH  MathSciNet  Google Scholar 

  12. Axelsson, O., Kaporin, I.: On the sublinear and superlinear rate of convergence of conjugate gradient methods. Mathematical journey through analysis, matrix theory and scientific computation (Kent, OH, 1999). Numer. Algorithms 25(1–4), 1–22 (2000)

    MATH  MathSciNet  Google Scholar 

  13. Axelsson, O., Karátson, J.: Symmetric part preconditioning for the conjugate gradient method in Hilbert space. Numer. Funct. Anal. 24(5–6), 455–474 (2003)

    MATH  Google Scholar 

  14. Axelsson, O., Karátson J.: Conditioning analysis of separate displacement preconditioners for some nonlinear elasticity systems. Math. Comput. Simul. 64(6), 649–668 (2004)

    Google Scholar 

  15. Axelsson, O., Karátson J.: Superlinearly convergent CG methods via equivalent preconditioning for nonsymmetric elliptic operators. Numer. Math. 99(2), 197–223 (2004)

    MATH  MathSciNet  Google Scholar 

  16. Axelsson, O., Karátson J.: Symmetric part preconditioning of the CGM for Stokes type saddle-point systems. Numer. Funct. Anal. 28(9–10), 1027–1049 (2007)

    MATH  Google Scholar 

  17. Axelsson, O., Karátson J.: Mesh independent superlinear PCG rates via compact-equivalent operators. SIAM J. Numer. Anal. 45(4), 1495–1516 (2007) (electronic)

    MATH  MathSciNet  Google Scholar 

  18. Axelsson, O., Kolotilina, L.: Diagonally compensated reduction and related preconditioning methods. Numer. Linear Algebr. Appl. 1(2), 155–177 (1994)

    MATH  MathSciNet  Google Scholar 

  19. Axelsson, O., Maubach, J.: On the updating and assembly of the Hessian matrix in finite element methods. Comput. Methods Appl. Mech. Eng. 71, 41–67 (1988)

    MATH  MathSciNet  Google Scholar 

  20. Axelsson, O., Neytcheva, M.: Scalable algorithms for the solution of Navier’s equations of elasticity. J. Comput. Appl. Math. 63(1–3), 149–178 (1995)

    MATH  MathSciNet  Google Scholar 

  21. Axelsson, O., Neytcheva, M.: An iterative solution method for Schur complement systems with inexact inner solver. In: Iliev, O., Kaschiev, M., Margenov, S., Sendov, B., Vassilevski, P.S. (eds.) Recent Advances in Numerical Methods and Applications II, pp. 795–803. World Scientific, Singapore (1999)

    Google Scholar 

  22. Axelsson, O., Vassilevski, P.S.: Algebraic multilevel preconditioning methods I. Numer. Math. 56, 157–177 (1989)

    MATH  MathSciNet  Google Scholar 

  23. Axelsson, O., Vassilevski, P.S.: Algebraic multilevel preconditioning methods II. SIAM J. Numer. Anal. 27, 1569–1590 (1990)

    MATH  MathSciNet  Google Scholar 

  24. Axelsson, O., Vassilevski, P.S.: Variable-step multilevel preconditioning methods. I. Self-adjoint and positive definite elliptic problems. Numer. Linear Algebr. Appl. 1(1), 75–101 (1994)

    MATH  MathSciNet  Google Scholar 

  25. Babuška, I.: The finite element method with Lagrangian multipliers. Numer. Math. 20, 179–192 (1972/73)

    MathSciNet  Google Scholar 

  26. Bängtsson, E., Neytcheva, M.: Finite element block-factorized preconditioners. Technical Reports from the Department of Information Technology, Uppsala University, No. 2007-008, March (2007)

  27. Bank, R.E.: Marching algorithms for elliptic boundary value problems. II. The variable coefficient case. SIAM J. Numer. Anal. 14(5), 950–970 (1977)

