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Abstract. A numerical algorithm to obtain the consistent conditions satisfied by
singular arcs for singular linear-quadratic optimal control problems is presented.
The algorithm is based on the presymplectic constraint algorithm (PCA) by Gotay-
Nester [11, 26] that allows to solve presymplectic hamiltonian systems and that
provides a geometrical framework to the Dirac-Bergmann theory of constraints for
singular Lagrangian systems [9]. The numerical implementation of the algorithm
is based on the singular value decomposition that, on each step allows to construct
a semi-explicit system. Several examples and experiments are discussed, among
them a family of arbitrary large singular LQ systems with index 3 and a family of
examples of arbitrary large index, all of them exhibiting stable behaviour.
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1. Introduction

Singular problems in optimal control problems and in the calculus of variations
have been widely considered from different perspectives. A singular perturbation
approach has been often the preferred approach to singular optimal control theory
(see for instance [15, 16, 22] and references therein). More recently Jurdjevic has
proposed a different viewpoint by introducing Lie-theoretic methods in the problem
[14]. A similar problem in the calculus of variations has had a very different history
mainly due to the physical insight derived from its appearance in mechanics and
field theory, (see for instance Cariñena [4]). P.A.M. Dirac took a brilliant approach
introducing a recursive analysis to extract the integrable or solvable part of the system
[9]. Dirac’s approach consists essentially on a recursive consistency scheme where
the original system of implicit Euler-lagrange equations obtained from the extremal
conditions are restricted to a smaller and smaller subset on state space by imposing
the existence of at least one solution to the problem passing through them. Such
approach has been adapted to the problem of optimal control by Volkaert [?], López
and Mart́ınez [19], Guerra [13] and Delgado and Ibort [6] by transforming it into a
descriptor system. A geometric version of Dirac’s constraint algorithm was presented
by Gotay and Nester [11] for presymplectic systems. This algorithm was extended
and generalized later on to more general situations (see for instance [?]) arriving to
essentially the same geometrical algorithm devised by Rabier and Rehinbold [24] to
deal with Differential-Algebraic equations (DAE’s). A variety of ideas and techniques
have been developed along the years to analyze DAE’s (see for instance [2], [25] or
the recent book [18]) and recently various of these approaches have been applied
to singular optimal control problems (see [17], [1] for instance). However the PCA
algorithm was proposed for the first time in control theory by [26], and López and
Mart́ınez [19], Cortés, de Leon, Mart́ın de Diego and Mart́ınez [5] and it has been
discussed by Delgado and Ibort [6, 7, 8] in the specific context of singular control
theory. Another form of this algorithm was applied to the LQ singular case by Guerra
[13].

In this paper we will concentrate on singular linear-quadratic systems. We will
transform such algorithm into a linear algebra problem that can be treated numer-
ically. In [17] the methods developed by Kunkel and Merhmann based on the con-
struction of normal forms were applied to predictor systems and as a particular
instance, to singular LQ optimal problems More recently [1] have extended these
ideas incorporating to the analysis LQ systems with index 3. Campbell’s differential
arrays method can also be applied to singular optimal control problems providing
both a description of consistent initial conditions and the differential equation giving
the solutions to the problem [2]. A full account of the analysis of linear differential-
algebraic equations with variable coefficients is presented that could be applied to
general singular LQ systems in [18]. We have chosen however to implement the PCA
algorithm to solve singular LQ optimal control systems because, apart that it can
lead to computational improvements with respect to the general procedures above, it
preserves the structure of the system. The linear DAE’s that are obtained from the
analysis of singular LQ systems carry a presymplectic structure (inherited from the
canonical symplectic structure on the space of states and coestates). Such structure
emerges at the end on the set of consistent states and coestates inducing there a
(pre)symplectic structure. The reduced equations are hamiltonian with respect to
such structure. The algorithm that will be implemented in the present paper will
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compute the consistent initial states and the corresponding consistent coestates pre-
serving the structure of the problem even though we will leave the analysis of the
reduced hamiltonian equations to a continuation of this work.

The numerical implementation of the algorithm is carefully discussed and a family
of examples and experiments are analyzed. We will discuss experiments with large
matrices and lower index (2 and 3) and experiments with large index n − 1, where
n is the dimension of the state space exhibiting all of them a remarkable stable
behaviour of the algorithm. We must point it out however that in the present state
of the analysis of the numerical algorithm it is not possible to prove its backwards
stability because it contains repeated products of matrices spoiling such possibility.
More refined versions of it will be analyzed elsewhere, with a different handling of
rank conditions that will improve its efficiency and that will allow for a rigorous error
analysis.

The paper will be organized as follows. First we will set up in Section 2 the basic
notions for singular optimal problems and the particular instance of LQ systems that
we are going to discuss. Section 3 will be devoted to review the PCA algorithm
from the slightly wider perspective of quasilinear implicit differential equations and
we will discuss the relation of the recursive index of the algorithm to the standard
index. In Section 4 we will describe the linear algebraic algorithm corresponding to
this problem and in Section 5 we will describe its numerical stability properties by
means of various experiments.

2. Constraint algorithms for singular LQ systems

As it was stated in the introduction we will concentrate on the study of LQ
optimal control systems. We will discuss the problem of finding C1-piecewise smooth
curves γ(t) = (x(t), u(t)) satisfying the linear control equation:

ẋi = Aij x
j +Bi

a u
a, (1)

and minimizing the objective functional:

S(γ) =

∫ T

t0

L(x(t), u(t)) dt, (2)

where the quadratic Lagrangian L has the form:

L(x, u) =
1

2
Qij x

i xj +Nia x
i ua +

1

2
Rab u

a ub, (3)

subjected to fixed endpoints conditions: x(t0) = x0, x(T ) = xT (however we must
point it out that the chosen endpoints conditions are not going to be relevant for the
analysis to follow, hence they can be replaced by more general ones without altering
the results presented in this paper).

