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Abstract In the numerical solution of ODEs, it is now possible to develop efficient
techniques that will deliver approximate solutions that are piecewise polynomials.
The resulting methods can be designed so that the piecewise polynomial will satisfy
a perturbed ODE with an associated defect (or residual) thatis directly controlled in
a consistent fashion. We will investigate the reliability/cost trade off that one faces
when implementing and using such methods, when the methods are based on an
underlying discrete Runge-Kutta formula.

In particular we will identify a new class of continuous Runge-Kutta methods
with a very reliable defect estimator and a validity check that reflects the credibility
of the estimate. We will introduce different measures of the“reliability” of an ap-
proximate solution that are based on the accuracy of the approximate solution; the
maximum magnitude of the defect of the approximate solution; and how well the
method is able to estimate the maximum magnitude of the defect of the approximate
solution. We will also consider how methods can be implemented to detect and cope
with special difficulties such as the effect of round-off error (on a single step) or the
ability of a method to estimate the magnitude of the defect when the stepsize is large
(as might happen when using a high-order method at relaxed accuracy requests).

Numerical results on a wide selection of problems will be summarized for meth-
ods of orders five, six and eight. It will be shown that a modestincrease in the cost per
step can lead to a significant improvement in the quality of the approximate solutions
and the reliability of the method. For example, the numerical results demonstrate that,
if one is willing to increase the cost per step by 50%, then a method can deliver ap-
proximate solutions where the reported estimated maximum defect is within 1% of
its true value on 95% of the steps.
Subject Classification:65L05, 65L10.
Keywords: Runge-Kutta Methods, initial value problems, defect, error control, con-
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1 Introduction and Motivation

Consider an initial value problem (IVP) defined by the systemof ordinary differential
equations (ODEs),

y′ = f (x,y), y(x0) = y0, on [x0,xF ]. (1)

A numerical method when applied to (1) will introduce a partitioningx0 < x1 < · · ·<
xN = xF and corresponding discrete approximationsy0,y1 · · ·yN . Theyi’s are usually
determined sequentially. To analyze the convergence and accuracy of a numerical
method it is convenient to introduce the local error associated with each step. On step
i let zi(x) be the solution of the ‘local’ IVP,

z′i(x) = f (x,zi(x)), zi(xi−1) = yi−1, on [xi−1,xi]. (2)

The discrete local errorassociated with theith step is then defined to bezi(xi) − yi.
A pth-order, s-stage, discrete Runge-Kutta formula, when applied to (1), deter-

mines
yi = yi−1 + hi

s

∑
j=1

ω jk j = zi(xi) + O(hp+1
i ),

wherehi = xi − xi−1 and thejth stage,k j, is defined by,

k j = f (xi−1 + hic j,yi−1 + hi

s

∑
r=1

a jrkr).

This discrete Runge-Kutta formula is represented by its Butcher tableau:

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
...

...
...

...
...

cs as1 as2 . . . ass

w1 w2 . . . ws

, (3)

A continuous extension of this discrete formula (CRK) is determined by adding(s̄−
s) additional stages to obtain an approximation for anyx ∈ (xi−1,xi)

ui(x) = yi−1 + hi

s̄

∑
j=1

b j(τ)k j, (4)

whereτ =
x−xi−1

hi
andb j(τ) is a polynomial of degree at mostp +1,

b j(τ) =
p+1

∑
r=0

β jrτr. (5)

The additional(s̄ − s) stages and the polynomial coefficientsβ jr are not uniquely
determined by the underlying discrete formula and different criteria have been used
when determining the most suitable interpolating scheme todefine a continuous ex-
tension. (See [16] for a detailed discussion of this issue.)The interpolants that interest
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us have optimal order (in that they agree with the local solution to O(hp+1
i ) and their

derivatives agree with the derivative of the local solutionto O(hp
i ) ).

We will consider two types of optimal order interpolants, each of which satisfies
an equation of the form,

ui(x) = yi−1 + hi

s̄

∑
j=1

b j(τ)k j = zi(x)+ O(hp+1
i ).

The[ui(x)]Ni=1 define a piecewise polynomialU(x) for x ∈ [x0,xF ] and it is this piece-
wise polynomial that will be considered the numerical solution generated by the
CRK method when applied to (1). A simple set of constraints onthe b j(τ) and
on the additional stages (ks+1,ks+2 · · ·ks̄), (such asks+1 = f (xi,yi), b j(1) = w j for
j = 1,2, · · · ,s andbs+1(1) = bs+2(1) = · · · = bs̄(1) = 0) will ensure thatui(x) inter-
polatesyi−1,yi, f (xi−1,yi−1) and f (xi,yi) and thereforeU(x) ∈C1[x0,xF ].

The numerical solutionU(x) has an associated defect or residual,

δ (x) ≡ f (x,U(x))−U ′(x)

= f (x,ui(x))−u′i(x), for x ∈ [xi−1,xi].

It can be shown that, forU(x) ∈C1[x0,xF ], defined in this way (see [3] for details),

δ (x) = Ḡ(τ)hp
i + O(hp+1

i ), for x ∈ [xi−1,xi], (6)

where

Ḡ(τ) = q̄1(τ)F1 + q̄2(τ)F2 + · · ·+ q̄L(τ)FL, (7)

and the ¯q j(τ)’s are polynomials inτ that depend only on the CRK formula while the
Fj’s are constants that depend only on the problem.

Methods can be designed and implemented with the objective of adjusting the
stepsizehi in an attempt to ensure that the maximum magnitude ofδ (x) is bounded by
a specified error tolerance,TOL, on each step. From (6) and (7) we see that ashi → 0
the defect will behave like a linear combination of the ¯q j(τ) over each[xi−1,xi]. In
the special case thatL = 1 the shape of the defect will be the same (ashi → 0) for all
problems and all steps. That is, the defect will almost always ’converge’ to a multiple
of q̄1(τ). The maximum defect should then occur (ashi → 0) at the location in[0,1]
of the local extremum of ¯q1(τ). In this case we can reliably estimate the maximum
defect on a step using a single evaluation of the defect at a fixed sample point and we
will refer to the defect control strategy asStrict Defect Control (SDC).

