Skip to main content
Log in

Generalized equations, variational inequalities and a weak Kantorovich theorem

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We prove a Kantorovich-type theorem on the existence and uniqueness of the solution of a generalized equation of the form \(f(u)+g(u)\owns 0\) where f is a Fréchet-differentiable function and g is a maximal monotone operator defined on a Hilbert space. The depth and scope of this theorem is such that when we specialize it to nonlinear operator equations, variational inequalities and nonlinear complementarity problems we obtain novel results for these problems as well. Our approach to the solution of a generalized equation is iterative, and the solution is obtained as the limit of the solutions of partially linearized generalized Newton subproblems of the type \(Az+g(z)\owns b\) where A is a linear operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Argyros, I.K.: On the Newton-Kantorovich hypothesis for solving equations. J. Comput. Appl. Math. 11, 103–110 (2004)

    MATH  Google Scholar 

  2. Argyros, I.K.: Computational Theory for Iterative Methods (Studies in Computational Mathematics, vol. 15). Elsevier, New York (2007)

    Google Scholar 

  3. Bonnans, J.F.: Local analysis of Newton-type methods for variational inequalities and nonlinear programming. Appl. Math. Optim. 29, 161–186 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dennis, J.E.: On the Kantorovich hypotheses for Newton’s method. SIAM J. Numer. Anal. 6, 493–507 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gragg, W.B., Tapia, R.A.: Optimal error bounds for the Newton-Kantorovich theorem. SIAM J. Numer. Anal. 11, 10–13 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  6. Harker, P.T., Pang, J.S.: Finite dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Program. 48, 161–220 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Josephy, N.H.: Newton’s method for generalized equations. Technical Report No. 1965, Mathematics Research Center. University of Wisconsin, Madision (1979)

  8. Kantorovich, L.V.: On Newton’s method for functional equations (Russian). Dokl. Akad. Nauk SSSR 59, 1237–1240 (1948)

    Google Scholar 

  9. Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29, 341–346 (1973)

    Article  MathSciNet  Google Scholar 

  10. Minty, G.J.: On the monotonicity of the gradient of a convex function. Pac. J. Math. 14, 243–247 (1964)

    MATH  MathSciNet  Google Scholar 

  11. Robinson, S.M.: Strongly regular generalized equations. Math. Oper. Res. 5, 43–62 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  12. Robinson, S.M.: Generalized equations. In: Bachem, A., Grŏtschel, M., Korte, B. (eds.) Mathematical Programming: The State of the Art, pp. 346–367. Springer, Berlin (1982)

    Google Scholar 

  13. Stampacchia, G.: Formes bilineares coercitives sur les ensembles convexes. C. r. Acad. Paris 258, 4413–4416 (1964)

    MATH  MathSciNet  Google Scholar 

  14. Uko, L.U.: Generalized equations and the generalized Newton method. Math. Program. 73, 251–268 (1996)

    MathSciNet  Google Scholar 

  15. Uko, L.U.: On a class of general strongly nonlinear quasivariational inequalities. Riv. Mat. Pura Appl. 11, 47–55 (1992)

    MATH  MathSciNet  Google Scholar 

  16. Wang, Z.: Semilocal convergence of Newton’s method for finite-dimensional variational inequalities and nonlinear complementarity problems. Doctoral thesis, Fakultăt fŭr Mathematik, Universităt Karlsruhe (2005)

    Google Scholar 

  17. Wang, Z.: Extensions of Kantorovich theorem to complementarity problems. ZAMM. J. Appl. Math. Mech. 88, 179–190 (2008)

    MATH  Google Scholar 

  18. Wang, Z., Shen, Z.: Kantorovich theorem for variational inequalities. Appl. Math. Mech. (English Edition) 25, 1291–1297 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Livinus U. Uko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uko, L.U., Argyros, I.K. Generalized equations, variational inequalities and a weak Kantorovich theorem. Numer Algor 52, 321–333 (2009). https://doi.org/10.1007/s11075-009-9275-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-009-9275-2

Keywords

Mathematics Subject Classifications (2000)

Navigation