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Abstract Interior-point methods for semidefinite optimization have been stud-
ied intensively, due to their polynomial complexity and practical efficiency.
Recently, the second author designed a primal-dual infeasible interior-point
algorithm with the currently best iteration bound for linear optimization
problems. Since the algorithm uses only full Newton steps, it has the advantage
that no line-searches are needed. In this paper we extend the algorithm to
semidefinite optimization. The algorithm constructs strictly feasible iterates for
a sequence of perturbations of the given problem and its dual problem, close
to their central paths. Two types of full-Newton steps are used, feasibility steps
and (ordinary) centering steps, respectively. The algorithm starts from strictly
feasible iterates of a perturbed pair, on its central path, and feasibility steps find
strictly feasible iterates for the next perturbed pair. By using centering steps
for the new perturbed pair, we obtain strictly feasible iterates close enough to
the central path of the new perturbed pair. The starting point depends on a
positive number ζ . The algorithm terminates either by finding an ε-solution
or by detecting that the primal-dual problem pair has no optimal solution
(X∗, y∗, S∗) with vanishing duality gap such that the eigenvalues of X∗ and S∗
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do not exceed ζ . The iteration bound coincides with the currently best iteration
bound for semidefinite optimization problems.

Keywords Semidefinite optimization · Infeasible interior-point method ·
Primal-dual method · Polynomial complexity
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1 Introduction

Semidefinite optimization (SDO) problems are convex optimization problems
over the intersection of an affine set and the cone of positive semidefinite
matrices. SDO arises in many scientific and engineering fields. For applications
in system and control theory we refer to [6, 7] and for applications in combi-
natorial optimization to [1, 2, 13, 19, 26, 39, 48]. SDO also has been utilized in
solving polynomial optimization problems [11, 25, 38]. For recent applications
in engineering problems see, e.g., [5, 24, 59].

Semidefinite optimization has recently attracted active research from the
interior-point methods (IPMs) community. A rather comprehensive list of
references for theory and applications in this field can be found in [1, 2, 8,
12, 15, 18, 37, 51].

Primal-dual IPMs have proven to belong to the most efficient methods
in linear optimization (LO), and many polynomiality results exist for these
methods. The first primal-dual interior-point methods for LO were constructed
by Megiddo [32], Monteiro and Adler [35], Tanabe [49] and Kojima et al. [21].

Extending methods for LO to SDO has been successful in many cases. See,
e.g., [23, 36, 53, 55]. For example Nesterov and Todd [36] showed that the
primal-dual algorithm for LO maintains its theoretical efficiency when the
nonnegativity constraints in LO are replaced by a convex cone, as long as
the cone is homogeneous and self-dual, or in the terminology of Nesterov
and Todd, as long as the cone is self-scaled. Self-scaled cones are cones that
have a self-scaled barrier; the non-negative orthant and the cone of positive
semidefinite matrices are special cases.

Recently, Peng et al. [40, 41] designed primal-dual feasible IPMs for LO
by using self-regular functions and also extended the approach to SDO.
The complexity bounds obtained by these authors are O

(√
n
)

log n
ε

and
O
(√

n log n
)

log n
ε
, for small-update methods and large-update methods, re-

spectively, which are currently the best known bounds. Bai et al. [3] and Bai
and Roos [4] introduced some new kernel functions and designed primal-
dual feasible IPMs for LO and they also extended their algorithms to SDO
successfully [54].

The methods mentioned in the preceding two paragraphs are so-called
feasible IPMs. Feasible IPMs start with a strictly feasible interior point and
maintain feasibility during the solution process. It is not at all trivial how to
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find an initial feasible interior point, however. One method to overcome this
problem is to use the homogeneous embedding model as presented first for
LO by Ye et al. [56] and extended to SDO by De Klerk et al. [10] and
independently also by Luo et al. [27]. The homogeneous embedding method
has been implemented in the well known solver SeDuMi.1 It combines the
primal and dual problem in an intelligent way in one (much) larger self-dual
model, whose solution can be obtained by any feasible IPM, leaving much
freedom to the user in the choice of the initial iterates. Other SDO solvers
use a different approach, they use a socalled infeasible IPM.

Infeasible IPMs (IIPMs) start with an arbitrary positive point and feasibility
is reached as optimality is approached. The choice of the starting point in
IIPMs is crucial for the performance. Lustig [28] and Tanabe [50] were the
first to present IIPMs for LO. Kojima et al. [20] were the first who proved
the global convergence of a primal-dual IIPM for LO. Zhang [57] was the
first who presented a primal-dual IIPM with polynomial iteration complexity
O
(
n2 log 1

ε

)
for LO and he extended it to SDO [58]. Mizuno [33] and Potra

[42, 43] also introduced a primal-dual IIPM for LO with polynomial iteration
complexity O

(
n log 1

ε

)
.

Kojima et al. [22] and Potra and Sheng [44] independently analyzed a
generalization to SDO of the Mizuno-Todd-Ye predictor corrector method
[34] for infeasible starting points and they proved that the complexity of their
algorithm is

O

(

n log
max

{
Tr
(
X0S0

)
,
∥∥R0

c

∥∥ ,
∥∥r0

b

∥∥}

ε

)

. (1)

Here R0
c and r0

b denote the initial values of the primal and dual residuals as
defined in Section 4.3. It is assumed in this result that there exist optimal
solutions X∗ and (y∗, S∗) for the primal and dual problems (P) and (D) as
defined in Section 3.1 such that ‖X∗‖ ≤ ζ and ‖S∗‖ ≤ ζ and the starting point
is
(
X0, y0, S0

) = ζ (I, 0, I), where I denotes the identity matrix.
The second author, in [45], designed a new IIPM algorithm for LO. This

algorithm uses intermediate problems. These problems are suitable perturba-
tions of the given problems (P) and (D) so that at any stage the iterates are
strictly feasible for the current perturbed problem pair. In each iteration the
size of the perturbation decreases at the same speed as the barrier parameter μ.
When μ changes to a smaller value, the perturbed problem pair corresponding
to μ changes, and hence also the current central path. The iterates are kept
feasible for the new perturbed problem pair and close to its central path. To
achieve this the algorithm uses a so-called feasibility step. This step serves to
get iterates that are strictly feasible for the new perturbed problem pair and
belong to the region of quadratic convergence of its μ+-centers, where μ+ is

1The name of this solver reveals this feature: Self-Dual Minimization.
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the barrier parameter after updating. Now the algorithm can start from the
point obtained in the feasibility step and perform a few centering steps to
obtain iterates that are close enough to the μ+-center of the new perturbed
problem pair. This process continues until the algorithm finds an ε-solution or
detects that the primal-dual problem pair has no optimal solutions with zero
duality gap.

In this paper, we discuss an extension to SDO of the just described algo-
rithm. We show that the techniques that have been developed in the field of
feasible full-Newton step IPMs for SDO are sufficient to get a full-Newton step
IIPM whose complexity is given by (1), which is currently still the best known
complexity of IIPMs. Compared with other IIPMs the ideas underlying our
algorithm are quite simple and its analysis is elegant. Moreover, since it does
not use line searches, it can be easily implemented.

The paper is organized as follows: in Section 3 we first recall some tools for
the analysis of a feasible IPM for SDO that we use also in the analysis of IIPMs
proposed in this paper. In Section 4 we describe a primal-dual IIPM method
for SDO. The analysis of the feasibility step of our method, the most tedious
part of the analysis, is carried out in Section 5. In Section 5.5 we will derive the
complexity bound for our algorithm. Finally, some concluding remarks follow
in Section 6.