In the general case, whenL > 1, the associated̄G(τ) defined in (7) can be very
different for different problems and for different stepsi, and this makes it difficult
to choose a fixed sample pointτ∗ that would give a robust estimate of the maximum
defect across the timestep. In this case we have used a value for τ∗ that is not near
any of the zeros of the ¯q1(τ), q̄2(τ) · · · q̄L(τ) [3] and we refer to this defect control
strategy asRelaxed Defect Control (RDC). The two types of continuous extensions
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Formula p s s̄ s̃
CRK4 4 4 6 8
CRK5 5 6 9 12
CRK6 6 7 11 15
CRK7 7 9 15 20
CRK8 8 13 21 27

Table 1 Cost per step of some specific explicit RDC and SDC CRK formulas we have investgated. The
formulas in bold are the ones which we have implemented and tested and which we will discuss in more
detail in this paper.

that we consider in detail areui(x) corresponding to RDC and ˜ui(x) corresponding to
SDC.

RDC : ui(x) = yi−1 + hi

s̄

∑
j=1

b j(τ)k j = zi(x)+ O(hp+1
i ),

Ḡ(τ) = q̄1(τ)F1 + q̄2(τ)F2 + · · ·+ q̄L(τ)FL, (8)

SDC : ũi(x) = yi−1 + hi

s̃

∑
j=1

b̃ j(τ)k j = zi(x)+ O(hp+1
i ), G̃(τ) = q̃1(τ)F1 . (9)

The RDC methods that we have implemented and will investigate in detail in
subsequent sections correspond to CRK5, CRK6 and CRK8 (see table 1). These un-
derlying CRK formulas have been derived and analysed previously (see [4]) and are
investigated here in more detail to help quantify the potential cost and improvements
in performance that can be realised when one implements an SDC interpolant for the
same discrete RK formula. The SDC implementation of CRK5, CRK6 and CRK8 that
we introduce and analyse in this paper are new. We will also discuss some potential
difficulties which can arise with our SDC methods and we will propose a modified
SDC CRK (denoted SDCV CRK) which, at a modest increase in cost, will detect and
address this difficulty.

Note that the analysis, justification and implementation oflocal interpolants dis-
cussed in this investigation applies to general implicit Runge-Kutta formulas repre-
sented by (3). If the underlying discrete Runge-Kutta formula is explicit (i.e.,c1 = 0
anda jr = 0 for r ≥ j ) then no nonlinear equations need be solved on each step and
the “cost” of taking a step should be proportional to the number of stages (¯s or s̃)
required in the definition of the associated local interpolant (8), (9). The numerical
results we present and the extensive testing we have performed are for explicit CRK
methods. We have also had limited experience with some implicit CRK methods (see
[7] for example) where we have observed similar performanceimprovements with
even less increase in cost.

For apth order discrete RK formula, we are primarily interested in optimal order
(i.e., the corresponding defect isO(hp

i ) ) local interpolants satisfying (8) or (9). In-
terpolants with lower order defects can be used effectivelyin some applications but,
when defect error control is used, such methods will not generally be as efficient. Ta-
ble 1 summarizes the relative costs of some known orderp, explicit, RDC and SDC
CRK’s. It is interesting to observe that, for the orders we are considering, the cost of
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an RDC CRK is about 50 % more than that of the underlying discrete formula while
the cost of a SDC CRK is about double that of the underlying discrete formula.

For an SDC CRK (9) we know from (6) that the leading coefficientin the asymp-
totic expansion of the defect satisfies,

G̃(τ) = q̃1(τ)F1. (10)

We will show thatF1hp
i is a multiple of the discrete local error associated withyi.

That is, there is a direct asymptotic relationship between the local error of the under-
lying discrete RK formula and the continuous defect of any associated SDC CRK.
This relationship will be analyzed in more detail in the nextsection (see also [14]
for a discussion of this relationship for a different class of CRKs). Since ˜q1(τ) is
independent of the problem we should observe ashi → 0 that the shape of̃G, and
consequently the (norm of the) local maximum defect, shouldbe proportional to the
fixed polynomial ˜q1(τ), independent of the problem and the stepi. The value to use
for τ∗ is then the location of the maximum of|q̃1(τ)|,τ ∈ [0,1]. In the following sec-
tions we verify that this is indeed the case. Note that the “shape of the defect” over a
step can be represented by a plot ofδ (xi−1 + τhi)/δ (xi−1 + τ∗hi) for 0≤ τ ≤ 1 and
this plot should approach ˜q1(τ)/q̃1(τ∗) for all steps and for all problems ashi → 0.
The only exception would be on those special steps whereF1 is equal to zero or is
very small in magnitude. To illustrate this expected behaviour, figure 1 presents an
plot of δ (τ) vs τ (scaled by its local extremum) for all steps required by a CRKto
solve a typical problem withTOL = 10−6.
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Fig. 1 Plot of defect vsτ (scaled by its local extremum) for each step of a typicalU(x) computed by
CRK6.

2 Deriving an SDC CRK

One can analyze the error in any CRK by considering the local interpolant,ui(x), to
be an approximation to the local solutionzi(x) for x ∈ [xi−1,xi]. For this analysis it is
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convenient to introduce the interpolant, ˜zi(x), of degree at mostp+1, that interpolates
the exact local solution atxi−1,xi, and the derivative of the exact local solution at
xi−1,xi,xi−1 + µrhi, for r = 1,2· · · p−2. This approach allows one to decompose the
error in ui(x) into two components – the error inherent in polynomial interpolation
(the local interpolation error) and the error that arises asa consequence of “inexact”
values being interpolated (the data error). This approach was first used for the analysis
of CRKs by Shampine [15] and Gladwell et al. [9] to investigate the associated local
errors. It was also subsequently used by Higham ([10] [11]) to investigate the defects
and the quality of the defect estimates for a particular class of CRKs.