The coordinates xi, i = 1, . . . , n, describe points x ∈ Rn in state space and ua, a =
1, . . . ,m, are control coordinates defined on the linear control space Rm. The matrices
A, B, Q, N and R will be considered to be constant for simplicity. Again we must
stress that the algorithm that we are going to discuss can be applied without difficulty
to the time-dependent situtation, however the numerical implementation becomes
much more involved, so we have chosen to discuss it just for time-independent systems
in order to gain clarity and a better understanding of the experiments and their
stability properties.
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It is well known that normal etxtremals to this problem are provided by Pontrya-
gin’s Maximum Principle [23]:

The curve γ(t) = (x(t), u(t)) is a normal extremal trajectory if there exists a
lifting (x(t), p(t)) of x(t) to the costate space Rn×Rn satisfying Hamilton’s equations:

ẋi =
∂H

∂pi
, ṗi = −∂H

∂xi
, (4)

where H is Pontryagin’s Hamiltonian function:

H(x, p, u) = pi (Aij x
j +Bi

a u
a)− L(x, u), (5)

and the set of conditions:

φ(1)
a(x, p, u) :=

∂H

∂ua
= piB

i
a −Nia x

i −Rab ub = 0. (6)

We will call conditions in Eq. (6) primary constraints. Thus, trajectories solution
to the optimal control problem must lie in the linear submanifold:

M1 = {(x, p, u) ∈M0| φ(1)
a(x, p, u) = 0}, (7)

where M0 = { (x, p, u) ∈ R2n+m } denotes the total space of the system.

If (x(t), p(t), u(t)) is a solution of the optimal problem, then its derivative must
satisfy:

ẋi =
∂H

∂pi
(x, p, u) = Aij x

j +Bi
a u

a, (8)

ṗi = −∂H
∂xi

(x, p, u) = −pjAji +Qijx
j +Niau

a, (9)

u̇a = Ca(x, p, u), (10)

together with φ̇
(1)
a(x, p, u) = 0, this is,

∂φ
(1)
a

∂xi
∂H

∂pi
− ∂φ

(1)
a

∂pi

∂H

∂xi
+
∂φ

(1)
a

∂ub
Cb = 0.

A simple computation shows us that if the system is regular, that is, if the matrix:

Rab =
∂2H

∂ua∂ub

is invertible in M1, then there exists an optimal feedback condition solving Equation
(6),

ub = (R−1)ab (piB
i
a −Niax

i). (11)

Then we obtain for Eq. (10):

u̇b = (R−1)ab(ṗiB
i
a −Niaẋ

i) =

= (R−1)ab
(

(−pjAji +Qijx
j +Nidu

d)Bi
a −Nia(A

i
j x

j +Bi
d u

d)
)
.

Notice that in this case φ̇
(1)
a vanishes automatically on M1.

However, for singular optimal LQ systems, this is, when Rab is not an invertible
matrix, it may occur that at some points (x0, p0, u0) satisfying the primary constraint
Eq. (6), that solutions of (4) starting at them will not be contained in M1 for t > 0 for
any u. Because Eqs. (4)-(6) must be satisfied along optimal paths, we must consider
only as initial conditions only those points for which there is at least a solution of
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(4) contained in M1 starting from them. Such subset is defined by the following
conditions:

There exists C such that φ(2)
a := φ̇(1)

a = 0, (12)

where the derivative is taken in the direction of Eq. (4) and u̇ = C. The subset
obtained, that we will denote by M2, is again a linear submanifold of M1 (this is
also true in the time-dependent case) and we shall denote the functions defining M2

in M1 by φ
(2)
a. We will call them secondary constraints. Notice that, in the case of

more general endpoint conditions, that would involve considering end-time conditions
on the coestate variables pi, the same condition Eq. (12) would apply by changing
now the derivative of pi by the derivative along Eq. (4) obtained by time reversing
t 7→ −t.

Clearly the argument goes on and we will obtain in this form a family of linear
submanifolds defined recursively as follows:

Mk+1 = {(x, p, u) ∈Mk | ∃ C such that φ(k+1)
a := φ̇(k)

a (x, p, u) = 0}. (13)

Eventually the recursion will stop and Mr = Mr+1 = Mr+2 = . . . , for certain finite r.
We will call the number of steps r of the algorithm before it stabilizes the recursive
index of the problem. In this way we obtain an invariant linear submanifold,

M∞ =
⋂
k≥0

Mk, (14)

that will be called the final constraint submanifold of the problem and by construction
it consists on the set of consistent initial condition for the DAE Eqs. (4)-(6). The
geometrical analysis of this algorithm shows that this number r does not depends
on the coordinate system and constitutes a intrinsic property of the system. Notice
also that for general singular systems, this index may vary in principle from point
to point. However this is not the case for singular linear systems as we will see in
next section where we will discuss for completeness the relation between the recursive
index r and the index of linear DAEs.

As it was stressed in the introduction, this algorithm constitutes both an adapted
version of the reduction algorithm for DAEs [24, 25] and the Presymplectic Constraint
Algorithm (PCA). The DAE system above however has an additional structure be-
cause it is a presymplectic system. The PCA algorithm not only determines the
consistent initial conditions for the corresponding DAE, but in addition it provides
the explicit form of the reduced Hamiltonian equations by computing the so called
Dirac brackets of the system. Such brackets are obtained directly from the sequence

of k-ary constraints φ
(k)
a. In this sense this algorithm is structured and preserves the

main structure of the system along its steps. We will just proceed to the numerical
implementation of this algorithm in its present form leaving the construction (and
integration) of the reduced dynamical system to subsequent articles.

3. The Kronecker and recursive index for linear DAEs

As it was indicated before we will show for completeness the relation of the re-
cursive index with the strangeness and differential indexes of the general theory of
DAE’s. Because of the simplicity of the problem at hand it will suffice to compute
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the Kroneker index of the matrix pencil defining the system. Thus, we consider an
(autonomous) quasilinear differential–algebraic equation (DAE) of the form

A(x)ẋ = B(x), (15)

x ∈ Rn = M0, where A(x), B(x) : Rn → F and F is an auxiliary linear space (see
[12] and the references therein for a geometrical treatment of DAEs). Because the
DAE above has no additional structures the PCA becomes particularly simply and
completely equivalent to the differential reduction by Rabier and Reinholt [?]. Even
more, it can be written in the extremely simple form that follows. If A(x) is regular,
we can solve explicitly ẋ and the DAE becomes an ordinary differential equation. If
A(x) is not regular for some x ∈ M0 we have to impose the constraints algorithm.
We shall define M1 as the set of points in M0 such that B(x) ∈ ImA(x). Hence
if x ∈ M1 then ∀µ ∈ ker A(x)∗ ⊂ F ∗ it must be satisfied 〈µ,B(x)〉 = 0, where A∗

denotes the adjoint application of A. In general,

Mk+1 = {x ∈Mk| Bk(x) ∈ ImAk(x)}, (16)

where Bk = B|Mk
; Ak = A|Mk

. We obtain again

Mk+1 = {x ∈Mk| 〈µ,Bk(x)〉 = 0, ∀µ ∈ ker Ak(x)∗}. (17)

In the particular case of constant linear systems, Equation (15) becomes

A · ẋ = B · x, (18)

where x, ẋ ∈ Rn; A, B ∈ Rn×n, and the submanifold M1 defined by (16) is given
by

M1 = {x ∈ Rn| B · x ∈ ImA},
but this is equivalent to say that for all z verifying zT · A = 0 then zT · B · x = 0.
If za, a = 1, . . . ,m, is a basis of ker (AT ), we can construct the family of primary
constraints as

φ(1)
a(x) = zTa ·B · x.