    MATH  MathSciNet  Google Scholar 

  28. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

    MATH  MathSciNet  Google Scholar 

  29. Blaheta, R.: Displacement decomposition—incomplete factorization preconditioning techniques for linear elasticity problems. Numer. Linear Algebr. Appl. 1(2), 107–128 (1994)

    MATH  MathSciNet  Google Scholar 

  30. Blaheta, R.: Multilevel Newton methods for nonlinear problems with applications to elasticity. Copernicus 940820, Technical Report. Ostrava (1997)

  31. Börgers, C., Widlund, O.B.: On finite element domain imbedding methods. SIAM J. Numer. Anal. 27(4), 963–978 (1990)

    MATH  MathSciNet  Google Scholar 

  32. Bramble, J.H., Pasciak, J.E.: Preconditioned iterative methods for nonselfadjoint or indefinite elliptic boundary value problems. In: Unification of Finite Element Methods. North-Holland Math. Stud. vol. 94, pp. 167–184. North-Holland, Amsterdam (1984)

    Google Scholar 

  33. Brezinski, C., Sadok, H.: Lanczos-type algorithms for solving systems of linear equations. Appl. Numer. Math. 11(6), 443–473 (1993)

    MATH  MathSciNet  Google Scholar 

  34. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8(R-2), 129–151 (1974)

    MathSciNet  Google Scholar 

  35. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    MATH  Google Scholar 

  36. Brezzi, F., Raviart, P.-A.: Mixed finite element methods for 4th order elliptic equations. In: Topics in Numerical Analysis III, pp. 33–56. Proc. Roy. Irish Acad. Conf., Trinity Coll., Dublin (1976)

    Google Scholar 

  37. Cao, W., Haynes, R.D., Trummer, M.R.: Preconditioning for a class of spectral differentiation matrices. J. Sci. Comput. 24(3), 343–371 (2005)

    MATH  MathSciNet  Google Scholar 

  38. Carey, G.F., Jiang, B.-N.: Nonlinear preconditioned conjugate gradient and least-squares finite elements. Comput. Methods Appl. Mech. Eng. 62, 145–154 (1987)

    MATH  MathSciNet  Google Scholar 

  39. Chen, H., Strikwerda, J.C.: Preconditioning for regular elliptic systems. SIAM J. Numer. Anal. 37(1), 131–151 (1999)

    MATH  MathSciNet  Google Scholar 

  40. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  41. Ciarlet, P: Mathematical Elasticity. Vol. I. Three-dimensional elasticity. Studies in Mathematics and its Applications, vol. 20. North-Holland, Amsterdam (1988)

    Google Scholar 

  42. Ciarlet, P.G., Raviart, P.-A.: Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Eng. 2, 17–31 (1973)

    MATH  MathSciNet  Google Scholar 

  43. Concus, P., Golub, G.H.: Use of fast direct methods for the efficient numerical solution of nonseparable elliptic equations. SIAM J. Numer. Anal. 10, 1103–1120 (1973)

    MATH  MathSciNet  Google Scholar 

  44. Concus, P., Golub, G.H.: A generalized conjugate method for non-symmetric systems of linear equations. In: Glowinski, R., Lions, J.-L. (eds.) Lect. Notes Math. Syst. vol. 134, pp. 56–65. Springer, New York (1976)

    Google Scholar 

  45. Czách, L.: The steepest descent method for elliptic differential equations (in Russian). C.Sc. thesis (1955)

  46. Dryja, M.: A priori estimates in \(W^{2}_{2}\) in a convex domain for systems of elliptic difference equations (Russian). Ž. Vyčisl. Mat. i Mat. Fiz. 12, 1595–1601, 1632 (1972)

    MATH  MathSciNet  Google Scholar 

  47. Dryja, M.: An iterative substructuring method for elliptic mortar finite element problems with discontinuous coefficients. In: Domain Decomposition Methods 10 (Boulder, CO, 1997). Contemp. Math. vol. 218, pp. 94–103. AMS, Providence (1998)