The polynomial ˜zi(x) always exists and is unique (if theµr’s are distinct and not
equal to 0 or 1). This polynomial has an associated local interpolation errorLIEi(x)
that satisfies:

LIEi(x) ≡ zi(x)− z̃i(x) =
z(p+2)

i (η)

(p +2)!
hp+2

i τ2(τ −1)2
p−2

∏
r=1

(τ − µr), (11)

for someη ∈ [xi−1,xi] with τ = (x− xi−1)/hi.
For a prescribed set of interpolation points (µ1,µ2 · · ·µp−2), we can represent

z̃i(x) in terms of the corresponding ‘generalized Lagrange basis’, Q̂ j(x), j = 1,2· · ·(p+
2),

z̃i(x) = Q̂0(x)zi(xi−1)+ Q̂1(x)zi(xi)+ Q̂2(x)z
′
i(xi−1)+ Q̂3(x)z

′
i(xi)

+
p−2

∑
j=1

Q̂3+j(x)z
′
i(xi−1 + µ jhi).

= Q̂0(x)yi−1 + Q̂1(x)zi(xi)+ Q̂2(x) f (xi−1,yi−1)+ Q̂3(x)z
′
i(xi)

+
p−2

∑
j=1

Q̂3+j(x)z
′
i(xi−1 + µ jhi). (12)

Q̂0(x) is the unique polynomial of degree at mostp+1 satisfying thep+2 equations,

Q̂0(xi−1) = 1, Q̂0(xi) = Q̂′
0(xi−1) = Q̂′

0(xi) = 0

andQ̂′
0(xi−1 + µrhi) = 0 for r = 1,2· · · (p−2). (13)

Q̂1(x) is the unique polynomial of degree at mostp+1 satisfying thep+2 equations,

Q̂1(xi−1) = Q̂′
1(xi−1) = Q̂′

1(xi) = 0, Q̂1(xi) = 1

andQ̂′
1(xi−1 + µrhi) = 0 for r = 1,2· · · (p−2). (14)

Q̂2(x) is the unique polynomial of degree at mostp+1 satisfying thep+2 equations,

Q̂2(xi−1) = Q̂2(xi) = Q̂′
2(xi) = 0,Q̂′

2(xi−1) = 1,

andQ̂′
2(xi−1 + µrhi) = 0 for r = 1,2· · · (p−2). (15)
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Q̂3(x) is the unique polynomial of degree at mostp+1 satisfying thep+2 equations,

Q̂3(xi−1) = Q̂3(xi) = Q̂′
3(xi−1) = 0,Q̂′

3(xi) = 1,

andQ̂′
3(xi−1 + µrhi) = 0 for r = 1,2· · · (p−2). (16)

Similarly, for j = 1,2· · ·(p−2), Q̂ j+3(x) is the unique polynomial of degree at most
p +1 satisfying,

Q̂ j+3(xi−1) = Q̂ j+3(xi) = Q̂′
j+3(xi−1) = Q̂′

j+3(xi) = 0, Q̂′
j+3(xi−1 + µ jhi) = 1,

and Q̂′
j+3(xi−1 + µrhi) = 0 for r = 1,2· · ·(p−2), r 6= j. (17)

In this investigation we will find it convenient to introducea scaled version of
the generalized Lagrange basis to represent ˜zi(x) and the local interpolantsui(x) and
ũi(x) (where the sequence (µ1, · · ·µp−2) corresponds to a subset of (cs+1,cs+2 · · ·cs̃)
). This representation will be used in the construction, analysis and implementation
of the specific SDC CRK formulas we develop. We also find it moreconvenient to
work with the variableτ (rather thanx) when defining and implementing the local
interpolants. With this change of variable theQ̂ j(x) will be represented as a suitably
scaled polynomial inτ and will be independent ofi andhi. To see this letQ0(τ) =
Q̂0(x),Q1(τ) = Q̂1(x) andQ j(τ) = (1/hi)Q̂ j(x) for j = 2,3· · · (p− 2). The Q̂ j(x)
will satisfy equations ((13) - (17)) if theQ j(τ) are defined by the following sets of
equations (where, in these equations, the symbol′ representsd

dτ rather thand
dx ) and

we know d
dx Q j(τ) = 1

hi
Q′

j(τ)). Note that each of these sets of equations can be solved
in Maple using a short script (see ([5] or [12] ) for details).

Q0(τ) is defined by,

Q0(0) = 1,Q0(1) = Q′
0(0) = Q′

0(1) = 0

and Q′
0(µr) = 0 for r = 1,2· · · (p−2). (18)

Q1(τ) is defined by,

Q1(0) = 0,Q1(1) = 1,Q′
1(0) = Q′

1(1) = 0

and Q′
1(µr) = 0 for r = 1,2· · · (p−2). (19)

Q2(τ) is defined by,

Q2(0) = Q2(1) = Q′
2(1) = 0,Q′

2(0) = 1,

and Q′
2(µr) = 0 for r = 1,2· · · (p−2). (20)

Q3(τ) is defined by,

Q3(0) = Q3(1) = Q′
3(0) = 0,Q′

3(1) = 1,

and Q′
3(µr) = 0 for r = 1,2· · · (p−2). (21)
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For j = 1,2· · · (p−2), Q j+3(τ) is defined by,

Q3+j(0) = Q3+j(1) = Q′
3+j(0) = Q′

3+j(1) = 0, Q′
3+ j(µ j) = 1,

and Q′
3+j(µr) = 0 for r = 1,2· · ·(p−2), r 6= j. (22)

We can then write ˜zi(x) from (12) as,

z̃i(x) = Q0(τ)yi−1 + Q1(τ)zi(xi)+ hiQ2(τ) f (xi−1,yi−1)+ hiQ3(τ)z′i(xi)

+ hi

p−2

∑
j=1

Q3+j(τ)z′i(xi−1 + µ jhi). (23)

Typically we will ask that the local interpolants introduced on stepi interpolate
some of the approximate solution and derivative values introduced on the step. In
particular, for the local interpolants we are considering,we assume the first stage
satisfiesk1 = y′i−1 = f (xi−1,yi−1) and the first additional stage satisfiesks+1 = y′i =
f (xi,yi). As an example, consider the polynomial ¯ui(x) of degree at mostp +1, that
interpolates the four valuesyi−1,yi,y′i−1,y

′
i as well as the additionalp−2 derivative

approximations,

kr ≈ y′(xi−1 + crhi), r = s̄, s̄−1· · · s̄− p +3.