2 Notations

Some notations used throughout the paper are as follows. The superscript
T denotes transpose. Rn, Rn+ and Rn++ denote the set of vectors with n
components, the set of nonnegative vectors and the set of positive vectors,
respectively. For any x = (x1; x2; . . . ; xn) ∈ Rn, xmin = min (x1; x2; . . . ; xn)

and xmax = max (x1; x2; . . . ; xn). Rm×n is the space of all m × n matrices.
Sn, Sn+ and Sn++ denote the cone of symmetric, symmetric positive semidefinite
and symmetric positive definite n × n matrices, respectively. P and D denote
the feasible sets of the primal and dual problem respectively. The relative
interior of a convex set C is denoted as ri (C). I denotes n × n identity matrix.
We use the classical Löwner partial order � for symmetric matrices. So
A � B (A � B) means that A − B is positive semidefinite (positive definite).
The sign ∼ denotes similarity of two matrices. The matrix inner product is
defined by A • B = Tr

(
AT B

)
. For any symmetric positive definite matrix

Q ∈ Sn++, the expression Q
1
2 denotes the symmetric square root of Q. For

any symmetric matrix G, λmin (G) (λmax (G)) denotes the minimal (maximal)
eigenvalue of G. When λ is vector we denote the diagonal matrix diag (λ)

with entries λi by �. For any V ∈ Sn++, we denote by λ (V) the vector of
eigenvalues of V arranged in non-increasing order, that is, λmax (V) = λ1 (V) ≥
λ2 (V) ≥ . . . ≥ λn (V) = λmin (V). The Frobenius matrix norm is given by
‖U‖2 := ∑m

i=1

∑n
j=1 U2

ij = Tr
(
U TU

)
. For any p × q matrix A, vec (A) denotes

the pq-vector obtained by stacking the columns of A. The Kronecker product
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of two matrices A and B is denoted by A ⊗ B (we refer to [16] for a
comprehensive treatment on Kronecker products and related topics).

3 Preliminaries

3.1 The SDO problem

In this section we first introduce the SDO problem and the assumptions that
will be used in the paper. We consider the standard form of the SDO problem:

(P) min C • X

s.t Ai • X = bi, i = 1, 2, . . . , m, X � 0,

and its dual:

(D) max bT y

s.t
m∑

i=1

yi Ai + S = C, S � 0,

where each Ai ∈ Sn, b ∈ Rm, and C ∈ Sn. Without loss of generality we assume
that the matrices Ai are linearly independent.

It is worth noting that the duality theory of SDO is weaker than that of
LO. Like in LO we have the weak duality property: for any (X, y, S) ∈ P × D
we have

C • X − bT y = Tr

((

S +
m∑

i=1

yi Ai

)

X

)

−
m∑

i=1

yiTr (Ai X) = Tr (SX) ≥ 0,

where the inequality follows from X � 0 and S � 0 (see Lemma 5.3). In other
words, the duality gap is nonnegative for any feasible primal-dual pair. As a
consequence, feasible solutions (X, y, S) with zero duality gap are optimal. If
(P) and/or (D) have optimal solutions, then their optimal values are denotes
as p∗ and d∗, respectively. The optimal sets for (P) and (D) are then denoted
as follows:

P∗ := {
X ∈ P|C • X = p∗} and D∗ := {

(y, S) ∈ D|bT y = d∗} .

A problem (P) (resp. (D)) is called solvable if P∗ (resp. D∗) is nonempty.
The duality properties in SDO are less simple than LO. Recall that an

LO problem may be feasible or infeasible. If it is feasible then it is either
unbounded or bounded. In case it is bounded it is solvable and the dual
problem is solvable as well, with zero duality gap. If it is infeasible then its
dual is either unbounded or infeasible. So, for a single problem there are 3
possibilities: a problem is either solvable, unbounded or infeasible.

For an SDO problem, however, the situation is less simple, since a problem
that is feasible and bounded is not necessarily solvable. So for a single problem
there are now four cases: a problem is solvable, feasible and not solvable,
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unbounded or infeasible. As a consequence, for a primal-dual pair of SDO
problems there are much more possible situations than in the LO case. For
example, a problem may be solvable, whereas its dual is unsolvable. Also both
problems can be solvable but with positive duality gap. We assume that there
exists optimal solutions with zero duality gap, i.e., we assume that the set

F∗ := {(X, y, S) ∈ P × D : X • S = 0}

is nonempty.

3.2 The central path for SDO

We assume that (P) and (D) are strictly feasible, i.e., there exist X ∈ P , S ∈ D
with X � 0, S � 0. It is well known that under this assumption both problems
are solvable and the optimality conditions for (P) and (D) can be written as
follows.

Ai • X = bi, i = 1, 2, . . . , m, X � 0,

m∑

i=1

yi Ai + S = C, S � 0,

XS = 0. (2)

The basic idea of primal-dual IPMs is to replace the above complementarity
condition XS = 0 by the parameterized equation XS = μI. Then we get the
following system:

Ai • X = bi, i = 1, 2, . . . , m, X � 0,

m∑

i=1

yi Ai + S = C, S � 0,

XS = μI, (3)

where I denotes the n × n identity matrix and μ > 0. It is well known that the
system (3) has a unique solution, denoted (X (μ) , y (μ) , S (μ)), and that the
limit limμ→0 (X (μ) , y (μ) , S (μ)) exists and is a solution of system (2) (e.g.,
see [23]). The set of all solutions (X (μ) , y (μ) , S (μ)) with μ > 0 is known as
the central path.

To obtain a search direction for IPMs the usual approach is to use Newton’s
method and to linearize (3). However, the resulting system may yield as a
solution a search direction �X which is not symmetric (�S is automatically
symmetric). Since we want �X to be a symmetric matrix, one must “sym-
metrize” the linearization of the complementary equation. Based on different
symmetrization schemes, several search directions have been proposed, as
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presented in [15, 23, 36, 47, 52, 58]. In this paper, we use the direction
determined by the following system:

Ai • �X = 0, i = 1, 2, . . . , m,

m∑

i=1

�yi Ai + �S = 0,

�X + P�SPT = μS−1 − X, (4)

where

P := X
1
2

{
X

1
2 SX

1
2

} −1
2

X
1
2 = S

−1
2

{
S

1
2 XS

1
2

} 1
2

S
−1
2 . (5)

This direction was introduced by Nesterov and Todd [36] and is called the
NT-direction, or simply the Newton-direction, see [52]. The system (4) has a
unique solution [55] and, obviously, �X and �S are symmetric. We will refer
to the assignment

(
X+, y+, S+) := (X + �X, y + �y, S + �S)

as a full NT step.
The first two equations in the system (4) imply that �X and �S are

orthogonal, i.e.,

Tr (�X�S) = 0.

A consequence is the following result which makes clear that after a full
NT-step the duality gap attains its target value.

Lemma 3.1 (Cf. Corollary 7.1 in [9]) Let (X, S) ∈ ri (P × D) and μ > 0. Then

Tr
(
X+S+) = nμ.

Let D = P
1
2 , where P

1
2 denotes the positive semidefinite square root of P.