If we define the matrix C(1) := [z1| · · · |zm], then the family of linear constraints

{φ(1)
a}ma=1 is equivalent to the following matrix equation

C(1)T ·B · x = 0. (19)

Now the condition x ∈M1 is equivalent to x ∈ ker (C(1)T ·B). Denoting by Ak as the
restriction of A to Mk, we obtain that the linear manifold Mk+1 is defined recursively
as the set of points x ∈Mk such that

C(k+1)T ·B · x = 0, (20)

where the columns of C(k+1) generates the kernel of the matrix Ak.

Let A · ẋ = B · x be a constant implicit differential–algebraic system. We will
recall that the system is regular in the Kronecker sense if the matrix pencil Aλ−B,
λ ∈ C, is regular, i.e., if the set of solutions of the characteristic equation p(λ) =
det(Aλ−B) = 0 is finite.

Moreover if the pencil is regular in the Kronecker sense, then there exists regular
matrices E, F such that [10]:

EAF =

[
I 0
0 N

]
; EBF =

[
W 0
0 I

]
, (21)
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where N is a nilpotent matrix with index ν. In such case we will say that the index
of the implicit differential-algebraic system given by Equation (18) is ν (see [18] for a
thourough discussion of the subject). The relation of the recursive index to the index
of the DAE is given by the following result:

Theorem 1. The index ν of the regular constant implicit differential-algebraic system
Aẋ = Bx coincides with the number of steps of the recursive constraint algorithm
minus one:

number of steps = r = ν + 1. (22)

Proof. If Equation (18) is a regular system in the sense of Kronecker, there exist
regular matrices E and F such that the system becomes

ẏ1 = Wy1, (23)

Nẏ2 = y2, (24)

where N is nilpotent with index ν (i.e. Nν 6= 0, Nν+1 = 0) and x = Fy, together

with y =

[
y1

y2

]
.

Now we only need to consider the nilpotent part of the system above, Equa-
tion (24). Applying the recursive constraint algorithm to it, we obtain the primary
constraint submanifold M1, given by the primary constraints

φ(1) = C(1)T y2,

where the columns of C(1) generates the kernel of N .

Moreover, Equation (24) implies that y2 ∈ M1 if and only if exists z ∈ M0 such
that y2 = Nz, i.e., y2 ∈ ImN . If y2(t) is a curve solution of the equation, it will
mean that y2(t) = Nz(t), hence ẏ2(t) = Nż(t) and then ẏ2 ∈ ImN . So we have that
y2 = Nẏ2 = NNż = N2ż. Then y2 ∈ M2 if and only if y2 ∈ ImN2, and this will
happen if and only if

φ(2) = C(2)T y2 = 0,

where C(2) generates the kernel of N2, thus

M2 =
{
y2 ∈M1| C(2)T y2 = 0

}
, Lin{Col(C(2))} = kerN2.

If we proceed recursively, we can observe that y2 ∈Mk+1 if and only if yk ∈ ImNk

and this will take place if and only if φ(k) = C(k)T y2 = 0, where the columns of Ck

generates the kernel of the matrix Nk. As the matrix N is nilpotent with index ν we
have that

ker N $ ker N2 $ ker N3 $ · · · $ ker Nν $ ker Nν+1 = Rm.

So, in each step, the matrix C(k) contains the previous one, C(k−1), as a submatrix,

C(k) = [C(k−1)| ∗ ].

Notice that in the ν–th step we obtain that

y2 ∈ ImNν =⇒ y2 = Nνz,

so, the next step is y2 = Nẏ2 = NNν ż = 0 and the final constraint submanifold is
Mν+1 = M∞ = {y2 = 0}, given by the constraints y2 = 0. �
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4. A numerical linear algebra algorithm for singular LQ systems

Now we will adapt the general recursive constraint algorithm stated in Section 2
to the particular instance of singular LQ control systems. Notice that the description
of the constrainsts algorithm done in Section 2 does not involves the use of the
presymplectic structure, thus it is a plain constraints algorithm for a DAE. We will
follow this approach here instead of using the full PCA algorithm because here we
are just addressing the problem of determining the set of consistent initial conditions
for our problem. The idea that we are going to follow to implement the algorithm is
to transform at each step the implicit problem we have into a semi-explicit system.
Then, we will not only get the set of constraints defining the set of consistent initial
condition but we will have at the same time the set of explicit reduced equations of
the system. In this form the algorithm will not provide the Hamiltonian structure of
the equations though as it was pointed it out before.

We will discuss now the basic idea of the algorithm from the matrix analysis
perspective. We will write down all coordinates as column vectors: (x, p) ∈ Rn×Rn

and u ∈ Rm. The control equation and the lagrangian density have the form already
described in Section 2, now written in matrix notation reads as

ẋ = Ax+Bu, (25)

L =
1

2
xTQx+ xTNu+

1

2
uTRu, (26)

with A, Q ∈ Rn×n, B, N ∈ Rn×m and R ∈ Rm×m. The Pontryagin’s Hamiltonian
becomes:

H(x, p, u) = pTAx+ pTBu− 1

2
xTQx− xTNu− 1

2
uTRu. (27)

Using these notations the equations of motion (8)-(10) become:

ẋ =
∂H

∂pT
= Ax+Bu, (28)

ṗ = − ∂H
∂xT

= −AT p+Qx+Nu, (29)

u̇ = C, (30)

and the column primary constraint vector is given by:

φ(1) := −NTx+BT p−Ru. (31)

We must notice that when applying the recursive constraint algorithm to the
problem above, that all the constraints thus obtained will be linear. Then we can
writet them at each step k of the algorithm as:

φ(k)(x, p, u) := σ(k)x+ β(k)p+ ρ(k)u, (32)

with matrices σ(k), β(k) ∈ Rrk×n, ρ(k) ∈ Rrk×m, for some rk ∈ N. Notice that:

σ(1) = −NT , β(1) = BT , ρ(1) = −R.
The matrix equations

φ(1) = 0; . . . ;φ(k) = 0,

define the linear manifolds Mk obtained by applying the recursive constraint algo-
rithm. Thus the matrices σ(k), β(k), ρ(k) completely characterize the constraints φ(k).
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We will store these matrices in a block structured matrix Φ whose k–th row, Φ(k, :),
will be given by

[
σ(k) β(k) ρ(k)

]
.