When written as a polynomial inτ, we see (from (23)),

ūi(xi−1 + τhi) = Q0(τ)yi−1 + Q1(τ)yi + hiQ2(τ)k1 + hiQ3(τ)ks+1

+ hi

p−2

∑
r=1

Q3+r(τ)ks̄−p+2+r . (24)

That is,ūi(x) will interpolate the stagesk1 andks+1 as well as the lastp−2 stages,
ks̄−p+3,ks̄−p+4 · · ·ks̄. Subtracting (24) from (23) we see that, forx ∈ (xi−1,xi),

z̃i(x)− ūi(x) = Q1(τ)(zi(xi)− yi)+ Q3(τ)(hiz
′
i(xi)−hiks+1)

+
p−2

∑
r=1

Q3+r(τ)(hiz
′
i(xi−1 + hics̄−p+2+r)−hiks̄−p+2+r). (25)

Differentiating both sides of (25) with respect tox we obtain,

z̃′i(x)− ū′i(x) =
1
hi

q1(τ)(zi(xi)− yi)+ q3(τ)(z′i(xi)− ks+1)

+
p−2

∑
r=1

q3+r(τ)(z′i(xi−1 + hics̄−p+2+r)− ks̄−p+2+r), (26)

whereq j(τ) = d
dτ Q j(τ) for j = 1,2· · ·(p +1).

There are different approaches that can be used to derive SDCCRK formulas.
We will use a “bootstrapping” approach similar to that introduced in [6] to derive
higher order local interpolants. Other approaches, such asthe direct solution of the
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continuous order conditions, are also possible and could lead to a wider class of
suitable SDC CRK formulas.

To derive an appropriate SDC CRK formula we will assume we have an RDC
CRK formula,ui(x) satisfying (8). For example, for the particular fifth, sixthand
eighth order CRKs we will implement and investigate in the next section, the corre-
sponding RDC CRKs we begin with have been identified and discussed in [5]. For
s̃ = s̄ + p−2 and any choice of(p−2) abscissa in(0,1), (cs̄+1,cs̄+2, · · ·cs̃) we then
defineks̄+ j for j = 1,2, · · · (p−2) by,

ks̄+ j = f (xi−1 + cs̄+ jhi,ui(xi−1 + cs̄+ jhi)).

Note thatks̄+ j will then be anO(hp+1
i ) approximation toz′i(xi−1 + cs̄+ jhi) if f (x,y)

satisfies a Lipschitz condition with respect toy. Thereforehiks̄+ j will be anO(hp+2
i )

approximation tohiz′i(xi−1+cs̄+ jhi). This is sufficient to ensure that data errors asso-
ciated with theks̄+ j terms will not contribute to the leading coefficient in the expan-
sion of the defect of ¯ui(x) . To see this consider the defectδ̄ (x) defined by

f (x, ūi(x))− ū′i(x) = [ f (x, ūi(x))− f (x,zi(x))]

+ [ f (x,zi(x))− z′i(x)] + [z′i(x)− ū′i(x)]. (27)

Since the second term in the RHS of (27) is zero, we can expand each of the other
two terms to obtain,

δ̄ (x) = [ f (x, ūi(x))− f (x, z̃i(x))] + [ f (x, z̃i(x))− f (x,zi(x))]

+ [z′i(x)− z̃′i(x)] + [z̃′i(x)− ū′i(x)]. (28)

Of the four terms comprising the RHS of (28), the first term isO(hp+1
i ) (from (25)),

the second term isO(hp+2
i ) (from (11)), and the third term isO(hp+1

i ) (from (11))
and standard interpolation theory. The fourth term (from (26)) can be written as,

[z̃′i(x)− ū′i(x)] = q1(τ)
zi(xi)− yi

hi
+ O(hp+1

i ),

and we observe that theO(hp+1
i ) contribution arising from this term will be directly

related to theq j(τ), j = 3,4· · · p+1, but there will be other contributions as well that
arise from the first and third terms. We then have that the defect δ̄ (x) will satisfy,

δ̄ (x) = q1(τ)F1hp
i + (q̂1(τ)F̂1 + q̂2(τ)F̂2 + · · · · · · q̂L̂(τ)F̂L̂)hp+1

i + O(hp+2
i ), (29)

whereF1hp
i = zi(xi) − yi, the discrete local error associated with the current step,

and the set of polynomial coefficients[q2(τ),q3(τ) · · ·qp+1(τ)], (defined in (26), are
contained in the set[q̂1(τ), q̂2(τ) · · · q̂L̂(τ)]. This will be true for any choice of the
parameterscs̄+1,cs̄+2 · · ·cs̃. The particular choice we make in our development of a
suitable SDC CRK is motivated by an attempt to avoid some of the potential difficul-
ties identified in the next section.
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2.1 Modified Defect Control Strategy : SDCV

Let ũi(x) be a given SDC CRK defined by (9) and satisfying (29). There aretwo
potential deficiencies of this formula that could affect thecost of the method and/or
the reliability of the estimate‖δ̄ (τ∗)‖,

– q1(τ) may have a large maximum value. (Note that its ‘average’ value must be
one sinceq1(0) = q1(1) = 0 andQ1(1) = 1 =

∫ 1
0 q1(τ)dτ .)

– The q̂ j(τ) may be large in magnitude relative toq1(τ) (and thereforehi would
have to be small before the estimate is justified). (That is, before |hiq̂ j(τ)| <<
|q1(τ)| .)

