Skip to main content
Log in

Method of lines solutions of the parabolic inverse problem with an overspecification at a point

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The present work is motivated by the desire to obtain numerical solution to a quasilinear parabolic inverse problem. The solution is presented by means of the method of lines. Method of lines is an alternative computational approach which involves making an approximation to the space derivatives and reducing the problem to a system of ordinary differential equations in the variable time, then a proper initial value problem solver can be used to solve this ordinary differential equations system. Some numerical examples and also comparison with finite difference methods will be investigated to confirm the efficiency of this procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ayranci, I., Selçuk, N.: MOL solution of DOM for transient radiative transfer in 3-D scattering media. J. Quant. Spectrosc. Radiat. Transfer 84, 409–422 (2004)

    Article  Google Scholar 

  2. Bratsos, A.G.: The solution of the two-dimensional sine-Gordon equation using the method of lines. J. Comput. Appl. Math. 206, 251–277 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bratsos, A.G.: The solution of the Boussinesq equation using the method of lines. Comput. Methods Appl. Mech. Eng. 157, 33–44 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bratsos, A.G., Twizell, E.H.: The solution of the sine-Gordon equation using the method of lines. Int. J. Comput. Math. 61, 271–292 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, New York (2003)

    Book  MATH  Google Scholar 

  6. Cannon, J.R., Lin, Y.: Determination of parameter p(t) in Holder classes for some semilinear parabolic equations. Inverse Problems 4, 595–606 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cannon, J.R., Lin, Y.: An inverse problem of finding a parameter in a semi-linear heat equation. J. Math. Anal. Appl. 145(2), 470–484 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cannon, J.R., Yin, H.M.: On a class of non-classical parabolic problems. J. Differ. Equ. 79(2), 266–288 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cannon, J.R., Yin, H.M.: Numerical solutions of some parabolic inverse problems. Numer. Methods Partial Differ. Equ. 2, 177–191 (1990)

    Article  MathSciNet  Google Scholar 

  10. Cannon, J.R., Lin, Y., Wang, S.: Determination of source parameter in parabolic equations. Meccanica 27, 85–94 (1992)

    Article  MATH  Google Scholar 

  11. Cash, J.R.: Efficient time integrators in the numerical method of lines. J. Comput. Appl. Math. 183, 259–274 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Day, W.A.: Extension of a property of the heat equation to linear thermoelasticity and other theories. Q. Appl. Math. 40, 319–330 (1982)

    MATH  Google Scholar 

  13. Dehghan, M.: An inverse problem of finding a source parameter in a semilinear parabolic equation. Appl. Math Modelling 25, 743–754 (2001)

    Article  MATH  Google Scholar 

  14. Dehghan, M.: Fourth-order techniques for identifying a control parameter in the parabolic equations. Int. J. Eng. Sci. 40, 433–447 (2002)

    Article  MathSciNet  Google Scholar 

  15. Dehghan, M.: Identifying a control function in two-dimensional parabolic inverse problems. Appl. Math. Comput. 143, 375–391 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dehghan, M.: Determination of a control function in three-dimensional parabolic equations. Math. Comput. Simul. 61, 89–100 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dehghan, M.: Numerical solution of one-dimensional parabolic inverse problem. Appl. Math. Comput. 136, 333–344 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dehghan, M.: Parameter determination in a partial differential equation from the overspecified data. Math. Comput. Model. 41, 197–213 (2005)