    Google Scholar 

  48. D’yakonov, E.G.: On an iterative method for the solution of finite difference equations (in Russian). Dokl. Akad. Nauk SSSR 138, 522–525 (1961)

    MathSciNet  Google Scholar 

  49. D’yakonov, E.G.: The construction of iterative methods based on the use of spectrally equivalent operators. USSR Comput. Math. Math. Phys. 6, 14–46 (1965)

    Google Scholar 

  50. Eisenstat, S.C., Elman, H.C., Schultz. M.H.: Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal. 20(2), 345–357 (1983)

    MATH  MathSciNet  Google Scholar 

  51. Elman, H.C., Schultz. M.H.: Preconditioning by fast direct methods for nonself-adjoint nonseparable elliptic equations. SIAM J. Numer. Anal. 23, 44–57 (1986)

    MATH  MathSciNet  Google Scholar 

  52. Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics, Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2005)

    Google Scholar 

  53. Ewing, R.E., Margenov, S.D., Vassilevski, P.S.: Preconditioning the biharmonic equation by multilevel iterations. Math. Balk. (N.S.) 10(1), 121–132 (1996)

    MATH  MathSciNet  Google Scholar 

  54. Faber, V., Manteuffel, T.: Necessary and sufficient conditions for the existence of a conjugate gradient method. SIAM J. Numer. Anal. 21(2), 352–362 (1984)

    MATH  MathSciNet  Google Scholar 

  55. Faber, V., Manteuffel, T., Parter, S.V.: On the theory of equivalent operators and application to the numerical solution of uniformly elliptic partial differential equations. Adv. Appl. Math. 11, 109–163 (1990)

    MATH  MathSciNet  Google Scholar 

  56. Faragó, I., Karátson, J.: Numerical Solution of Nonlinear Elliptic Problems via Preconditioning Operators. Theory and Applications. Advances in Computation, vol. 11. NOVA Science, New York (2002)

    Google Scholar 

  57. Funaro, D.: Polynomial Approximation of Differential Equations, Lecture Notes in Physics, New Series, Monographs, vol. 8. Springer, New York (1992)

    Google Scholar 

  58. Goldstein, C.I., Manteuffel, T.A., Parter, S.V.: Preconditioning and boundary conditions without H 2 estimates: L 2 condition numbers and the distribution of the singular values. SIAM J. Numer. Anal. 30(2), 343–376 (1993)

    MATH  MathSciNet  Google Scholar 

  59. Golub, G.H., O’Leary, D.P.: Some history of the conjugate gradient and Lanczos algorithms: 1948–1976. SIAM Rev. 31(1), 50–102 (1989)

    MATH  MathSciNet  Google Scholar 

  60. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (1983)

    MATH  Google Scholar 

  61. Golub, G.H., Wathen, A.J.: An iteration for indefinite systems and its application to the Navier–Stokes equations. SIAM J. Sci. Comput. 19(2), 530–539 (1998)

    MATH  MathSciNet  Google Scholar 

  62. Golub, G.H., Ye, Q.: Inexact preconditioned conjugate gradient method with inner–outer iteration. SIAM J. Sci. Comput. 21(4), 1305–1320 (1999/00)

    MathSciNet  Google Scholar 

  63. Graham, I.G., Hagger, M.J.: Unstructured additive Schwarz-conjugate gradient method for elliptic problems with highly discontinuous coefficients. SIAM J. Sci. Comput. 20, 2041–2066 (1999) (electronic)

    MATH  MathSciNet  Google Scholar 

  64. Greenbaum, A.: Diagonal scalings of the Laplacian as preconditioners for other elliptic differential operators. SIAM J. Matrix Anal. Appl. 13, 826–846 (1992)