These two potential difficulties were addressed by performing a search (for each
value ofp) over thep−2 free parameters to identify a suitable SDC CRK. For each
set of free parameters we determined

D j = max
τ∈[0,1]

|q j(τ)|, j = 1,2· · · p +1,

where theq j(τ) are defined in (26). The corresponding SDC CRK was considered
to be suitable ifD1 was not much larger than 2 andD j/D1 < 1 for j = 3,4· · · p +1.
Such a requirement will at least ensure that some of the|q̂(τ)| in (29) will be small
relative toD1.

There are two other situations that can arise on some problems on isolated steps
for any SDC CRK, which can result in an unreliable defect estimate. The first situa-
tion arises when|F1| is zero or very small in magnitude. Extensive testing of suitable
SDC CRKs revealed that, on the very few steps where the estimate was too small,
|F1| was inevitably near zero. In this case the first term of (29) isnearly zero and
the contributions to the defect arise from a combination ofO(hp+1

i ) terms. On these
isolated steps, the actual maximum defect was usually smaller than TOL, but the es-
timated value was not close to the true maximum. We introduced a validity check (or
confirmation check) to detect this situation. This validitycheck, as we explain below,
involves two additional defect samples. If this check is satisfied on all steps, one can
have increased confidence in the reliability of the integration. We then modified the
underlying SDC defect control strategy so that, when this check is not satisfied, two
extra sampled defect evaluations are performed to determine a more appropriate esti-
mate of the maximum defect. These two extra samples, together with the first sample
at τ∗ and the two from the validity check, give us five samples of thedefect, and we
choose the largest of these to be our estimate of the maximum defect. We call this
modified defect control strategySDCV.

To justify the particular validity check we have adopted, weobserve thatq1(τ) is
zero atτ = 0,τ = 1 and attains its maximum magnitude atτ∗. Letτ1 < τ∗ andτ2 > τ∗
satisfy

q1(τ1) = q1(τ2) = q1(τ∗)/2.

If we then letR1 =
δ (xi−1+τ1h)
δ (xi−1+τ∗h)

andR2 =
δ (xi−1+τ2h)
δ (xi−1+τ∗h)

, then ash → 0 we expect bothR1

andR2 to approach 1/2. We compute these two ratios and consider the validity check
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to be satisfied if both are close to 1/2. In our tests we interpreted “close to 1/2” to
mean “in the range[.3, .7]”.

The second situation, where the estimate of the maximum defect for a suitable
SDC CRK may be unreliable, arises on problems where round-off errors are not
dominated by the local errors in the various computations associated with a single
step. The polynomial coefficients defining a CRK (theb j(τ) andb̃ j(τ) in (8) and (9) )
can be large in magnitude, particularly forp≥ 6. In addition, the defect is defined and
estimated as the difference between quantities that must be“almost equal”. This can
lead to large relative errors (due to the accumulated affects of round-off error) when
evaluating the interpolant and when evaluating the defect.This issue is investigated
in detail in [5] where it is observed that, if we know in advance the values 0≤ τ1 ≤
τ2 · · ·τk ≤ 1 where the method will be evaluating either the interpolant, its derivative,
or the associated defect, then the polynomial coefficients (evaluated at these special
points) can be computed to full precision and stored internally in the method. It is
easy to do this for the CRKs we have implemented as the defect is only evaluated at
one point (for a RDC CRK or an SDC CRK) or at three points (for anSDCV CRK).

On the other hand, when a user is interested in sampling the interpolant, its deriva-
tive, or the defect at an arbitrary pointx ∈ [xi−1,xi], the total computation must be
performed at the working precision and the contribution of round-off error to the re-
turned approximation will be greater. As an example, figure 2displays a plot of the
computed scaled defect for a sixth order SDC CRK evaluated ata fine mesh of 100
sampled points over a single step whenTOL = 10−12. The plot on the left corresponds
to the case where the evaluation of the polynomial coefficients is performed in double
precision, while the plot on the right corresponds to the case where these coefficients
are evaluated in extended precision (but the remainder of the computation performed
in double precision). As expected, the effect of round-off error is greater asτ → 1
and the contribution to the error that is due to round-off tends to oscillate in sign and
grow in magnitude asτ increases. This suggests that a credible indication or signal
that round-off errors cannot be ignored would be if a sampleddefect value close to
τ = 1 has a magnitude that is comparable to|δ (xi−1 + τ∗hi)|. What is not clear is
what action should be taken when this signal is raised. Alternatives would include
halting the integration with a warning suggesting that a higher precision implementa-
tion of the method or a lower order method be used. Note that this difficulty, arising
from round-off errors introduced on a single step, is relatively easy to detect and will
usually only arise at stringent accuracy requests (for example, whenTOL < 10−10 in
double precision).

3 Implementation and testing

We derived new SDC CRKs and implemented the resulting methods for several un-
derlying RDC CRKs including SDC CRK5 which is based on the discrete 5th-order
Runge-Kutta formula that is implemented asode45 in Matlab. We also implemented
SDC CRK6 and SDC CRK8 based on RDC CRK6 and RDC CRK8 which were in-
troduced and investigated in [5]. These particular RDC CRKsare themselves based
on underlying discrete Runge-Kutta formulas derived by Verner [16] as the higher
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Fig. 2 Plot of defect vsτ (scaled by its local extremum) for SDC CRK6 on a typical step where round-off
error is comparable to truncation error asτ → 1.0. Plot on left is when the defect is evaluated in double
precision while the plot on right is when the same defect is evaluated using extended precision.

order formula of an order(5,6) formula pair and the higher order formula of an order
(7,8) formula pair. Each method was extensively tested using the DETEST pack-
age [8], which assesses the performance of a method on a suiteof 25 problems. We
modified the testing package so that it would determine and report measures of the
cost and reliability of an approximate solution, as well as more direct measures of
the reliability of the estimate of the maximum defect. The performance assessment
summaries that we report for each method then has two components:

– Two measures of how well aMethod controls the maximum magnitude of the
defect. We report the ratio of the maximum defect to TOL over all steps and the
fraction of steps where this ratio is greater than 1.