Then D can be used to scale X and S to the same matrix V, namely [9, 47, 54]:

V := 1√
μ

D−1 X D−1 = 1√
μ

DSD. (6)

It follows that

V2 = 1

μ
D−1 XSD. (7)

Note that the matrices D and V are symmetric and positive definite. let us
further define

Āi := 1√
μ

DAi D, i = 1, 2, . . . , m,

and

DX := 1√
μ

D−1�X D−1; DS := 1√
μ

D�SD.
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Then (4) can be written as follows

Āi • DX = 0, i = 1, 2, . . . , m,

m∑

i=1

�yi Āi + DS = 0,

DX + DS = V−1 − V. (8)

The first two equations in this system imply that DX and DS are orthogonal:

Tr (DX DS) = 0.

Hence, using the third equation in (8) we obtain

‖DX‖2 + ‖DS‖2 = ∥
∥V−1 − V

∥
∥2

. (9)

This implies that DX, DS are both zero if and only if V−1 − V = 0. In this case,
X and S satisfy XS = μI, which indicates that X and S are the μ-centers. Thus,
we can use

∥
∥V−1 − V

∥
∥ as the quantity to measure closeness to μ-centers. We

define

δ (X, S, μ) := δ (V) := 1

2

∥
∥V−1 − V

∥
∥ . (10)

Note that for the special case of LO, V is a diagonal matrix and this proximity
measure becomes the same as used in [17].

A pair (X, S) ∈ P × D, is called an ε-solution of (P) and (D) if Tr (XS) ≤ ε.
Assume that a pair (X, S) ∈ ri (P × D) is given that is ‘close to’ (X (μ) , S (μ)),
for some μ = μ0. Then one finds an ε-solution after O

(√
n log nμ0

ε

)
iterations

of the algorithm in Fig. 1.
The following lemmas are crucial in the analysis of the algorithm. We recall

them without proof. They describe the effect of a μ-update and of a full NT
step on δ (X, S, μ).

Lemma 3.2 (Lemma 7.5 in [9]) Let (X, S) ∈ ri (P × D), nμ = Tr (XS) and
δ := δ (X, S, μ). If μ+ = (1 − θ) μ for 0 < θ < 1, then one has

δ (X, S, μ)2 = nθ2

4 (1 − θ)
+ (1 − θ) δ2.

Lemma 3.3 (Lemma 7.4 in [9]) If δ := δ (X, S, μ) ≤ 1, then the full NT step is
feasible, i.e., X+ and S+ are feasible. Moreover, if δ < 1, then

δ
(
X+, S+, μ

) ≤ δ2

√
2
(
1 − δ2

) .

Corollary 3.4 (Corollary 7.2 in [9]) If δ (X, S, μ) < 1√
2
, then δ

(
X+, S+, μ

)
<

δ (X, S, μ)2.
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Fig. 1 Feasible full-Newton-step algorithm

This corollary implies that the Newton-process is quadratically convergent
when started close to the μ-center.

The following result establishes a polynomial iteration bound of the above
described algorithm; it easily follows from the above lemmas.

Theorem 3.5 (Theorem 7.1 in [9]) If θ = 1
2

√
n , then the algorithm requires

at most

2
√

n log
n μ0

ε

iterations. The output is a primal-dual pair (X, S) such that Tr (XS) ≤ ε.

4 Infeasible full-Newton step IPM

In this section we present an infeasible-start interior-point algorithm that
generates an ε-solution (X∗, y∗, S∗) of (P) and (D), or establishes that no such
solution exists with vanishing duality gap and such that the eigenvalues of X∗
and S∗ do not exceed a prescribed number ζ .
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4.1 The perturbed problems

We start with choosing arbitrarily X0 � 0 and y0, S0 � 0 such that X0S0 =
μ0 I for some (positive) number μ0. For any ν with 0 < ν ≤ 1 we consider the
perturbed problem (Pν), defined by

(Pν) min

{(

C − ν

(

C −
m∑

i=1

y0
i Ai − S0

))

• X : Ai • X

= bi − ν
(
bi − Ai • X0

)
, X � 0

}

,

and its dual problem (Dν), which is given by

(Dν) max

{
m∑

i=1

(
bi − ν

(
bi − Ai • X0

))
yi :

m∑

i=1

yi Ai + S

= C − ν

(

C −
m∑

i=1

y0
i Ai − S0

)

, S � 0

}

.

Note that if ν = 1 then X = X0 yields a strictly feasible solution of (Pν), and
(y, S) = (y0, S0) a strictly feasible solution of (Dν). We conclude that if ν = 1
then (Pν) and (Dν) are strictly feasible.

Lemma 4.1 Let the original problems, (P) and (D), be feasible. Then for each ν

satisfying 0 < ν ≤ 1 the perturbed problems (Pν) and (Dν) are strictly feasible.

Proof Suppose that (P) and (D) are feasible. Let X̄ be feasible solution of
(P) and (ȳ, S̄) a feasible solution of (D). Then Ai • X̄ = bi i = 1, . . . , m and∑m

i=1 ȳi Ai + S̄ = C, with X̄ � 0 and S̄ � 0. Now let 0 < ν ≤ 1, and consider

X = (1 − ν) X̄ + ν X0, y = (1 − ν) ȳ + ν y0, S = (1 − ν) S̄ + ν S0.

One has for all i = 1, . . . , m that,

Ai • X = Ai • ((1 − ν) X̄ + ν X0
)

= (1 − ν) Ai • X̄ + ν Ai • X0

= bi − ν
(
bi − Ai • X0

)
,

showing that X is feasible for (Pν). Similarly,

m∑

i=1

yi Ai + S = (1 − ν)

(
m∑

i=1

ȳi Ai + S̄

)

+ ν

(
m∑

i=1

y0
i Ai + S0

)

= (1 − ν) C + ν

(
m∑

i=1

y0
i Ai + S0

)

= C − ν

(

C −
m∑

i=1

y0
i Ai − S0

)

,
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showing that (y, S) is feasible for (Dν). Since ν > 0, X and S are positive
definite, thus this proves that (Pν) and (Dν) are strictly feasible. �

4.2 Central path of the perturbed problems

We assume that (P) and (D) are feasible. Letting 0 < ν ≤ 1, Lemma 4.1 implies
that the problems (Pν) and (Dν) are strictly feasible, and hence their central
paths exist. This means that the system

bi − Ai • X = ν
(
bi − Ai • X0

)
, i = 1, 2, . . . , m, X � 0 (11)

C −
m∑

i=1

yi Ai − S = ν

(

C −
m∑

i=1

y0
i Ai − S0

)

, S � 0

XS = μI. (12)

has a unique solution, for every μ > 0. In the sequel this unique solution
is denoted as (X(μ, ν), y(μ, ν), S(μ, ν)). These are the μ-centers of the
perturbed problems (Pν) and (Dν).

Note that since X0S0 = μ0 I, X0 is the μ0-center of the perturbed prob-
lem (P1) and (y0, S0) the μ0-center of (D1). In other words, (X(μ0, 1),

y(μ0, 1), S(μ0, 1)) = (X0, y0, S0). In the sequel we will always have μ =
ν μ0, and we will accordingly denote (X(μ, ν), y(μ, ν), S(μ, ν)) simply as
(X(ν), y(ν), S(ν)).

4.3 An iteration of our algorithm

We just established that if ν = 1 and μ = μ0, then X = X0 and (y, S) =(
y0, S0

)
are the μ-center of (Pν) and (Dν) respectively. These are our initial

iterates.
We measure proximity to the μ-center of the perturbed problems by the

quantity δ (X, S, μ) as defined in (9). So, initially we have δ (X, S, μ) = 0.
In the sequel we assume that at the start of each iteration, just before the
μ-update, δ (X, S, μ) is smaller than or equal to a (small) threshold value
τ > 0. So this is certainly true at the start of the first iteration.