    MATH  MathSciNet  Google Scholar 

  65. Greenbaum, A.: Iterative Methods for Solving Linear Systems. SIAM, Philadelphia (1997)

    MATH  Google Scholar 

  66. Guillard, H., Désidéri, J.-A.: Iterative methods with spectral preconditioning for elliptic equations. Comput. Methods Appl. Mech. Eng. 80(1–3), 305–312 (1990)

    MATH  Google Scholar 

  67. Gunn, J.E.: The numerical solution of \(\nabla\cdot a\nabla u=f\) by a semi-explicit alternating direction iterative method. Numer. Math. 6, 181–184 (1964)

    MATH  MathSciNet  Google Scholar 

  68. Gunn, J.E.: The solution of elliptic difference equations by semi-explicit iterative techniques. SIAM J. Numer. Anal. Ser. B 2, 24–45 (1965)

    Article  MathSciNet  Google Scholar 

  69. Gustafsson, I.: A class of first order factorization methods. BIT 18(2), 142–156 (1978)

    MATH  MathSciNet  Google Scholar 

  70. Hackbusch, W.: Multigrid Methods and Applications, Springer Series in Computational Mathematics, vol. 4. Springer, Berlin (1985)

    Google Scholar 

  71. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand., B 49(6), 409–436 (1952)

    MATH  MathSciNet  Google Scholar 

  72. Horgan, C.O.: Korn’s inequalities and their applications in continuum mechanics. SIAM Rev. 37(4), 491–511 (1995)

    MATH  MathSciNet  Google Scholar 

  73. Joubert, W., Manteuffel, T.A., Parter, S., Wong, S.-P.: Preconditioning second-order elliptic operators: experiment and theory. SIAM J. Sci. Statist. Comput. 13(1), 259–288 (1992)

    MATH  MathSciNet  Google Scholar 

  74. Kantorovich, L.V., Akilov, G.P.: Functional Analysis. Pergamon, Oxford (1984)

    MATH  Google Scholar 

  75. Kaporin, I.E.: New convergence results and preconditioning strategies for the conjugate gradient method. Numer. Linear Algebr. Appl. 1(2), 179–210 (1994)

    MATH  MathSciNet  Google Scholar 

  76. Karátson, J.: Mesh independent superlinear convergence estimates of the conjugate gradient method for some equivalent self-adjoint operators. Appl. Math. (Prague) 50(3), 277–290 (2005)

    MATH  Google Scholar 

  77. Karátson, J.: On the superlinear convergence rate of the preconditioned CGM for some nonsymmetric elliptic problems. Numer. Funct. Anal. 28(9–10), 1153–1164 (2007)

    MATH  Google Scholar 

  78. Karátson, J.: Superlinear PCG algorithms: symmetric part preconditioning and boundary conditions. Numer. Funct. Anal. 29, 590–611 (2008)

    MATH  Google Scholar 

  79. Karátson, J., Faragó I.: Variable preconditioning via quasi-Newton methods for nonlinear problems in Hilbert space. SIAM J. Numer. Anal. 41(4), 1242–1262 (2003)

    MATH  MathSciNet  Google Scholar 

  80. Karátson, J., Kurics, T.: Superlinearly convergent PCG algorithms for some nonsymmetric elliptic systems. J. Comp. Appl. Math. 212(2), 214–230 (2008)

    MATH  Google Scholar 

  81. Karátson, J., Kurics, T.: Superlinear PCG Methods for FDM Discretizations of Convection-Diffusion Equations. Preprint, ELTE Dept. Appl. Anal. Comp. Math. http://www.cs.elte.hu/applanal/preprints; 2006-13. Lecture Notes Comp. Sci., Springer (to appear)

  82. Karátson, J., Kurics, T., Lirkov, I.: A parallel algorithm for systems of convection–diffusion equations. In: Boyanov, T., et al. (eds.) NMA 2006, Lecture Notes Comp. Sci., vol. 4310, pp. 65–73, Springer, New York (2007)