If R is a regular matrix, then there exists an optimal feedback and the control
variables are uniquely determined. However, if R is singular we must apply the recur-
sive constraint algorithm. As we have discussed above, the first step of the algorithm
amounts to study the stability of the primary constraint φ(1), i.e., to determine for
which points (x, p, u) there exists a vector C ∈ Rm satisfying

φ̇(1) = σ(1)ẋ+ β(1)ṗ+ ρ(1)C = 0, (33)

with C = u̇. Because ρ(1) is singular, the linear system obtained from it

ρ(1)C = b(x, p, u),

with b(x, p, u) = −σ(1)ẋ − β(1)ṗ, will not always have solution. However, given
the dependence of (x, p, u) on the inhomogeneous part of the linear equation, we
can determine for which values of them the system will have solution. For those
points (x, p, u) such that a solution exists, i.e., such that there exists C ∈ Rm with

φ̇(1)(x, p, u) = 0, we will obtain a partial optimal feedback. The remaining equations
will impose further conditions on the points (x, p, u) where we can expect to find
solutions to the original optimal control problem. That part will constitute what we
were calling before the secondary constraints of the problem.

We will obtain this separation between the partial optimal feedback and the sec-
ondary constraints by using the singular value decomposition (SVD) of ρ(1). There

exists two unique orthogonal matrices, U (1), V (1), and real numbers s
(1)
1 ≥ s

(1)
2 ≥

· · · ≥ s(1)
r1 > 0, the singular values of ρ(1), such that:

ρ(1) = U (1) Σ(1) V (1)T = U (1)


s

(1)
1

. . . 0

s
(1)
r1

0 0

 V (1)T .

Redefining the variables u(1) = V (1)Tu, then u̇(1) = V (1)T u̇ = V (1)TC = C(1), and

0 = U (1)T φ̇(1) = U (1)T
(
σ(1)ẋ+ β(1)ṗ

)
+ Σ(1)C(1) =

= U (1)T
(
σ(1)ẋ+ β(1)ṗ

)
+

[
Σ(1)

r1 0
0 0

]
C(1) = 0, (34)

where Σ(1)
r1 = diag(s

(1)
1 , . . . , s

(1)
r1 ).We will split C(1) as [C

(1)
r1 , C

(1)
m−r1 ]T , where C

(1)
r1

are the components 1, . . . , r1, of C(1) and C
(1)
m−r1 the r1, . . . ,m, ones. We then get a

partial feedback for C
(1)
r1 and the new constraint φ(2):

[ Ir1 | 0 ]U (1)T
(
σ(1)ẋ+ β(1)ṗ

)
+ Σ(1)

r1 C
(1)
r1 = 0 (35)

and,

φ(2) := [ 0 | Im−r1 ]U (1)T
(
σ(1)ẋ+ β(1)ṗ

)
= (36)

= [ 0 | Im−r1 ]U (1)T
[
(σ(1)A+ β(1)Q)x+ (−β(1)AT )p+ (σ(1)B + β(1)N)u

]
=

= σ(2)x+ β(2)p+ ρ(2)u = 0.
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Iterating the process, given the k–th constraint φ(k) defined in (32), the SVD of the

matrix ρ(k) provides orthogonal matrices U (k), V (k), and the new constraint:

φ(k+1) := σ(k+1)x+ β(k+1)p+ ρ(k+1)u,

with,

σ(k+1) = [ 0 | Im−rk ]U (k)T
(
σ(k)A+ β(k)Q

)
, (37)

β(k+1) = [ 0 | Im−rk ]U (k)T
(
−β(k)AT

)
, (38)

ρ(k+1) = [ 0 | Im−rk ]U (k)T
(
σ(k)B + β(k)N

)
. (39)

The recursive relations above can be solved explicitly. First we shall denote as Uk :=
[ 0 | Im−rk ]U (k)T for each k, and then consider the simplified recurrence relations:

σ̃(k+1) = σ̃(k)A+ β̃(k)Q (40)

β̃(k+1) = −β̃(k)AT (41)

ρ̃(k+1) = σ̃(k)B + β̃(k)N (42)

Before solving this set of conditions, let us compute the relation of σ̃, β̃ and ρ̃ with
σ, β and ρ respectively. First we will compute such relation for β. Notice that:

β(1) = β̃(1), β(2) = U1
(
−β(1)AT

)
= U1β̃(2), (43)

then for k ≥ 2:

β(k) = Uk
(
−β(k−1)AT

)
=

= Uk−1 · · ·U2U1
(
−β̃(k−1)AT

)
= Uk−1 · · ·U2U1β̃(k). (44)

A similar computation shows that:

σ(k+1) = Uk · · ·U2U1σ̃(k+1), k ≥ 1. (45)

Finally, when computing ρ(k+1) we obtain the same result.