Now we describe one iteration of our algorithm. Suppose that for some μ ∈
(0, μ0] we have X, y and S satisfying the feasibility conditions (11) and (12) for
ν = μ

μ0 , and such that Tr (XS) = nμ and δ (X, S, μ) ≤ τ . We reduce μ to μ+ =
(1 − θ) μ, with θ ∈ (0, 1), and find new iterates X+, y+ and S+ that satisfy (11)
and (12), with μ replaced by μ+ and ν by ν+ = μ+

μ0 , and such that Tr (XS) =
nμ+ and δ

(
X+, S+, μ+) ≤ τ . Note that ν+ = (1 − θ) ν.

To be more precise, this is achieved as follows. Each main iteration consists
of a feasibility step and a few centering steps. The feasibility step serves to
get iterates

(
X f , y f , S f

)
that are strictly feasible for (Pν+) and (Dν+), and
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moreover belong to the region of quadratic convergence of their μ+-centers(
X
(
ν+) , y

(
ν+) , S

(
ν+)), in other words δ

(
X f , S f , μ+) ≤ 1√

2
. Since the triple

(
X f , y f , S f

)
is strictly feasible for (Pν+) and (Dν+), we can perform a few

centering steps starting at
(
X f , y f , S f

)
targeting at the μ+-centers of (Pν+)

and (Dν+) and obtain iterates
(
X+, y+, S+) that are feasible for (Pν+) and

(Dν+) and such that δ
(
X+, S+, μ+) ≤ τ .

Before describing the feasibility step it will be convenient to introduce some
new notations. We denote the initial values of the primal and dual residuals as
r0

b and R0
c , respectively:

(
r0

b

)
i = bi − Ai • X0, i = 1, . . . , m, (13)

R0
c = C −

m∑

i=1

y0
i Ai − S0. (14)

Using these notations the feasibility conditions for (Pν) and (Dν) are

Ai • X = bi − ν
(
r0

b

)
i , i = 1, . . . , m, X � 0,

m∑

i=1

yi Ai + S = C − νR0
c, S � 0

and for (Pν+) and (Dν+) the feasibility conditions are

Ai • X = bi − ν+ (r0
b

)
i , i = 1, . . . , m, X � 0,

m∑

i=1

yi Ai + S = C − ν+ R0
c, S � 0.

Now suppose that (X, y, S) is feasible for (Pν) and (Dν). For finding iterates
that are feasible for (Pν) and (Dν) we need search directions � f X, � f y and
� f S such that

Ai • (X + � f X
) = bi − ν+ (r0

b

)
i , i = 1, . . . , m,

m∑

i=1

(
yi + � f y

)
Ai + (

S + � f S
) = C − ν+ R0

c .

Since X and (y, S) are feasible for (Pν) and (Dν) respectively, it follows that
� f X, � f y and � f S should satisfy

Ai • � f X = (bi − Ai • X) − ν+ (r0
b

)
i = ν

(
r0

b

)
i − ν+ (r0

b

)
i = θν

(
r0

b

)
i ,

m∑

i=1

� f yi Ai + � f S =
(

C −
m∑

i=1

yi Ai − S

)

− ν+ R0
c = νR0

c − ν+ R0
c = θνR0

c .
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Therefore, the following system is used to define � f X, � f y and � f S:

Ai • � f X = θν
(
r0

b

)
i , i = 1, . . . , m, (15)

m∑

i=1

� f yi Ai + � f S = θνR0
c, (16)

� f X + P� f SPT = μS−1 − X, (17)

where we used the NT-‘trick’ to symmetrize � f X with P as defined in (5).
After the feasibility step the iterates are given by

X f = X + � f X, (18)

y f = y + � f y,

S f = S + � f S. (19)

By definition, after the feasibility step the iterates satisfy the affine equations
in (11) and (12), with ν = ν+. The hard part in the analysis will be to guarantee
that X f and S f are positive definite and satisfy δ

(
X f , S f , μ+) ≤ 1√

2
.

After the feasibility step we perform centering steps in order to get iterates(
X+, y+, S+) that satisfy Tr

(
X+S+) = nμ+ and δ

(
X+, S+, μ+) ≤ τ . By using

Corollary 3.4, the required number of centering steps can easily be obtained.
Indeed, assuming δ = δ

(
X f , S f , μ+) ≤ 1√

2
, after k centering steps we will

have iterates
(
X+, y+, S+) that are still feasible for (Pν+) and (Dν+) that

satisfy

δ
(
X+, S+, μ+) ≤

(
1√
2

)2k

.

Just as in the linear case [45] this implies that after at most

log2

(
log2

1

τ 2

)
(20)

centering steps we have δ
(
X+, S+, μ+) ≤ τ .

4.4 The algorithm

A formal description of the algorithm is given in Fig. 2, where rb and Rc denote
the primal and dual residuals, respectively. One may easily verify after each
iteration the residuals and the duality gap are reduced by a factor 1 − θ . The
algorithm stops if the norms of residual vectors and the duality gap are less
than the accuracy parameter ε.
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Fig. 2 Infeasible full-Newton-step algorithm

5 An analysis of the algorithm

Let X, y and S denote the iterates at the start of an iteration with Tr (XS) =
nμ and δ (X, S, μ) ≤ τ . Recall that at the start of first iteration this is certainly
true, because Tr

(
X0S0

) = nμ0 and δ
(
X0, S0, μ0

) = 0.
Before dealing with the analysis of the algorithm we recall some lemmas

that will be needed.

Lemma 5.1 (Lemma A.1 in [9]) Let Q ∈ Sn++, and let M ∈ Rn×n be skew-
symmetric (i.e., M = −MT). Then det (Q + M) > 0. Moreover, if the eigenval-
ues of Q + M are real then

0 < λmin (Q) ≤ λmin (Q + M) ≤ λmax (Q + M) ≤ λmax (Q) .
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Lemma 5.2 (Lemma 1.2.4 in [14]) Let A, B ∈ Sn+. Then we have the following
inequalities:

λmin (A) λmax (B) ≤ λmin (A) Tr (B) ≤ Tr (AB)

≤ λmax (A) Tr (B) ≤ nλmax (A) λmax (B) .

Lemma 5.3 (Theorem A.4 in [9]) Let A ∈ Sn++ and B ∈ Sn++. Then all the
eigenvalues of AB are real and positive.

5.1 The effect of the feasibility step and the choice of θ

As we established in Section 4.3, the feasibility step generates new iterates
X f , y f and S f that satisfy the feasibility equations for (Pν+) and (Dν+).
A crucial element in the analysis is to show that after the feasibility step
δ
(
X f , S f , μ+) ≤ 1√

2
, i.e., that the new iterates are within the region where the

Newton process targeting at the μ+-centers of (Pν+) and (Dν+) is quadratically
convergent.

We define

D f
X := 1√

μ
D−1� f X D−1, D f

S := 1√
μ

D� f SD,

(
V f )2 := 1

μ
D−1 X f S f D, (21)

with D as defined in Section 3.2. We can now rewrite (15), (16) and (17) as
follows.

DAi D • D f
X = 1√

μ
θν
(
r0

b

)
i , i = 1, . . . , m,

m∑

i=1

�yi√
μ

DAi D + D f
S = 1√

μ
θνDR0

c D,

D f
X + D f

S = V−1 − V. (22)

From the third equation in (22) we obtain, by multiplying both side from the
left with V,

V D f
X + V D f

S = I − V2. (23)

Using (6), (18), (19) and (21), we obtain

X f = X + � f X = √
μD

(
V + D f

X

)
D,

S f = S + � f S = √
μD−1

(
V + D f

S

)
D−1.