– Two measures of how well theEstimate of the maximum defect reflects its true
value. We determine the ratio of the true maximum defect to the estimated value
on each step and report the maximum of this ratio over all steps. We also report
the the fraction of steps where the estimated maximum is within one percentof
the true maximum.

We have implemented and tested three versions of each CRKp: corresponding to
RDC CRKp, SDC CRKp and SDCV CRKp ( wherep = 5,6,8). The user selects the
defect control strategy by setting an integer parameter. Wehave run all versions on
the 25 test problems of DETEST (all non-stiff), at 9 tolerances from 10−1 to 10−9.
We report performance summaries over all problems (for a givenTOL), but detailed
results are available for each method on each problem. We report two measures of
cost: NSTP (the number of steps) and NFCN (the number of derivative evaluations),
two measures of the reliability of the method: DMAX and Frac-D (maximum ratio
over all steps of the true maximum defect toTOL and the fraction of steps where this
ratio exceeded one), and two measures of the reliability of the estimate: R-Max and
Frac-G ( maximum ratio over all steps of the true maximum defect to the estimate
and the fraction of steps where this ratio was bounded by 1.01).
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0 0
1/5 1/5 0
3/10 3/40 9/40 0
4/5 44/45 −56/15 32/9 0
8/9 19372/6561−25360/2187 64448/6561−212/729 0
1 9017/3168 −355/33 46732/5247 49/176 −5103/18656 0
1 35/384 0 500/1113 125/192 −2187/6784 11/84 0

35/384 0 500/1113 125/192 −2187/6784 11/84 0

Table 2 The tableau corresponding toMatlab’s ode45. The first six rows correspond to the discrete
tableau. The last row defines the extra stage from whichMatlab builds an interpolant with associated
local error that is O(h5) and defect that isO(h4).

3.1 CRK5

The tableau for the well-known discrete order(4,5) Runge-Kutta formula pair used
by Matlab’s ode45 is shown in Table 2. The first six rows represent the tableau and
definek1, . . . ,k6 for the standard, discrete solution.

TheO(h5
i ) interpolant (with a defect that isO(h4

i )) used inode45 is defined by





















b̂1(τ)

b̂2(τ)

b̂3(τ)

b̂4(τ)

b̂5(τ)

b̂6(τ)

b̂7(τ)





















=





















1 −183/64 37/12 −145/128
0 0 0 0
0 1500/371 −1000/159 1000/371
0 −125/32 125/12 −375/64
0 9477/3392 −729/106 25515/6784
0 −11/7 11/3 −55/28
0 3/2 −4 5/2





























τ
τ2

τ3

τ4









. (30)

This defines the standard local interpolant on stepi,

ûi(xi−1 + τhi) = yi−1 + hi

7

∑
j=1

b̂ j(τ)k j.

To construct anO(h6
i ) RDC interpolantui(t), we add 2 more stages (see [2] and [3]

for a justification of these particular choices),

k8 = f (xi−1 +0.86hi, ûi(xi−1 +0.86hi)),

k9 = f (xi−1 +0.93hi, ûi(xi−1 +0.93hi)),
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and then the RDC interpolant,ui(x) depends on 9 stages with coefficients defined by,

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










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
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
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b1(τ)

b2(τ)

b3(τ)

b4(τ)

b5(τ)

b6(τ)

b7(τ)

b8(τ)

b9(τ)
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
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
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





















=





























































1 − 1708582621
524156928

1232939669
262078464 −

1663764925
524156928

208375
253952

0 0 0 0 0

0 499875
94976 − 1618625

142464
871875
94976 − 15625

5936

0 499875
65536 − 1618625

98304
871875
65536 − 15625

4096

0 − 26237439
6946816

28319463
3473408 − 45762975

6946816
820125
434176

0 43989
28672 − 142439

43008
76725
28672 − 1375

1792

0 − 2291427
100352

3838251
50176 − 8579075

100352
199625
6272

0 − 47953125
1078784

74828125
539392 − 155453125

1078784
78125
1568

0 8734375
145824 − 14359375

72912
31234375
145824 − 234375

3038









































































τ
τ2

τ3

τ4

τ5













, (31)

with an associated defect that isO(h5
i ),

ui(xi−1 + τhi) = yi−1 + hi

9

∑
j=1

b j(τ)k j.

To determine a suitable SDC CRK from this RDC CRK we used the approach
justified in section 2.1 to search forc10,c11,c12 such that the correspondingD j sat-
isfies the two constraints;D1 is not much greater than 2 andD j/D1 < 1 for j =
3,4· · ·(p + 1). Figure 3 displays the plots of the polynomialsq1(τ),q2(τ) · · ·q6(τ)
for c10 = .10,c11 = .80,c12 = .90 which is the choice we have used to define SDC
CRK5. With this choice, we compute the three new stages,

k10 = f (xi−1 +0.1hi,ui(xi−1 +0.1hi)),

k11 = f (xi−1 +0.8hi,ui(xi−1 +0.8hi)),

k12 = f (xi−1 +0.9hi,ui(xi−1 +0.9hi)).