ρ(k+1) = Uk · · ·U2U1
(
σ̃(k)B + β̃(k)N

)
= Uk · · ·U2U1ρ̃(k+1). (46)

Now expanding Eqs. (40)-(42) we obtain the explicit expression for the matrices

β̃(k):

β̃(1) = BT , β̃(k+1) = (−1)kBT (AT )k, k ≥ 1. (47)

For the matrices σ̃(k) we get:

σ̃(1) = −NT , σ̃(k+1) = −NTAk +BT

[
k−1∑
i=0

(−1)i(AT )iQAk−1−i
]
, (48)

and, finally for the matrices ρ̃(k) we obtain:

ρ̃(1) = −R, ρ̃(2) = −NTB +BTN,

ρ̃(k+1) = −NTAk−1B + (−1)k−1BT (AT )k−1N +

+BT

[
k−2∑
i=0

(−1)i(AT )iQAk−2−i
]
B, k ≥ 2. (49)

We summarize the previous findings in the following theorem:
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Theorem 2. The constraints φ(k) = σ(k) x + β(k) p + ρ(k) u, of the autonomous LQ
singular optimal control problem defined by the matrices A, P,∈ Rn×n; B, Q,∈
Rn×m; R ∈ Rm×m,

ẋ = Ax+Bu (50)

L =
1

2
xTPx+ xTQu+

1

2
uTRu, (51)

are given by the following formuli:

β(1) = BT , σ(1) = −NT , ρ(1) = −R, ρ(2) = U1
(
−NTB +BTN

)
(52)

β(k) = (−1)kUk−1 · · ·U1BT (AT )k−1, k ≥ 2, (53)

σ(k) = Uk−1 · · ·U1

(
−NTAk−1 +BT

[
k−2∑
i=0

(−1)i(AT )iQAk−2−i
])

, k ≥ 2, (54)

ρ(k) = Uk−1 · · ·U1
(
−NTAk−2B + (−1)k−2BT (AT )k−2N + (55)

+ BT

[
k−3∑
i=0

(−1)i(AT )iQAk−3−i
]
B

)
, k ≥ 3, (56)

ρ(k) = U (k)Σ(k)V (k)T , (57)

Uk = [ 0 | Im−r(k) ]U (k)T . (58)

If we perturb the matrices A,B,Q,N,R into A+δA, B+δB, Q+δQ, N+δN and
R+δR respectively, then the matrices β(k), σ(k), ρ(k) will be changed into β(k)+δβ(k),
σ(k) + δσ(k), ρ(k) + δρ(k). Then by using the explicit expressions Eqs. (52)-(58) it
is a straigthforward but tedious computation to obtain the following estimates for
the conditioning of the numerical problem of computing the matrices β(k), σ(k), ρ(k)

(k ≥ 2):

||δβ̃(k)||
||β̃(k)||

≤ (k − 1)κA
||δA||
||A||

+ κB
||δB||
||B||

, (59)

||δσ̃(k)||
||σ̃(k)||

≤ κA
||δA||
||A||

+ κB
||δB||
||B||

+ (k − 2)κQ
||δQ||
||Q||

+ (k − 1)κN
||δN ||
||N ||

, (60)

||δρ̃(k)||
||ρ̃(k)||

≤ C

[
(k − 1)κA

||δA||
||A||

+ κB
||δB||
||B||

+ (k − 2)κQ
||δQ||
||Q||

+ κN
||δN ||
||N ||

]
(61)

for some (small) constant C. Notice that for k > 1, the output matrices are not
sensitive to variations on the input matrix R, which on the other hand is responsible
for the launching of the algorithm. Thus after the first step, the singular matrix
singular R dissapears from the computations and does not influence anymore the
rest of the construction.

However, in spite of the closed expressions obtained above for the constraints of
the system, in order to construct the numerical algorithm to compute them, we will
not use Eqs. (52)-(58) but rather on we will rely on the recursion Eqs. (37)-(39).
The algorithm will halt whenever at the step k:

• ρ(k) is regular, then we can obtain an optimal feedback u = u(x, p) and we
will substitute it in the equations, or,
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• φ(k) is a linear combination of the previous constraints. In such a case, there
will exists a “gauge” freedom, i.e., some of the controls will be not be deter-
mined.

Thus, the scheme of the algorithm will be:

Recursive Constraint Algorithm for singular LQ problems

input A, B, Q, N , R, tol

Build the constraints matrix: Φ = [σ(1) β(1) ρ(1)]

while rank(ρ, tol) is deficient & rank(Φ, tol) increases

(U, ρ, V ) = SVD(ρ); Compute the singular value decomposition of ρ(k)

Compute the iterated matrices σ(k+1), β(k+1), ρ(k+1)

Build the new constraints matrix: Φ =

[
Φ

σ(k+1) β(k+1) ρ(k+1)

]
Eliminate the dependent rows of Φ

end while

output Φ, k

Note that the rank is computed as a numerical rank with tolerance tol.
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Pseudocode: “final constraint submanifold”
for linear quadratic optimal control problems

input A, B, Q, N , R, tol
σ ← −NT ; β ← BT ; ρ← −R; Initialize the variables σ, β, ρ
[l,m]←size(ρ); Initialize the dimension l ×m of ρ, l=maximum value
Φ← [σ, β, ρ]; Initialize the constraints matrix Φ
Φ← independent rows(Φ, tol); Eliminate the dependent rows
p← 0; Where p denotes rank(Φ), it must be 0 to enter in the boucle
k ← 1;

while rank(ρ, tol)< l & rank(Φ, tol) >p
k ← k + 1;
p← rank(Φ); Update the rank of Φ

r ← rank(ρ, tol); Update the rank of ρ(k)

[l,m]←size(ρ); Update the dimensions l ×m of ρ(k)

[U, ρ, V ]←SVD(ρ); Singular value decomposition of ρ(k)

U ← UT

Compute the iterated matrices σ(k+1), β(k+1), ρ(k+1):
ρ← U(r + 1 : l, :) · [σ B + β N ]
σ ← U(r + 1 : l, :) · [σ A+ β Q]
β ← U(r + 1 : l, :) · [−β AT ]

Φ←
[

Φ
σ β ρ

]
; Add the new constraints

Φ← independent rows(Φ, tol); Eliminate the dependent rows
end while

if rank(Φ, tol) <= p
k ← k − 1

end if

output (Φ, k)
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Pseudocode: “independent rows”
used in the “final constraint submanifold”

Procedure independent rows(Φ, tol)

[l, c]← size(Φ); Initialize the dimension l × c of Φ

if l ≥ 1& rank(Φ, tol) > 0 then
F ← Φ(1, :)
for i = 2 : l

if rank(F, tol) < rank

([
F

Φ(i, :)

]
, tol

)
then

F ←
[

F
Φ(i, :)

]
; If the row i is linearly independent we will add it

end if
end for

else if
F ← [ ]; If the matrix has zero rank or it is void, returns the void matrix

end if
Φ← F

output Φ

5. Examples and numerical experiments

We will discuss here some numerical experiments showing that the numerical al-
gorithm discussed above behave as expected with respect to stability and consistency.
The microprocessor used for the numerical computations was Pentium(R), CPU 1.60
GHz, 3.99 MHz, 0.99 GB RAM, and the program used was MATLAB 7.0.0.