Therefore

X f S f = μD
(

V + D f
X

) (
V + D f

S

)
D−1.
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The last matrix is similar to μ
(
V + D f

X

)(
V + D f

S

)
. Thus we have

X f S f ∼ μ
(

V + D f
X

) (
V + D f

S

)
.

To simplify the notation in the sequel we introduce

D f
XS := 1

2

(
D f

X D f
S + D f

S D f
X

)
, (24)

and

M :=
(

D f
X V − V D f

S

)
+ 1

2

(
D f

X D f
S − D f

S D f
X

)
. (25)

Note that D f
XS is symmetric and M is skew-symmetric.

Now we may write, using (23),
(

V + D f
X

) (
V + D f

S

)
= V2 + V D f

S + D f
X V + D f

X D f
S

= I − V D f
X + D f

X V + D f
X D f

S .

By subtracting and adding 1
2 D f

S D f
X to the last expression we get

(
V + D f

X

) (
V + D f

S

)
= I + 1

2

(
D f

X D f
S + D f

S D f
X

)
+
(

D f
X V − V D f

X

)

+1

2

(
D f

X D f
S − D f

S D f
X

)
,

= I + D f
XS + M.

Using (24) and (25) we obtain

X f S f ∼ μ
(

I + D f
XS + M

)
. (26)

Lemma 5.4 Let X � 0 and S � 0. Then the iterates
(
X f , y f , S f

)
are strictly

feasible if

I + D f
XS � 0.

Proof For the proof we introduce a step length α ∈ [0, 1], and we define

Xα = X + α� f X, yα = y + α� f y, Sα = S + α� f S.

We then have X0 = X, X1 = X f and similar relations for y and S. Obviously
det
(
X0S0

) = det
(
μ0 I

) = (
μ0
)n

> 0. Our aim is to show that the determinant
of Xα Sα remains positive for all α ≤ 1. We may write

Xα Sα

μ
∼
(

V + αD f
X

) (
V + αD f

S

)

=
(

V2 + α
(

D f
X V + V D f

S

)
+ α2 D f

X D f
S

)

=
(

V2 + α
(

V D f
X + V D f

S

)
+ α

(
D f

X V − V D f
X

)
+ α2 D f

X D f
S

)
.
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Using (23) we get

Xα Sα

μ
=
(

V2 + α
(
I − V2)+ α

(
D f

X V − V D f
X

)
+ α2 D f

X D f
S

)
.

By subtracting and adding α2 I, α2
(
D f

X V − V D f
X

)
and 1

2

(
D f

X D f
S + D f

S D f
X

)
to

the right hand side of the above equality we obtain

Xα Sα

μ
=
(
(1 − α) V2 + α (1 − α) I + α2

(
D f

XS + I
))

+α
(
(1 − α)

(
D f

X V − V D f
X

)
+ αM

)
.

The matrix (1 − α)
(
D f

X V − V D f
X

)+ αM is skew-symmetric for α ∈ [0, 1].
Lemma 5.1 therefore implies that the determinant of Xα Sα will be positive
if the symmetric matrix

(1 − α) V2 + α (1 − α) I + α2
(

D f
XS + I

)

is positive definite. The latter is true for 0 ≤ α ≤ 1. So Xα Sα has positive
determinant for α ∈ [0, 1]. This implies that Xα and Sα are nonsingular for
α ∈ [0, 1]. Since X0 and S0 are positive definite and since Xα and Sα depend
continuously on α, it follows that X1 and S1 are positive definite as well. This
completes the proof. �

Corollary 5.5 The iterates
(
X f , y f , S f

)
are certainly strictly feasible if

∣∣
∣λi

(
D f

XS

)∣∣
∣ < 1, for i = 1, . . . , n.

Proof By Lemma 5.4, X f and S f are strictly feasible if I + D f
XS � 0. Since

the last inequality certainly holds if
∣
∣λi
(
D f

XS

)∣∣ < 1, for i = 1, . . . , n, the
corollary follows. �

In the sequel we denote

ω (V) := 1

2

√∥
∥
∥D f

X

∥
∥
∥

2 +
∥
∥
∥D f

S

∥
∥
∥

2
, (27)

which implies
∥∥D f

X

∥∥ ≤ 2ω (V) and
∥∥D f

S

∥∥ ≤ 2ω (V). Here we recall from [29]
two properties of the Frobenius matrix norm. One has for any symmetric n × n
matrix A:

‖A‖2 = Tr
(

A2
) =

n∑

i=1

λi
(

A2
) =

n∑

i=1

λi (A)2 .

This norm is also sub-multiplicative, i.e., for any two square matrices A and B,

‖AB‖ ≤ ‖A‖ ‖B‖ .
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By using these properties and (27) we have

∥∥
∥D f

XS

∥∥
∥ ≤

∥∥
∥D f

X

∥∥
∥
∥∥
∥D f

S

∥∥
∥ ≤ 1

2

(∥∥
∥D f

X

∥∥
∥

2 +
∥∥
∥D f

S

∥∥
∥

2
)

= 2ω (V)2 , (28)

∣∣
∣λi

(
D f

XS

)∣∣
∣ ≤

∥∥
∥D f

XS

∥∥
∥ ≤ 2ω (V)2 , i = 1, . . . , n. (29)

Lemma 5.6 If ω (V) < 1√
2

then the iterates
(
X f , y f , S f

)
are strictly feasible.

Proof Let ω (V)< 1√
2
. Then (29) implies that

∣∣λi
(
D f

XS

)∣∣<1, for i = 1, . . . , n.

By Corollary 5.5 this implies the statement in the lemma. �

Assuming ω (V) < 1√
2
, which guarantees strict feasibility of the iterates

(
X f , y f , S f

)
, we proceed by deriving an upper bound for δ

(
X f , S f , μ+).

Recall from definition (10) that

δ
(
X f , S f , μ+) = 1

2

∥∥
∥
(
V f )−1 − V f

∥∥
∥ , (30)

with
(
V f
)2

as defined in (21). In the sequel we denote δ
(
X f , S f , μ+) also by

shortly by δ
(
V f
)
. We proceed to find an upper bound for δ

(
V f
)

in terms of
ω (V). To this end we need some technical results which give information on
the eigenvalues and the norm of V f .

Lemma 5.7 One has

λmin

((
V f )2

)
≥ 1

1 − θ

(
1 − 2ω (V)2) .

Proof Using (26), after division of both sides by μ+ = (1 − θ) μ we get

(
V f )2 ∼

μ
(

I + D f
XS + M

)

μ+ = I + D f
XS + M

1 − θ
. (31)

It follows that

λmin

((
V f )2

)
= 1

1 − θ
λmin

(
I + D f

XS + M
)

.

Since M is skew-symmetric, Lemma 5.1 implies

λmin

((
V f )2

)
≥ 1

1 − θ
λmin

(
I + D f

XS

)

= 1

1 − θ

(
1 + λmin

(
D f

XS

))
.

Substitution of the bound for
∣
∣λmin

(
D f

XS

)∣∣ in (28) yields

λmin

((
V f )2

)
≥ 1

1 − θ

(
1 − 2ω (V)2) ,
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which completes the proof. �

Lemma 5.8 One has

∥
∥
∥I − (

V f )2
∥
∥
∥ ≤ 2ω (V)2 + θ

√
n

1 − θ
.