The SDC interpolant ˜ui(xi−1 + τhi) is then,

ũi(xi−1 + τhi) = yi−1 + hi

12

∑
j=1

b̃ j(τ)k j, (32)

where theb̃ j(τ) can be explicitly expressed in terms of the generalized Lagrange
coefficients introduced in the previous section. To see this, with p = 5,µ1 = .1,µ2 =
.8,µ3 = .9 we can write ˜ui(x) as,

ũi(xi−1 + τhi) = Q0(τ)yi−1 + Q1(τ)yi + Q2(τ)hiy
′
i−1 + Q3(τ)hiy

′
i

+ hi

3

∑
j=1

Q3+ j(τ)k9+ j. (33)



15

Noting thatQ0(τ) = 1−Q1(τ), y′i−1 = k1,y′i = k7 and that(w1,w2, · · ·w6) are pre-
scribed by the last row of Table 2, we have (from 33),

ũi(xi−1 + τhi) = (1−Q1(τ))yi−1 + Q1(τ)(yi−1 + hi

6

∑
j=1

w jk j)

+ Q2(τ)hik1 + Q3(τ)hik7 + hi

3

∑
j=1

Q3+ j(τ)k9+ j, (34)

which after re-arranging terms is,

ũi(xi−1 + τhi) = yi−1 + hi(w1Q1(τ)+ Q2(τ))k1 + hi

6

∑
j=2

w jQ1(τ)k j+

hiQ3(τ)k7 + hi

3

∑
j=1

Q3+ j(τ)k9+ j. (35)

Since this interpolating polynomial is unique we can equatethe coefficient polyno-
mials in (35) and (32) and observe that,

b̃1(τ) = w1Q1(τ)+ Q2(τ). (36)

b̃ j+1(τ) = w j+1Q1(τ) for j = 1,2, · · ·5, (37)

b̃7(τ) = Q3(τ), (38)

b̃8(τ) = b̃9(τ) = 0, (39)

b̃9+ j(τ) = Q9+ j(τ) for j = 1,2,3. (40)
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Solving for theQ j(τ) by applying Maple to solve equations (18)- (22) (as de-
scribed in section 2), we then use (36)-(40) to obtain,





















































































b̃1(τ)

b̃2(τ)

b̃3(τ)

b̃4(τ)

b̃5(τ)

b̃6(τ)

b̃7(τ)

b̃8(τ)

b̃9(τ)

b̃10(τ)

b̃11(τ)

b̃12(τ)





















































































=























































































1 − 13303
1584

791347
28512 − 1589515

38016
35045
1188 − 113375

14256

0 0 0 0 0 0

0 − 12000
4081

962000
36729 − 6725000

12243
80000
1749 − 500000

36729

0 − 375
88

60125
1584 − 168125

2112
4375
66 − 15625

792

0 19683
9328 − 350649

18656
2941515
74624 − 76545

2332
91125
9328

0 − 6
7

481
63 − 1345

84
40
3 − 250

63

0 62
33 − 16099

891
14095
297 − 14620

297
16000
891

0 0 0 0 0 0

0 0 0 0 0 0

0 2500
231 − 304250

6237
170750
2079 − 127250

2079
106250
6237

0 375
56 − 15875

252
26125
168 − 3125

21
3125
63

0 − 500
99

43750
891 − 39250

297
40750
297 − 43750

891







































































































τ
τ2

τ3

τ4

τ5

τ6

















.

Table 3 displays the summary statistics for the numerical tests of the three versions
of this CRK5.

TOL CRK NSTP NFCN DMAX Frac-D R-Max Frac-G
RDC 609 7153 2.37 .199 18.85 .18

10−2 SDC 623 9853 1.02 .003 8.12 .63
SDCV 625 11709 0.97 .000 1.05 .67
RDC 1070 12130 5.89 .179 126.82 .14

10−4 SDC 1065 16081 1.60 .005 7.12 .73
SDCV 1065 19033 1.01 .001 1.12 .78
RDC 2176 23146 5.44 .233 55.44 .09

10−6 SDC 2095 30037 1.44 .007 11.49 .83
SDCV 2099 35703 1.01 .002 1.08 .86
RDC 4929 46051 21.28 .354 207.40 .07

10−8 SDC 4562 56953 1.24 .003 32.80 .94
SDCV 4566 66937 1.01 .001 1.07 .95

Table 3 Results on the 25 DETEST Problems for CRK5 for the three defect control strategies
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Fig. 3 Plots of q1 throughq6 for SDC CRK5.q1 is represented by the solid line and has the highest
magnitude among allq j . The abscissa vector is [.10, .80, .90]. The maximum ratio ofD j( j = 3,4· · ·6)
to D1 is 0.57. The maximum ofq1 occurs atτ∗ = 0.389, τ ∈ [0,1] and the values required to define the
validity check for SDCV areτ1 = .207,τ2 = .600.

3.2 CRK6

The tableau for an effective 6th-order discrete Runge-Kutta formula is presented in
[16] and an associated RDC CRK is justified and implemented in[4]. There ares = 7
stages required to define the underlying discrete 6th-order formula. One additional
stage results in a non-optimal interpolant ofO(h6

i ) accuracy, an additional three stages
are used to define the RDC CRKui(x) with s̄ = 11, and ˜s = 15 stages are then used
to define the SDC CRK, ˜ui(x).

A search for a suitable abcissa vector,[c12,c13,c14,c15] led us to identify the
choice[.07, .14, .86, .93]. Figure 4 displays the corresponding plots of the coefficients
that form the leading terms in the expansion of the defect forthis SDC CRK6. Table
4 displays the summary statistics for the numerical tests ofthe three versions of this
CRK6.

3.3 CRK8

The tableau for an effective 8th-order discrete Runge-Kutta formula is prescribed in
[16] and an associated RDC CRK justified and implemented in [4]. There ares = 13
stages required to define the underlying discrete formula, ¯s = 21 stages to define the
RDC CRKui(x), and ˜s = 27 stages to define the SDC CRK.

A search for a suitable abcissa vector led us to the choice[.07, .14, .21, .79, .86, .93].
Figure 5 displays the corresponding plots of the coefficients that form the leading
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Fig. 4 Plots of q1 throughq7 for SDC CRK6.q1 is represented by the solid line and has the highest
magnitude among allq j . The abscissa vector is [.07, .14, .86, .93]. The maximum ratio of D j( j = 3,4· · ·7)
to D1 is 0.67. The maximum ofq1 occurs atτ∗ = .500,τ ∈ [0,1] and the values required to define the
validity check for SDCV areτ1 = .311,τ2 = .689.

