Skip to main content
Log in

Legendre spectral methods for the -grad (div) operator with free boundary conditions

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper extends previous studies of the application of Legendre spectral methods to the grad (div) eigenvalue problem on a quadrangular domain in \(I\!\!R^2\). The extension focuses on natural boundary conditions. Spectral approximations based on primal and dual variational approaches are built using Gaussian quadrature rules both on single (i.e. \(I\!\!P_N \otimes I\!\!P_N\)) and staggered (i.e. \(I\!\!P_N \otimes I\!\!P_{N-1}\)) grids. The single grid approximation is unstable and exhibits ‘spectral pollution’ effects such as increased number of zero eigenvalues and increased multiplicity of some non-zero eigenvalues. The approximation on the staggered grid leads to a stable algorithm, free of spurious eigenmodes and with spectral convergence of the non-zero eigenvalues/eigenvectors towards their analytical values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahusborde E., Azaïez M., Deville M.O., Mund E.H.: Legendre spectral methods for the -grad (div) operator. Comput. Methods Appl. Mech. Eng. 196, 4538–4547 (2007)

    Article  Google Scholar 

  2. Azaïez M., Bernardi C., Grundmann M.: Spectral method applied to porous media. East–West J. Numer. Math. 2, 91–105 (1994)

    MATH  MathSciNet  Google Scholar 

  3. Azaïez M., Deville M.O., Gruber R., Mund E.H.: On a stable spectral element for the grad (div) eigenvalue problem. J. Sci. Comput. 27, 41–50 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bernardi C., Maday Y.: Spectral Methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. V, pp. 209–485. North-Holland, Amsterdam (1997)

    Google Scholar 

  5. Bernardi C., Maday Y., Métivet B.: Spectral approximation of the periodic-nonperiodic Navier–Stokes equations. Numer. Math. 51, 655–700 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Boffi D, Costabel M., Dauge M., Demkowickz L.: Discrete compactness for the hp version of rectangular edge finite elements. SIAM J. Numer. Anal. 44(3), 979–1004 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Costabel M., Dauge M.: Computation of resonance frequencies for Maxwell equations in non smooth domains. In: Lecture Notes in Computational Science and Engineering, vol. 31. Springer (2003)

  8. Davis P.J., Rabinowitz P.: Methods of Numerical integration. Academic Press, New York (1975)

    MATH  Google Scholar 

  9. Deville M.O., Fischer P.F., Mund E.H.: High-Order Methods for Incompressible Fluid Flow. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  10. Galbrun H.: Propagation d’une Onde Sonore Dans l’atmosphère Terrestre et Théorie Des Zones de Silence. Gauthier-Villars, Paris, France (1931)

    Google Scholar 

  11. Olshanskii, M.A., Reusken, A.: Grad-div stabilisation for stokes equations. Math. Comput. 73(248), 1699–1718 (2003)

    Article  MathSciNet  Google Scholar 

  12. Monk, P., Wang, Y., Szabo, B.: Computing cavity models using the p-version of the finite element method. IEEE Trans. Magn. 32, 1934–1940 (1996)

    Article  Google Scholar 

  13. Peyret, R.: Spectral Methods for Incompressible Viscous Flow. Springer, New York (2002)

    MATH  Google Scholar 

  14. Raviart, P.A., Thomas, J.M.: A mixed finite element method for second order elliptic problems. In: Mathematical Aspects of Finite Element Methods. Lecture Notes in Mathematics, vol. 606, pp. 292–315. Spriger-Verlag (1977)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ahusborde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahusborde, E. Legendre spectral methods for the -grad (div) operator with free boundary conditions. Numer Algor 52, 151–171 (2009). https://doi.org/10.1007/s11075-008-9262-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-008-9262-z

Keywords

Navigation