We will describe two types of experiments concerning small (k = 3) and large
recursive index respectively. We are constructing a class of problems that is gen-
eral enough for the purposes of the numerical stability experiments we are going to
describe and that we can solve and describe the solution explicitly.

In the small index problem k = 3, we show that the algorithm is stable with
respect to the tolerance used to compute the numerical rank, tol, and with respect
to perturbations δ of the data. We will also discuss the dependence with the size, n,
of the matrices.

For the large index ones, we analyze a problem of index n−1, where the algorithm
behaves properly with respect to the number of steps, both regarding the tolerance,
tol, and the perturbation of the data, δ.

Small index problems. Small matrices

Consider the positive semidefinite symmetric n×n matrix R of rank 1, thus there
will exists an orthogonal matrix U such that

R = UTR′U (62)
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such that all elements of R′ vanish except R′11 > 0. State and control spaces are

both Rn, and the total space (x, p, u) is R3n. The matrix A is generic and B is an
orthonormal matrix, BTB = In. Finally the objective functional is constructed by
using a generic symmetric matrix Q, a matrix N of the form N = BV where V is
any symmetric matrix and the matrix R described above.

The primary constraints matrix is given by

Φ(1) =
[
−NT BT −R

]
=
[
−In In −R

]
,

corresponding to primary constraints

φ(1) = −NTx+BT p−Ru = 0,

Applying the recursive constraint algorithm we obtain:

φ̇(1) = (−NTA+BTQ)x−BTAT p− (BTN −NTB)u−RC,
but the SVD of R is given by Eq. (62), hence the new control coordinate u(1) is given

by u = UTu(1) and the matrix U1 is just the (n − 1) × n matrix [0 | In−1]U . Hence

multiplying φ̇(1) on the left by U1 and taking into account that BTN − NTB = 0,
we obtain the set of secondary constraints:

φ(2)(x, p, u) = U1(−NTA+BTQ)x− U1BTAT p = 0.

Now, computing again the derivative of φ(2) we obtain the equations:

φ̇(3) = U1(−NTA2+BTQA−BTATQ)x+U1BT (AT )2p+U1(BTQB−NTAB−BTATN)u = 0.

We observe that the matrix BTQB−NTAB−BTATN will be invertible for generic
A, Q, B and V . For instance if A = I, then ρ(3) reduces to:

ρ(3) = BTQB − 2V.

The algorithm will stop here if det(BTQB− 2V ) 6= 0, this is if 2 is not an eigenvalue
of V 1BTQB.

The numerical experiment of this problem will consist in applying the algorithm
to a collection of matrices built up as a random perturbation of the matrices A, B,
Q, V of size δ,

Ã = A+ δA, ‖δA‖ < δ, . . .

It is computed for n = 2, . . . , 202. We analyze the number of steps before the algo-
rithm stabilizes and compute the angle, α, between the final constraint submanifold
of the perturbed problem and the exact one, this is the error introduced in the prob-
lem by the perturbation δA, etc. Notice that the original matrix R does not affect
higher order constraints, hence its numerical influence restricts to launch the algo-
rithm. Perturbations of R will not affect the computation of higher order constraints
until it will be of the order of tol, then the algorithm will stop at the first iteration
because if then the system will be considered to be regular.

Table 1: First experiment (small index, small matrices).
tol = 10−6

n δ # exact steps # steps codim α/ error

2 1e-016 3 3 4 0.0000000000000014
2 1e-015 3 3 4 0.0000000000000011
2 1e-014 3 3 4 0.0000000000000059
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Table 1: First experiment (small index, small matrices).
tol = 10−6

n δ # exact steps # steps codim α/ error

2 1e-013 3 3 4 0.0000000000000857
2 1e-012 3 3 4 0.0000000000010174
2 1e-011 3 3 4 0.0000000000035392
2 1e-010 3 3 4 0.0000000000213074
2 1e-009 3 3 4 0.0000000002366236
2 1e-008 3 3 4 0.0000000095514555
2 1e-007 3 3 4 0.0000000659481913
2 1e-006 3 3 4 0.0000003955805449

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
2 1e-005 3 1 2 0.0000048787745951
2 1e-004 3 1 2 0.0000180580284314
2 1e-003 3 1 2 0.0003437294288526
2 1e-002 3 1 2 0.0052691557462037
2 1e-001 3 1 2 0.0558945145125515

n δ # exact steps # steps codim α/ error

102 1e-016 3 3 304 0.0000000000000071
102 1e-015 3 3 304 0.0000000000000085
102 1e-014 3 3 304 0.0000000000000608
102 1e-013 3 3 304 0.0000000000005422
102 1e-012 3 3 304 0.0000000000060781
102 1e-011 3 3 304 0.0000000000579329
102 1e-010 3 3 304 0.0000000005536516
102 1e-009 3 3 304 0.0000000060825389
102 1e-008 3 3 304 0.0000000579413997
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
102 1e-007 3 3 302 0.0000004014308009
102 1e-006 3 3 146 0.0000032681204284
102 1e-005 3 3 108 0.0000322420378538
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
102 1e-004 3 1 102 0.0003320360185045
102 1e-003 3 1 102 0.0031921082398989
102 1e-002 3 1 102 0.0340272669549200
102 1e-001 3 1 102 0.1777792824454151

n δ # exact steps # steps codim α/ error

202 1e-016 3 3 604 0.0000000000000078
202 1e-015 3 3 604 0.0000000000000106
202 1e-014 3 3 604 0.0000000000000809
202 1e-013 3 3 604 0.0000000000007860
202 1e-012 3 3 604 0.0000000000078201
202 1e-011 3 3 604 0.0000000000801147
202 1e-010 3 3 604 0.0000000008647247
202 1e-009 3 3 604 0.0000000081096494
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
202 1e-008 3 3 602 0.0000000577669246
202 1e-007 3 3 602 0.0000005902470063
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Table 1: First experiment (small index, small matrices).
tol = 10−6

n δ # exact steps # steps codim α/ error

202 1e-006 3 3 262 0.0000048558677195
202 1e-005 3 3 208 0.0000490952628668
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
202 1e-004 3 1 202 0.0004788619712676
202 1e-003 3 1 202 0.0046902949060197
202 1e-002 3 1 202 0.0408456670809488
202 1e-001 3 1 202 0.2283913263712342

lnα

ln δ

−40−40

−30

−30

−10

−10

0

0

Figure 1. Error for the first experiment (small index, small matri-
ces). n = 2, 52, 102, 152, 202. Tolerance used for the computations
of the numerical rank equal to 10−6

The results show up that the algorithm works well until perturbations of order of
δ = 10−6. The least squares approximation of ln(α) versus ln(δ) gives a line of slope
0.95, which is consistent with α = O(δ).