TOL CRK NSTP NFCN DMAX Frac-D R-Max Frac-G
RDC 552 7879 5.27 .176 23.25 .50

10−2 SDC 547 10585 1.00 .000 1.74 .70
SDCV 549 12300 1.00 .000 1.43 .71
RDC 955 13082 4.87 .144 15.34 .55

10−4 SDC 929 17305 4.90 . 003 18.90 .87
SDCV 931 19819 1.00 .001 1.08 .87
RDC 1789 23499 10.75 .103 112.90 .59

10−6 SDC 1748 30925 1.01 .001 1.81 .96
SDCV 1748 35073 1.01 .001 1.08 .96
RDC 3622 43288 6.48 .098 1286.90 .67

10−8 SDC 3547 57460 1.01 .001 1.14 .98
SDCV 3547 65148 1.01 .001 1.07 .98

Table 4 Results on the 25 DETEST Problems for CRK6 for the three defect control strategies
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terms in the expansion of the defect for this SDC CRK8. Table 5displays the sum-
mary statistics for the numerical tests of the three versions of this CRK8.
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Fig. 5 Plots of q1 throughq9 for SDC CRK8.q1 is represented by the solid line and has the highest
magnitude among allq j . The abscissa vector is [0.07, 0.14, 0.21, 0.79, 0.86, 0.93]. The maximum ratio of
D j( j = 3,4· · ·9) to D1 is 0.53. The maximum ofq1 occurs atτ∗ = .500,τ ∈ [0,1] and the values required
to define the validity check for SDCV areτ1 = .353,τ2 = .647.

TOL CRK NSTP NFCN DMAX Frac-D R-Max Frac-G
RDC 337 8745 10.68 .213 36.71 .30

10−2 SDC 332 11439 7.16 .009 30.50 .35
SDCV 333 12793 1.01 .003 1.65 .35
RDC 495 13285 7.70 .139 32.70 .17

10−4 SDC 466 15781 1.02 . 002 4.34 .45
SDCV 465 17319 1.05 .004 1.47 .45
RDC 715 18245 6.09 .126 134.32 .10

10−6 SDC 707 23425 3.01 .008 22.70 .58
SDCV 712 26253 1.02 .001 1.34 .59
RDC 1095 27065 31.12 .179 409.09 .08

10−8 SDC 1081 34787 1.86 .005 20.80 .62
SDCV 1081 38251 1.12 .007 2.60 .62

Table 5 Results on the 25 DETEST Problems for CRK8 for the three defect control strategies
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4 Observations and Conclusions

In this paper, we have investigated several explicit, continuous Runge-Kutta meth-
ods in which the maximum defect across a timestep can be reliably and efficiently
monitored and controlled. We have analyzed interpolants whose defect, in the limit
of stringent values ofTOL, has a predicted “shape” dependent only on the order of
the discrete formula and not on the problem being integrated. Although methods with
similar characteristics have been discussed in the past, the methods we have investi-
gated are different in that the order of the defect is optimalrelative to the order of the
discrete formula. This results in a method in which the errorcontrol is both efficient
and theoretically justified for all problems.

The numerical results presented in Section 3 are summaries (for three values of
TOL) of the detailed performance assessment of each method on all 25 non-stiff test
problems of the DETEST package [8]. The detailed statisticsfor each method on each
problem are presented in [12] where several additional measures of performance that
quantify the observed relationship between the global error and the prescribedTOL
are presented. Note that some of these measures are not easy to report in meaningful
summaries as the relationship between the global error andTOL is very sensitive
to the problem. The detailed statistics do confirm that, fromthe point of view of
returning an approximate solution whose error is bounded bya multiple of TOL,
all the methods tested performed well. That is, the approximate solution generally
satisfied,

||y(x)−U(x)|| ≤ K(x)TOL,

whereK(x) depended primarily on the problem and was insensitive to theorder of
the method (or the number of steps used to compute the approximate solution).

We see from the summaries reported in Section 3 that, for a givenTOL, the num-
ber of steps required to solve all 25 problems was not very sensitive to the local
interpolant used (RDC, SDC or SDCV). The number of stages required per step for
each of the defect control schemes is then a good predictor ofthe relative costs of
computingU(x) for a givenTOL. Note that, when solving a given problem with the
same underlying discrete RK formula, the RDC interpolant and the SDC interpolant
will be different. The magnitude of the leading coefficient in the expansion of the
respective defects will likely be smaller for the SDC interpolant than for the RDC
interpolant and this can result in fewer steps for an SDC CRK method to solve the
problem with an associated smaller maximum defect than thatassociated with the
RDC CRK.

Looking closely at the summary results for the RDC methods weobserve that
we obtain a level of reliability that might well be considered acceptable for most
applications at all tolerances. The maximum defect exceedsTOL on ten to twenty
percent of the steps but it rarely exceeds 10TOL. The SDC methods (without a valid-
ity check) are much more reliable with the maximum defect exceedingTOL on less
than one percent of the steps and never exceeding 10TOL. In addition, the defect
estimate is within one percent of the true maximum defect (over each step) most of
the time. The extra cost of the SDC methods (relative to the RDC versions of the
same discrete formula) is generally no greater than twenty-five percent. Finally, with



21

the validity check, the SDCV methods were able to detect and deal with the very few
steps where the observed maximum defect was not well estimated by the correspond-
ing SDC methods. For the SDCV methods the maximum defect is never larger than
1.2 TOL and R-Max is never very large. (Note that on some problems, see table 5
for example, with the higher order CRKs, the fraction deceived was greater for the
SDCV method than for the corresponding SDC method. One possible explanation
for this is that the number of deceived steps is very small andany increase at all will
be reported as a distractingly large increase when reportedas a fraction of the total
number of steps.) The extra cost of the SDCV methods (relative to the RDC versions
of the same discrete formula) is generally no greater than fifty percent.

Now that we have developed a class of very reliable SDC CRKs for IVPs, we
are investigating how effective this approach will be to develop improved methods
for other classes of ODEs. For example we are currently investigating the use of
SDC CRKs in methods for delay differential equations, boundary value problems and
Volterra integral differential equations. We hope, in the future, to drive and implement
asymptotically correct defect estimates for multistep methods (in particular for those
based on Adams or BDF formulas).
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