    Article  MathSciNet  Google Scholar 

  19. Dehghan, M.: Efficient techniques for the second-order parabolic equation subject to nonlocal specifications. Appl. Numer. Math. 52, 39–62 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Dehghan, M.: Identification of a time-dependent coefficient in a partial differential equation subject to an extra measurement. Numer. Methods Partial Differ. Equ. 21, 611–622 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Dehghan, M.: On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation. Numer. Methods Partial Differ. Equ. 21, 24–40 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Dehghan, M.: A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications. Numer. Methods Partial Differ. Equ. 22, 220–257 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Dehghan, M.: Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math. Comput. Simulation 71, 16–30 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Dehghan, M.: The one-dimensional heat equation subject to a boundary integral specification. Chaos Solitons Fractals. 32, 661–675 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Dehghan, M., Saadatmandi, A.: A tau method for the one–dimensional parabolic inverse problem subject to temperature overspecification. Comput. Math. Appl. 52, 933–940 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Dehghan, M., Tatari, M.: The radial basis functions method for identifying an unknown parameter in a parabolic equation with overspecified data. Numer. Methods Partial Differ. Equ. 23, 984–997 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Dormand, J.R., Prince, P.J.: A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  28. Egorov, V.D.: The mehtod of lines for condensation kinetics problem solving. J. Aerosol Sci. 30(Suppl. I), S247–S248 (1999)

    Article  Google Scholar 

  29. Erdem, A., Pamuk, S.: The method of lines for the numerical solution of a mathematical model for capillary formation: the role of tumor angiogenic factor in the extra-cellular matrix. Appl. Math. Comput. 186, 891–897 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. Hall, G., Watt, J.M.: Modern Numerical Methods for Ordinary Differential Equations. Clarendon, Oxford (1976)

    MATH  Google Scholar 

  31. Hamdi, S., Enright, W.H., Ouellet, Y., Schiesser, W.E.: Method of lines solutions of the extended Boussinesq equations. J. Comput. Appl. Math. 183, 327–342 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Hamdi, S., Enright, W.H., Schiesser, W.E., Gottlieb, J.J.: Exact solutions and conservation laws for coupled generalized Korteweg-de Vries and quintic regularized long wave equations. Nonlinear Anal. Theory Methods Appl. 63, 1425–1434 (2005)

    Article  Google Scholar 

  33. Han, H., Huang, Z.: The direct method of lines for the numerical solution of interface problem. Comput. Methods Appl. Mech. Eng. 171, 61–75 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  34. Koto, T.: Method of lines approximations of delay differential equations. Comput. Math. Appl. 48, 45–59 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  35. Macbain, J.A., Bendar, J.B.: Existence and uniqueness properties for one-dimensional magnetotelluric inversion problem. J. Math. Phys. 27, 645–649 (1986)

    Article  MathSciNet  Google Scholar 

  36. Pamuk, S., Erdem, A.: The method of lines for the numerical solution of a mathematical model for capillary formation: the role of endothelial cells in the capillary. Appl. Math. Comput. 186, 831–835 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  37. Prilepko, A.I., Orlovskii, D.G.: Determination of the evolution parameter of an equation and inverse problems of mathematical physics, I and II. J. Differ. Equ. 21(1), 119–129 (1985)

    MathSciNet  Google Scholar 

  38. Rundell, W.: Determination of an unknown non-homogeneous term in a linear partial differential equation from overspecified boundary data. Appl. Anal. 10, 231–242 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  39. Saucez, P., Wouwer, A.V., Schiesser, W.E., Zegeling, P.: Method of lines study of nonlinear dispersive waves. J. Comput. Appl. Math. 168, 413–423 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  40. Schiesser, W.E.: The Numerical Method of Lines. Academic, New York (1991)

    MATH  Google Scholar 

  41. Subramanian, V.R., White, R.E.: Semi-analytical method of lines for solving elliptic partial differential equations. Chem. Eng. Sci. 59, 781–788 (2004)

    Article  Google Scholar 

  42. Taler, J., Duda, P.: Solution of non-linear inverse heat conduction problems using the method of lines. Heat Mass Transf. 37, 147–155 (2001)

    Article  Google Scholar 

  43. Torres, G., Turner, C.: Method of straight lines for a Bingham problem in cylindrical pipes. Appl. Numer. Math. 47, 543–558 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  44. Wang, S., Lin, Y.: A finite difference solution to an inverse problem determining a control function in a parabolic partial differential equations. Inverse Probl. 5, 631–640 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Dehghan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dehghan, M., Shakeri, F. Method of lines solutions of the parabolic inverse problem with an overspecification at a point. Numer Algor 50, 417–437 (2009). https://doi.org/10.1007/s11075-008-9234-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-008-9234-3

Keywords

Navigation