Proof Using (31) and properties of the Frobenius norm we have

∥
∥∥I − (

V f )2
∥
∥∥

2 =
n∑

i=1

⎛

⎝
λi

(
I + D f

XS + M
)

1 − θ
− 1

⎞

⎠

2

= 1

(1 − θ)2

n∑

i=1

(
λi

(
I + D f

XS + M
)

− 1 + θ
)2

= 1

(1 − θ)2

n∑

i=1

(
λi

(
D f

XS + M
)

+ θ
)2

= 1

(1 − θ)2

(

nθ2+
n∑

i=1

(
λi

(
D f

XS + M
))2+2θ

n∑

i=1

λi

(
D f

XS + M
)
)

Since
(
λi
(
D f

XS + M
))2 = λi

((
D f

XS + M
)2
)

, for each i, we obtain

∥
∥
∥I − (

V f )2
∥
∥
∥

2 = 1

(1 − θ)2

(
nθ2+Tr

((
D f

XS + M
)2
)

+2θTr
(

D f
XS + M

))
.

(32)

Using the skew-symmetry of M we obtain Tr
(
D f

XS + M
) = Tr

(
D f

XS

)
and

Tr
((

D f
XS + M

)2
)

= Tr
((

D f
XS

)2 + MD f
XS + D f

XS M − MMT
)

.

Since MD f
XS + D f

XS M is skew-symmetric we obtain

Tr
((

D f
XS + M

)2
)

= Tr
((

D f
XS

)2 − MMT
)

≤ Tr
((

D f
XS

)2
)

=
∥
∥
∥D f

XS

∥
∥
∥

2
,

where the inequality follows since the matrix MMT is positive semidefinite.
Substitution in (32) gives

∥
∥∥I − (

V f )2
∥
∥∥

2 ≤ 1

(1 − θ)2

(
nθ2 +

∥
∥∥D f

XS

∥
∥∥

2 + 2θTr
(

D f
XS

))
.
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Now let λ
(
D f

XS

)
be the vector consisting of the eigenvalues of D f

XS. Using the
Cauchy-Schwartz inequality and (28) we get

Tr
(

D f
XS

)
=

n∑

i=1

λi

(
D f

XS

)
= eTλ

(
D f

XS

)
≤ ‖e‖

∥
∥
∥λ
(

D f
XS

)∥∥
∥

= ‖e‖
∥
∥∥D f

XS

∥
∥∥ ≤ 2

√
n ω (V)2 .

Substitution gives, also using (28),

∥
∥∥I−(V f )2

∥
∥∥

2 ≤ 1

(1 − θ)2

(
nθ2 + 4ω (V)4 + 4θ

√
n ω (V)2) =

(
2ω (V)2 + θ

√
n

1 − θ

)2

.

which implies the lemma. �

Lemma 5.9 Let ω (V) < 1√
2
. Then one has

2δ
(
V f ) ≤ 2 ω (V)2 + θ

√
n

√
(1 − θ)

(
1 − 2ω (V)2)

.

Proof We may write, using (30),

2δ
(
V f ) =

∥∥
∥V f − (

V f )−1
∥∥
∥ =

∥∥
∥
(
V f )−1

(
I − (

V f )2
)∥∥
∥

≤ λmax

((
V f )−1

) ∥∥
∥I − (

V f )2
∥∥
∥ = 1

λmin
((

V f
))
∥∥
∥I − (

V f )2
∥∥
∥ .

Using the bounds in Lemma 5.7 and Lemma 5.8 the lemma follows. �

Recall from Section 4.3 that we need to have δ
(
V f
) ≤ 1√

2
. By Lemma 5.9 it

suffices for this that

2 ω (V)2 + θ
√

n
√

(1 − θ)
(
1 − 2ω (V)2)

≤ √
2. (33)

Lemma 5.10 Let ω (V) ≤ 1
2 and

θ = α

2
(√

n + 1
) , 0 ≤ α ≤ 1. (34)

Then the iterates
(
X f , y f , S f

)
are strictly feasible and δ

(
V f
) ≤ 1√

2
.

Proof Due to Lemma 5.6 and ω (V) ≤ 1
2 , the iterates

(
X f , y f , S f

)
are

strictly feasible. We just established that if inequality (33) is satisfied then
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δ
(
V f
) ≤ 1/

√
2. The left hand side in (33) is monotonically increasing in ω (V).

By substituting ω (V) = 1
2 , the inequality (33) reduces to

1
2 + θ

√
n

√
1
2 (1 − θ)

≤ √
2,

which is equivalent to

4nθ2 + 4
(√

n + 1
)
θ − 3 ≤ 0.

The largest possible value of θ satisfying this inequality is given by

θ = 3

2

(√
n + 1 +

√(√
n + 1

)2 + 3n
)

≥ 3

2

(√
n + 1 +

√(√
n + 1

)2 + 3
(√

n + 1
)2
) = 1

2
(√

n + 1
) ,

which is in agreement with (34). Thus the lemma has been proved. �

5.2 An upper bound for ω (V)

As became clear in (22), the system (15)–(17), which defines the search
directions � f X, � f y and � f S, can be expressed in terms of scaled search
directions D f

X and D f
S . We define the linear space L as follows:

L := {
ξ ∈ Sn : DAi D • ξ = 0, i = 1, . . . , m

}
.

Using the linear space L, it is clear from the first equation in (22) that the affine
space

{
ξ ∈ Sn : DAi D • ξ = 1√

μ
θν
(
r0

b

)
i , i = 1, . . . , m

}

equals D f
X + L. By the second equation in system (22), we have D f

S ∈
1√
μ
θνDR0

c D + L⊥. Since L ∩ L⊥ = {0}, the spaces D f
X + L and D f

S + L⊥ meet
in a unique matrix. This matrix is denoted below by Q.

Lemma 5.11 Let Q be the (unique) matrix in the intersection of the affine spaces
DX + L and DS + L⊥. Then

2ω (V) ≤
√

‖Q‖2 + (‖Q‖2 + 2δ (V)
)2

.

Proof The proof is similar to the proof of Lemma 5.6 in [45], and is therefore
omitted. �
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From Lemma 5.10 we know that we want to have ω (V) ≤ 1
2 because then

δ
(
V+) ≤ 1√

2
. Due to Lemma 5.11 this will hold if ‖Q‖ satisfies

‖Q‖ + (‖Q‖ + 2δ (V))2 ≤ 1. (35)

5.3 An upper bound for ‖Q‖

Recall from Lemma 5.11 that Q is the unique solution of the system

DAi D • Q = 1√
μ

θν
(
r0

b

)
i , i = 1, . . . , m,

m∑

i=1

ξi√
μ

DAi D + Q = 1√
μ

θνDR0
c D. (36)

We proceed to finding an upper bound for ‖Q‖. As will become clear below,
especially in the proofs of Lemma 5.12 and Lemma 5.15, it will be convenient
to choose the initial iterates

(
X0, y0, S0

)
as follows:

X0 = S0 = ζ I, y0 = 0, μ0 = ζ 2, (37)

where ζ > 0 is such that

X∗ + S∗ � ζ I, (38)

for some (X∗, y∗, S∗) ∈ F∗. It may be noted that this choice of the initial
iterates has become usual for infeasible IPMs for SDO. See, e.g., [22, 42, 44].