In Table 1 we see that the codimension of the subspace, codim = 3n− 1, that is,
the number of rows of the constraints matrix fails at n = 2 when δ is of the order of
tol. However, when n grows codim fails for smaller δ.

Moreover the results show that the algorithm is insensitive to the size of the
original matrices. In fact, if we select a fixed value of the perturbation, δ = 10−6,
and analyze the error for different values of n, we obtain Table 2.
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Table 2. First experiment (small index, small matrices). δ = 10−9,
tol = 10−6

n δ # exact steps # steps codim α/error

2 1e-009 3 3 4 0.0000000009585285
22 1e-009 3 3 64 0.0000000028931919
42 1e-009 3 3 124 0.0000000034146838
62 1e-009 3 3 184 0.0000000046018755
82 1e-009 3 3 244 0.0000000053815907
102 1e-009 3 3 304 0.0000000055767568
122 1e-009 3 3 364 0.0000000064274692
142 1e-009 3 3 424 0.0000000070707452
162 1e-009 3 3 484 0.0000000072378230
182 1e-009 3 3 544 0.0000000077680372
202 1e-009 3 3 604 0.0000000083969815

Again data obtained indicates heuristically that α = O(
√
n). The least squares

approximation of ln(α) versus ln(n) gives us an slope of 0.47.

lnα

lnn
0 2 4 6

−21

−20

−19

−18

Figure 2. Error for the first experiment (small index, small matri-
ces). n = 2→ 202, δ = 10−6, tol = 10−6
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Small index problems. Large matrices

Let us consider the linear–quadratic problem where A is proportional to the iden-
tity matrix, A = αI, where α ∈ R.

The primary constraint will be

φ(1) = σ(1)x+ β(1)p+ ρ(1)u = −NTx+BT p−Ru, (63)

the general form of the (k + 1)− th constraint will be

φ(k+1) = σ(k+1)x+ β(k+1)p+ ρ(k+1)u = [ 0 | Im−rk ]U (k)T
(
σ(k)ẋ+ β(k)ṗ

)
=

= [ 0 | Im−rk ]U (k)T
[
(ασ(k) + β(k)Q)x+ (−αβ(k))p+ (σ(k)B + β(k)N)u

]
.

Here we use the same notation as in Section 4, that is, after applying the SVD to
the matrix σ(k), we obtain ρ(k) = U (k) Σ(k) V (k)T , and Uk := [ 0 | Im−rk ]U (k)T .
Computing the constraints, we obtain

φ(2) = σ(2)x+ β(2)p+ ρ(2)u = U1

[
(ασ(1) + β(1)Q)x+ (−αβ(1))p+ (σ(1)B + β(1)N)u

]
=

= U1

[
(−αNT +BTQ)x+ (−αBT )p+ (−NTB +BTN)u

]
,

φ(3) = σ(3)x+ β(3)p+ ρ(3)u = U2

[
(ασ(2) + β(2)Q)x+ (−αβ(2))p+ (σ(2)B + β(2)N)u

]
=

= U2U1

[
(−α2NT + αBTQ− αBTQ)x+ (α2BT )p+ (−αNTB +BTQB − αBTN)u

]
=

= U2U1

[
(−α2NT )x+ (α2BT )p+ (−α(NTB +BTN) +BTQB)u

]
,

φ(4) = σ(4)x+ β(4)p+ ρ(4)u = U3

[
(ασ(3) + β(3)Q)x+ (−αβ(3))p+ (σ(3)B + β(3)N)u

]
=

= U3U2U1

[
(−α3NT + α2BTQ)x+ (−α3BT )p+ (−α2NTB + α2BTN)u

]
.

So the constraints matrix will look as

Φ =



−NT BT −R

U1

[
−αNT +BTQ

]
−U1

[
αBT

]
U1

[
−NTB +BTN

]
−U2U1

[
α2NT

]
U2U1

[
α2BT

]
U2U1

[
α(−NTB −BTN) +BTQB

]
U3U2U1α

2
[
−αNT +BTQ

]
−U3U2U1α

2
[
αBT

]
U3U2U1α

2
[
−NTB +BTN

]

 .

We can see that the fourth row is related with the second one by row4 = U3U2α
2row2,

so the algorithm will stop here if it did not do it before.

For the numerical implementation we choose the following matrices: Q = A =
In ∈ Rn×n, BT = (1, . . . , 1) ∈ Rn×1, NT = (0, . . . , 0) ∈ Rn×1, R = 0; so the
constraints matrix will have only three rows

Φ =

 0, . . . , 0 1, . . . , 1 0
1, . . . , 1 −1, . . . ,−1 0
0, . . . , 0 1, . . . , 1 n

 ,
where n is the dimension of the matrices A and Q. Thus in the third row we ob-
tain optimal feedback and the final constraint submanifold is given by the following
equations: x1 + · · ·+ xn = p1 + · · ·+ pn = u = 0.

We apply the numerical algorithm for the previows matrices for n = 1000, tol-
erance equal to 10−16 and we compare the solution obtained with the perturbed
matrices: Ã = A + δA, ‖δA‖ < δ, Ñ = N + δN, ‖δN‖ < δ and B̃ = B + δB,
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Table 3. Second experiment (small index, large matrices). tol = 10−16

n δ # exact steps # steps codim α/ error

1000 1e-016 3 3 3 0.00000000000002
1000 1e-015 3 3 3 0.00000000000005
1000 1e-014 3 3 3 0.00000000000010
1000 1e-013 3 3 3 0.00000000000088
1000 1e-012 3 3 3 0.00000000000921
1000 1e-011 3 3 3 0.00000000008945
1000 1e-010 3 3 3 0.00000000094362
1000 1e-009 3 3 3 0.00000000895734
1000 1e-008 3 3 3 0.00000009224712
1000 1e-007 3 3 3 0.00000089770415
1000 1e-006 3 3 3 0.00000934812796
1000 1e-005 3 3 3 0.00008953156206
1000 1e-004 3 3 3 0.00088056539460
1000 1e-003 3 3 3 0.00953194630784
1000 1e-002 3 3 3 0.10128762315235
1000 1e-001 3 3 3 0.80931668976548

‖δB‖ < δ, where δ = 10−16 → 10−1. Again, as the final constraint submanifold of
the original problem and the perturbed one must be the same, we measure the angle
between them, this is going to be the error, and we show it in Table 3.