    Google Scholar 

  83. Kim, S.D., Parter, S.V.: Semicirculant preconditioning of elliptic operators. SIAM J. Numer. Anal. 41(2), 767–795 (2003)

    MATH  MathSciNet  Google Scholar 

  84. Klawonn, A., Widlund, O.B.: New results on FETI methods for elliptic problems with discontinuous coefficients. In: Numerical analysis 1999 (Dundee), Res. Notes Math., vol. 420, pp. 191–209. Chapman & Hall/CRC, Boca Raton (2000)

    Google Scholar 

  85. Knyazev, A, Lashuk, I.: Steepest descent and conjugate gradient methods with variable preconditioning. Electronic. Math. NA/0605767, arXiv. org. http://arxiv.org/abs/math/0605767 (2006–2007)

  86. Kuznetsov, Y.A., Rossi, T.: Fast direct method for solving algebraic systems with separable symmetric band matrices. East-West J. Numer. Math. 4(1), 53–68 (1996)

    MATH  MathSciNet  Google Scholar 

  87. Kraus, J.: Algebraic multilevel preconditioning of finite element matrices using local Schur complements. Numer. Linear Algebr. Appl. 13, 49–70 (2006)

    MATH  MathSciNet  Google Scholar 

  88. Křížek, M., Lin Q.: On diagonal dominance of stiffness matrices in 3D. East-West J. Numer. Math. 3, 59–69 (1995)

    MATH  MathSciNet  Google Scholar 

  89. Langer, U., Queck, W.: On the convergence factor of Uzawa’s algorithm. J. Comput. Appl. Math. 15(2), 191–202 (1986)

    MATH  MathSciNet  Google Scholar 

  90. Loghin, D.: Green’s functions for preconditioning. DPhil Thesis, Oxford (1999)

  91. Manteuffel, T.: The Tchebychev iteration for nonsymmetric linear systems. Numer. Math. 28(3), 307–327 (1977)

    MATH  MathSciNet  Google Scholar 

  92. Manteuffel, T., Otto, J.: Optimal equivalent preconditioners. SIAM J. Numer. Anal. 30, 790–812 (1993)

    MATH  MathSciNet  Google Scholar 

  93. Manteuffel, T., Parter, S.V.: Preconditioning and boundary conditions. SIAM J. Numer. Anal. 27(3), 656–694 (1990)

    MATH  MathSciNet  Google Scholar 

  94. Mayo, A., Greenbaum, A.: Fast parallel iterative solution of Poisson’s and the biharmonic equations on irregular regions. SIAM J. Sci. Statist. Comput. 13(1), 101–118 (1992)

    MATH  MathSciNet  Google Scholar 

  95. Mikhlin, S.G.: The Numerical Performance of Variational Methods. Walters–Noordhoff, Alphen aan den Rijn (1971)

    MATH  Google Scholar 

  96. Mikhlin, S.G.: Constants in Some Inequalities of Analysis (translated from the Russian by R. Lehmann). Wiley, Chichester (1986)

    Google Scholar 

  97. Nečas, J., Hlaváček, I.: Mathematical Theory of Elastic and Elasto-plastic Bodies: an Introduction, Studies in Applied Mechanics, vol. 3. Elsevier, Amsterdam (1980)

    Google Scholar 

  98. Nevanlinna, O.: Convergence of Iterations for Linear Equations. Birkhäuser, Basel (1993)

    MATH  Google Scholar 

  99. Neuberger, J.W.: Sobolev Gradients and Differential Equations, Lecture Notes in Math., No. 1670. Springer, New York (1997)

    Google Scholar 

  100. Nitsche, J., Nitsche, J.C.C.: Error estimates for the numerical solution of elliptic differential equations. Arch. Ration. Mech. Anal. 5, 293–306 (1960)