For the moment, let us write

(rb )i = θν
(
r0

b

)
i , i = 1, 2, . . . , m, Rc = θνR0

c,

and let rb be the vector ((rb )1 ; (rb )2 ; . . . ; (rb )m). For any two matrices E (of
size m × n) and F (of size p × q) the Kronecker product E ⊗ F is the mp × nq
block matrix

E ⊗ F =
⎡

⎢
⎣

E11 F · · · E1n F
...

. . .
...

Em1 F · · · Emn F

⎤

⎥
⎦ .

We recall from [29] some properties of Kronecker product and the operator
vec (·) that are useful for our purpose. These properties are

(a) (E ⊗ F)T = ET ⊗ FT .

(b) If E and F are square and nonsingular, then

(E ⊗ F)−1 = E−1 ⊗ F−1.

(c) For any E (m × n) , F (n × r) and H (r × s), we have

vec (EHF) = (
FT ⊗ E

)
vec (H) .
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By using these properties and the definition of the inner product of two
matrices the system (36) can be rewritten as follows:

vec (Ai)
T (D ⊗ D) vec (Q) = 1√

μ
(rb )i , i = 1, . . . , m,

m∑

i=1

ξi√
μ

(D ⊗ D) vec (Ai) + vec (Q) = 1√
μ

(D ⊗ D) vec (Rc) . (39)

Let AT = [
vec (A1) vec (A2) . . . vec (Am)

]
and ξ = (ξ1; ξ2; . . . ; ξm). One

may easily verify that we can rewrite the system (39) as follows:

A (D ⊗ D) vec (Q) = 1√
μ

rb ,

(D ⊗ D)AT ξ√
μ

+ vec (Q) = 1√
μ

(D ⊗ D) vec (Rc) , (40)

Lemma 5.12 With
(
X0, y0, S0

)
as defined in (37) and (38), we have

‖Q‖ ≤ θ

√
ν Tr

(
P2 + P−2

)
. (41)

Proof Replacing A, D ⊗ D and vec (Q) in system (40) by A, D and q, respec-
tively, yields exactly the same system as in the proof of Lemma 5.7 in [45]. By
using similar arguments as there, we obtain the following result:

√
μ ‖vec (Q)‖ ≤ θν

√∥∥vec
(
D
(
S0 − S̄

)
D
)∥∥2 + ∥∥vec

(
D−1

(
X0 − X̄

)
D−1

)∥∥2
,

where X̄, ȳ and S̄ satisfy

Avec
(
X̄
) = b ,

AT ȳ + vec
(
S̄
) = vec (C) . (42)

Using ‖vec (U)‖ = ‖U‖ for any matrix U , we obtain

√
μ ‖Q‖ ≤ θν

√∥∥(D
(
S0 − S̄

)
D
)∥∥2 + ∥∥D−1

(
X0 − X̄

)
D−1

∥∥2
. (43)

We are still free to choose X̄ and S̄, such that (42) is satisfied. We use X̄ = X∗
and S̄ = S∗, with X∗ and S∗ as in (38). Then we have

0 � X0 − X̄ = X0 − X∗ � ζ I, 0 � S0 − S̄ = S0 − S∗ � ζ I.

It follows that
∥
∥D

(
S0 − S̄

)
D
∥
∥2 ≤ ζ 2

∥
∥D2

∥
∥2 = ζ 2 ‖P‖2 = ζ 2Tr

(
P2
)
,

where we used Lemma 5.2 and D = P
1
2 . In the same way it follows that

∥∥D−1
(
X0 − X̄

)
D−1

∥∥2 ≤ ζ 2Tr
(
P−2

)
.
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Substituting the last inequalities and μ = νμ0 = νζ 2 into (43) gives

‖Q‖ ≤ θ

√
ν Tr

(
P2 + P−2

)
,

proving the lemma. �

Lemma 5.13 With
(
X0, y0, S0

)
as defined in (37) and (38), we have

‖Q‖ ≤ θ

ζ λmin (V)
Tr (X + S) . (44)

Proof Using (5) and Lemma 5.2 we have

Tr
(
P2
) = Tr

(
X

1
2

(
X

1
2 SX

1
2

) −1
2

X
(

X
1
2 SX

1
2

) −1
2

X
1
2

)

= Tr
(

X
(

X
1
2 SX

1
2

) −1
2

X
(

X
1
2 SX

1
2

) −1
2

)

≤ 1

λmin

((
X

1
2 SX

1
2

) 1
2

)Tr
(

X2
(

X
1
2 SX

1
2

) −1
2

)

≤ Tr
(
X2
)

λmin

(
X

1
2 SX

1
2

) = Tr
(
X2
)

μλmin
(
V2
) ,

where for the last equality we used V2 ∼ X
1
2 SX

1
2

μ
∼ XS

μ
. In the same way we get

Tr
(
P−2

) ≤ Tr
(
S2
)

μλmin
(
V2
) .

Thus we obtain

√
Tr
(
P2 + P−2

) ≤ 1

λmin (V)

√
Tr
(
X2 + S2

)

μ
. (45)

Moreover, by the positive definiteness of X and S and Lemma 5.3 it follows
that

Tr
(
X2 + S2

) ≤ Tr
(
X2 + S2 + XS + SX

) = Tr
(
(X + S)2) ≤ Tr (X + S)2 .

(46)

Substituting (45) and (46) in (41) gives

‖Q‖ ≤ θ

λmin (V)

√
ν

μ
Tr (X + S)2.

Since μ = νμ0 = νζ 2, the lemma follows. �
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5.4 Some bounds for Tr (X + S) and λmin (V). The choice of τ and α

Let X be feasible for (Pν) and (y, S) for (Dν). We need to find an upper bound
for Tr (X + S) and lower bound on the eigenvalues of V as defined in (6). We
can rewrite δ (V) in (10) as follows:

4δ (V)2 = ∥∥V − V−1
∥∥2

= Tr
((

V − V−1
)T (

V − V−1
))

= Tr
(
V2 − 2I + V−2

)

=
n∑

i=1

(
λi (V)2 − 2 + 1

λi (V)2

)

=
n∑

i=1

(
λi (V) − 1

λi (V)

)2

. (47)

Using this one easily derives the following result, which we state without
further proof.

Lemma 5.14 (Cf. Lemma II.60 in [46]) Let δ = δ (V) be given by (47). Then

1

ρ (δ)
≤ λi (V) ≤ ρ (δ) , (48)

where

ρ (δ) := δ +
√

1 + δ2. (49)

Lemma 5.15 Let X and (y, S) be feasible for the perturbed problems (Pν) and
(Dν) respectively and let

(
X0, y0, S0

)
and (X∗, y∗, S∗) ∈ F∗ be as defined in

(37) and (38). Then we have

νζTr (X + S) ≤ S • X + νnζ 2.

Proof Let

X ′ = X − νX0 − (1 − ν) X∗,

y′ = y − νy0 − (1 − ν) y∗,

S′ = S − νS0 − (1 − ν) S∗.

From (13), (14) and definition of perturbed problems (Pν) and (Dν), it is easily
seen that

(
X ′, y′, S′) satisfies

Ai • X ′ = 0, i = 1, . . . , m,

m∑

i=1

y′
i Ai + S′ = 0.
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This implies X ′ • S′ = 0, i.e.,
(
X − νX0 − (1 − ν) X∗) • (S − νS0 − (1 − ν) S∗) = 0.

By expanding the last equality and using the fact that X∗ • S∗ = 0 we obtain

ν
(
S0 • X + X0 • S

) = S • X + ν2S0 • X0 + ν (1−ν)
(
S0 • X∗+X0 • S∗)

− (1−ν)
(
S • X∗+S∗ • X

)
.