Again the data shows that α = O(δ) and, consistently with the previous results,
the slope of the least squares approximation of ln(α) versus ln(δ) is 0.96.
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Figure 3. Error for the second experiment (small index, large ma-
trices). n = 1000. tol = 10−16

Large index problems

Consider the following problem:

A ∈ Rn×n, Q = A+AT , B ∈ Rn×1, N = B,R = 0. (64)

Computing the matrices ρ(1), ρ(2), . . . , ρ(k), we get

ρ(1) = R = 0,

ρ(2) = BTN −NTB = BTB −BTB = 0,

ρ(3) = −NTAB −BTATN +BTQB = BT [−A−AT +A+AT ]B = 0,

ρ(4) = BT [−AT + (−AT )2 + (A+AT )A−AT (A+AT )]B = 0,

...

ρ(k+1) = BT [−Ak−1 + (−1)k−1(AT )k−1 +

k−2∑
i=0

(−1)i(AT )i(A+AT )Ak−2−i]B =

= BT [−Ak−1 + (−1)k−1(AT )k−1

+

k−1∑
j=1

−(−1)j(AT )jAk−1−j +

k−2∑
j=0

(−1)j(AT )jAk−1−j ]B =

= BT [−Ak−1 + (−1)k−1(AT )k−1 − (−1)k−1(AT )k−1 +Ak−1]B = 0.
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We obtain that these matrices are always zero and there will not exist optimal feed-
back. Let us consider now the remaining matrices

σ(1) = −BT ,

σ(2) = −BTA+BT (A+AT ) = BTAT ,

σ(3) = BT [−A2 + (A+AT )A−AT (A+AT )] = −BT (AT )2,

...

σ(k+1) = BT [−Ak +
k−1∑
i=0

(−1)i(AT )i(A+AT )Ak−1−i] =

= BT [−Ak +
k−1∑
i=0

(−1)i(AT )i+1Ak−1−i +
k−1∑
i=0

(−1)i(AT )iAk−i] =

= BT [−Ak +

k∑
j=1

−(−1)j(AT )jAk−j +

k−1∑
j=0

(−1)j(AT )jAk−j ] =

= BT [−Ak − (−1)k(AT )k +Ak = (−1)k−1BT (AT )k.

β(1) = BT ,

β(2) = −BTAT ,
...

β(k+1) = (−1)kBT (AT )k.

Hence, we will obtain

βk+1 = −σk+1 = (−1)kBT (AT )k, ρk+1 = 0. (65)

and the constraints matrix will look as follows

Φ =


−BT BT 0
BTAT −BTAT 0
−BT (AT )2 BT (AT )2 0

...
...

...
−(−1)kBT (AT )k (−1)kBT (AT )k 0

 .
Moreover, it is clear from the previous considerations that the algorithm will stop
only when at a given step we will obtain a linear combination of the previous rows.
Suppose that the minimum polynomial of the matrix A is of degree q, then there are
two possibilities for the algorithm to stop:

• B /∈ ker(Al), l = 1, . . . , q, then the row q + 1 is a linear combination of the
previous ones.
• B ∈ ker(Ap), 0 < p ≤ q, then the row p+ 1 vanish.

We apply the algorithm to a problem where the pair (A,B) is such that A ∈
Rn×n is a nilpotent matrix of index n, i.e., An−1 6= 0, An = 0, and B /∈ ker(Al),

l = 1, . . . , n − 1, i.e., BT = (1, . . . , 1) ∈ R1×n. The index of the algorithm is k = n.

Perturbing the matrices as: Ã = A + δA, ‖δA‖ < δ, Q̃ = Ã + ÃT , B̃ = B + δB,

‖δB‖ < δ , Ñ = B̃ and R̃ = δR, ‖δR‖ < δ; with δ = 10−16 → 10−5, we get for n = 20
with tolerance equal to 10−6 Table 4.



A NUMERICAL ALGORITHM FOR SINGULAR OPTIMAL LQ CONTROL SYSTEMS 23

Table 4. Third experiment (large index). tol = 10−6

n δ # exact steps # steps codim α/ error

20 1e-016 20 20 20 0.00000000000001
20 1e-015 20 20 20 0.00000000000002
20 1e-014 20 20 20 0.00000000000001
20 1e-013 20 20 20 0.00000000000004
20 1e-012 20 20 20 0.00000000000021
20 1e-011 20 20 20 0.00000000000652
20 1e-010 20 20 20 0.00000000001940
20 1e-009 20 20 20 0.00000000034574
20 1e-008 20 20 20 0.00000000647005
20 1e-007 20 20 20 0.00000006884601
20 1e-006 20 20 20 0.00000047329442
20 1e-005 20 1 1 0.00000157131430

In this experiment, the value of the slope of the least squares approximation of
the data is 0.84.
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Figure 4. Error for the third experiment (large index). n = 20, tol = 10−6
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[12] Gràcia, X., Muñoz–Lecanda, M. C., Román–Roy, N.: On some aspects of the geometry of

differential equations in physics. Int. J. Geometric Methods in Mod. Phys. 1, 265–284 (2004)
[13] Guerra, M.: Soluões generalizadas para problemas L-Q singulares. Ph. D. dissertation, Univ.

de Aveiro (2001)
[14] Jurdjevic, V.: Geometric control theory. Cambridge Univ. Press (1997)
[15] Kokotovic, P. V.: Applications of singular perturbation techniques to control problems.

SIAM Review 26, 501–550 (1984)
[16] Kokotovic, P. V., Khalil, H. K., O’Reilly, J.: Singular perturbation methods in control.

Academic Press, London (1986)



A NUMERICAL ALGORITHM FOR SINGULAR OPTIMAL LQ CONTROL SYSTEMS 25

[17] Kunkel, P., Mehrmann, V.: The linear quadratic optimal control problem in linear descriptor
systems with variable coefficients. Math. Control Signals Systems, 10, 247-264 (1997).

[18] Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations. EMS Textbooks in Mathemat-
ics, EMS Publ. House (2006)
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