    MATH  MathSciNet  Google Scholar 

  101. Repin, S., Sauter, S., Smolianski, A.: A posteriori error estimation for the Poisson equation with mixed Dirichlet/Neumann boundary conditions. J. Comput. Appl. Math. 164–165, 601–612 (2004)

    MathSciNet  Google Scholar 

  102. Rossi, T., Toivanen, J.: Parallel fictitious domain method for a non-linear elliptic Neumann boundary value problem, Czech-US workshop in iterative methods and parallel computing, Part I (Milovy, 1997). Numer. Linear Algebr. Appl. 6(1), 51–60 (1999)

    MATH  MathSciNet  Google Scholar 

  103. Rossi, T., Toivanen, J.: A parallel fast direct solver for block tridiagonal systems with separable matrices of arbitrary dimension. SIAM J. Sci. Comput. 20(5), 1778–1796 (1999)

    MATH  MathSciNet  Google Scholar 

  104. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7, 856–869 (1986)

    MATH  MathSciNet  Google Scholar 

  105. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publ. Co., Boston (1996)

    MATH  Google Scholar 

  106. Saad, Y.: A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14(2), 461–469 (1993)

    MATH  MathSciNet  Google Scholar 

  107. Simoncini V., Szyld D.B.: Recent computational developments in Krylov subspace methods for linear systems. Numer. Linear Algebr. Appl. 14(1), 1–59 (2007)

    MathSciNet  MATH  Google Scholar 

  108. Simoncini V., Szyld D.B.: Flexible inner-outer Krylov subspace methods. SIAM J. Numer. Anal. 40, 2219–2239 (2003)

    MATH  MathSciNet  Google Scholar 

  109. Sundqvist, P.: Numerical computations with fundamental solutions. PhD thesis, Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, Uppsala University (2005)

  110. Swarztrauber, P.N.: A direct method for the discrete solution of separable elliptic equations. SIAM J. Numer. Anal. 11, 1136–1150 (1974)

    MATH  MathSciNet  Google Scholar 

  111. Swarztrauber, P.N.: The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson’s equation on a rectangle. SIAM Rev. 19(3), 490–501 (1977)

    MATH  MathSciNet  Google Scholar 

  112. Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, vol. 2. North-Holland, Amsterdam (1977)

    Google Scholar 

  113. Vassilevski, P.S.: Fast algorithm for solving a linear algebraic problem with separable variables. C. R. Acad. Bulgare Sci. 37(3), 305–308 (1984)

    MATH  MathSciNet  Google Scholar 

  114. Vladimirov, V.S.: Equations of Mathematical Physics (translated from the Russian by E. Yankovsky). Mir, Moscow (1984)

    Google Scholar 

  115. Winter, R.: Some superlinear convergence results for the conjugate gradient method. SIAM J. Numer. Anal. 17, 14–17 (1980)

    MathSciNet  Google Scholar 

  116. Widlund, O.: On the use of fast methods for separable finite difference equations for the solution of general elliptic problems. In: Rose, D.J., Willoughby, R.A. (eds.) Sparse Matrices and Applications, pp. 121–134. Plenum, New York (1972)

    Google Scholar 

  117. Widlund, O.: A Lanczos method for a class of non-symmetric systems of linear equations. SIAM J. Numer. Anal. 15, 801–812 (1978)

    MATH  MathSciNet  Google Scholar 

  118. Young, D.M.: Iterative Solution of Large Linear Systems. Academic, New York (1971)

    MATH  Google Scholar 

  119. Zlatev, Z.: Computer Treatment of Large Air Pollution Models. Kluwer Academic, Dordrecht (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Karátson.

Additional information

Dedicated to the memory of Gene Golub for his friendly manner and for his broad interest and significant impact on numerical analysis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Axelsson, O., Karátson, J. Equivalent operator preconditioning for elliptic problems. Numer Algor 50, 297–380 (2009). https://doi.org/10.1007/s11075-008-9233-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-008-9233-4

Keywords

Navigation