Since
(
X0, y0, S0

)
are as in (37) we have

S0 • X + X0 • S = ζTr (X + S) , S0 • X0 = nζ 2,

S0 • X∗ + X0 • S∗ = ζTr
(
X∗ + S∗) .

Due to (38) we have Tr (X∗ + S∗) ≤ nζ . Substitution gives

νζTr (X + S) = S•X+ν2nζ 2+ν (1−ν) ζTr
(
X∗+S∗)−(1−ν)

(
S•X∗+S∗•X

)

≤ S • X + ν2nζ 2 + ν (1 − ν) nζ 2 − (1 − ν)
(
S • X∗ + S∗ • X

)

= S • X + νnζ 2 − (1 − ν)
(
S • X∗ + S∗ • X

)

≤ S • X + νnζ 2,

where the last inequality is due to the fact S • X∗ + S∗ • X ≥ 0. Hence the
proof is complete. �

Lemma 5.16 Using the same notations as in Lemma 5.15, one has

Tr (X + S) ≤ (
ρ (δ)2 + 1

)
nζ, (50)

where ρ (δ) as defined in (49).

Proof Dividing both sides of the inequality in Lemma 5.15 by νζ , while using
that μ = νζ 2, we get

Tr (X + S) ≤ Tr
(

SX
μ

)
ζ + nζ.

Hence it suffices for the proof if we show that

Tr
(

SX
μ

)
≤ nρ(δ)2.

Since SX ∼ μV2, which is immediately clear from (7), the left-hand side equals
Tr(V2). So we can rewrite the last inequality as

n∑

i=1

λi(V)2 ≤ nρ(δ)2.

But this inequality is an immediate consequence of Lemma 5.14. Hence the
proof is complete. �
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By substituting (48) and (50) into (44) we get

‖Q‖ ≤ nθρ (δ)
(
1 + ρ (δ)2

)
.

At this stage we choose

τ = 1

8
. (51)

Since δ ≤ τ = 1
8 and ρ (δ) is monotonically increasing in δ, we have

‖Q‖ ≤ nθρ (δ)
(
1 + ρ (δ)2

) ≤ nθρ

(
1

8

)(

1 + ρ

(
1

8

)2
)

= 2.586 n θ.

By using θ = α

2(
√

n+1)
(see Lemma 5.10) we obtain the following upper bound

for the norm of Q:

‖Q‖ ≤ 2.586 n α

2
(√

n + 1
) . (52)

In (35) we found that in order to have δ
(
V f
) ≤ 1√

2
, we should have ‖Q‖2 +

(‖Q‖ + 2δ (V))2 ≤ 1. Therefore, since δ (V) ≤ τ = 1
8 , it suffices if Q satisfies

‖Q‖2 + (‖Q‖ + 1
4

)2 ≤ 1. The latter holds if ‖Q‖ ≤ 0.57097. Hence, using (52)
we obtain that δ

(
V f
) ≤ 1√

2
certainly holds if

2.586 n α

2
(√

n + 1
) ≤ 0.57097.

From this we deduce that by taking

α = 2
(√

n + 1
)

5 n
, (53)

it is guaranteed that δ
(
V f
) ≤ 1√

2
.

5.5 Complexity

In the previous sections we have found that if at the start of an iteration
the iterates satisfy δ(X, S; μ) ≤ τ , with τ as defined in (51), and θ as in (34),
and with taking α as in (53), then after the feasibility step the iterates satisfy
δ(X, S; μ+) ≤ 1/

√
2.

According to (20), at most

log2

(
log2

1

τ 2

)
= log2

(
log2 64

) ≤ 3

centering steps suffice to get iterates that satisfy δ(X, S; μ+) ≤ τ . So each
iteration consists of one feasibility step and at most 3 centering steps. In each
iteration both the duality gap and the norms of the residual vectors are reduced
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by the factor 1 − θ . Hence, using X0 • S0 = nζ 2, the total number of iterations
is bounded above by

1

θ
log

max
{
nζ 2,

∥∥r0
b

∥∥ ,
∥∥R0

c

∥∥}

ε
.

Due to (34) and (53) we have

θ = α

2
(√

n + 1
) = 1

5 n
.

Hence the total number of inner iterations is bounded above by

20 n log
max

{
nζ 2,

∥
∥r0

b

∥
∥ ,
∥
∥R0

c

∥
∥}

ε
.

Note that the order of this bound is the same as the bound in [30, 45] for LO.
We may state without further proof our main result.

Theorem 5.17 If (P) and (D) have optimal solutions (X∗, y∗, S∗) ∈ F∗ such
that X∗ + S∗ ≤ ζ I, then after at most

20 n log
max

{
nζ 2,

∥∥r0
b

∥∥ ,
∥∥R0

c

∥∥}

ε
.

iterations the algorithm finds an ε-solution of (P) and (D).

The above theorem gives a convergence result under the assumption that
(P) and (D) have optimal solutions (X∗, y∗, S∗) with zero duality gap and
such that the eigenvalues of X∗ and S∗ do not exceed ζ . One might ask what
happens if this condition is not satisfied.

Our analysis of the algorithm has made clear that as long as we have
δ(X, S; μ+) ≤ 1/

√
2 after each feasibility step then the algorithm will generate

an ε-solution of (P) and (D), and the number of iterations will be as given
in Theorem 5.17. So, if during the execution of the algorithm it happens that
after the feasibility step δ(X, S; μ+) > 1/

√
2, then we must conclude that there

exists no optimal solutions (X∗, y∗, S∗) with zero duality gap such that the
eigenvalues of X∗ and S∗ do not exceed ζ . In that case one might rerun the
algorithm with larger values of ζ . If this does not help, then eventually one
should realize that (P) and/or (D) do not have optimal solutions at all, or they
have optimal solutions with positive duality gap.

6 Concluding remarks

We extended the full-Newton infeasible interior-point algorithm for LO as
developed in [45], to SDO. We obtained an iteration bound of the same order
as in the LO case [30, 45]. See also [31].

Concerning the practical performance of our algorithm, one should realize
that it is a common feature of IPMs for LO and SDO with the best known
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iteration bounds that their practical performance is close to their theoretical
performance. In practice this means that the practical performance must be
increased to become competitive with existing solvers. For this several options
are available. One option is the use of large-update schemes for the barrier
parameter, i.e., the use of larger values of θ . This can be achieved by noting that
the value of θ used in this paper guarantees that after the feasibility step one
has δ(X, S, μ+) ≤ 1√

2
, but this value is a rather pessimistic estimate that indeed

will work in all cases. In most iterations, however, much larger values are
possible, while still keeping δ(X, S, μ+) ≤ 1√

2
. Numerical experiments show

that when maximizing θ with respect to this property, the number of iterations
reduces drastically and the algorithm becomes really competitive. This goes
without worsening the theoretical iteration bound.

Some other interesting topics remain for further research. First, the search
direction used in this paper is based on the NT-symmetrization scheme and it is
natural to ask if other symmetrization schemes can be used. Second, similar as
we discussed for the linear case in [30] we might replace the equation � f X +
P� f SP = μI − XS in the system of the feasibility step by either

� f X + P� f SPT = 0 (54)

or

� f X + P� f SPT = (1 − θ) μS−1 − X.

In [30] we used (54) which made the analysis of the feasibility step for LO
easier than in [45]. For the SDO case we leave it to the future to analyze a full-
Newton step method based on these search directions, but it seems unlikely
that this will lead to a better iteration bound.
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