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Abstract In the numerical solution of ODEs, it is how possible to depetfficient
techniques that will deliver approximate solutions that piecewise polynomials.
The resulting methods can be designed so that the piecewoligegmial will satisfy
a perturbed ODE with an associated defect (or residual)gtditectly controlled in
a consistent fashion. We will investigate the reliabitityst trade off that one faces
when implementing and using such methods, when the methedbased on an
underlying discrete Runge-Kutta formula.

In particular we will identify a new class of continuous ReAgutta methods
with a very reliable defect estimator and a validity checkt tteflects the credibility
of the estimate. We will introduce different measures of ‘ttediability” of an ap-
proximate solution that are based on the accuracy of theoajpate solution; the
maximum magnitude of the defect of the approximate solytiord how well the
method is able to estimate the maximum magnitude of the tlefékhe approximate
solution. We will also consider how methods can be implem@itd detect and cope
with special difficulties such as the effect of round-offagrfon a single step) or the
ability of a method to estimate the magnitude of the defeamthe stepsize is large
(as might happen when using a high-order method at relaxadacy requests).

Numerical results on a wide selection of problems will be marized for meth-
ods of orders five, six and eight. It will be shown that a modesease in the cost per
step can lead to a significant improvement in the quality efshproximate solutions
and the reliability of the method. For example, the numériesults demonstrate that,
if one is willing to increase the cost per step by 50%, then thotdcan deliver ap-
proximate solutions where the reported estimated maximefectl is within 1% of
its true value on 95% of the steps.
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1 Introduction and Motivation

Consider aninitial value problem (IVP) defined by the systéiordinary differential
equations (ODEs),

)/ = f(va)a y(XO) =Yo, ON [Xo,XF]. (1)

A numerical method when applied to (1) will introduce a gaotiingxy < X3 < --- <

xn = Xg and corresponding discrete approximatigngys - - -yn. They;'s are usually
determined sequentially. To analyze the convergence aturaxy of a numerical
method it is convenient to introduce the local error asgediith each step. On step
i letz(x) be the solution of the ‘local’ IVP,

Z(x)=f(xz(x), 2(x-1) =VYi-1, On [X_1,%]. 2

The discrete local err@ssociated with thé" step is then defined to (x) — Vi.
A p-order, s-stage, discrete Runge-Kutta formula, when agpb (1), deter-
mines

S
Yi=Yi-1+hi ij ki =z(x) + O(hP*h),
J:
whereh; = x — X1 and thej'" stagek;, is defined by,
S

ki = f(xi—1+hicj,yi—1+h; Zajrkr)-
r=

This discrete Runge-Kutta formula is represented by iteBeit tableau:

Cl |11 a2 ... @ais
Co| @ a2 ... a

: : : : C 3
[ wi wo o ws

A continuous extension of this discrete formula (CRK) isedetined by addings—
s) additional stages to obtain an approximation for amy(x_1,%)

S
Ui(X) =Yi-1+hi y bj(T)kj, (4)
=1
wheret = =% andbj (1) is a polynomial of degree at mogt+ 1,
p+1
bj(t) =Y Byt (5)
i r; ir

The additional(s— s) stages and the polynomial coefficieris are not uniquely

determined by the underlying discrete formula and diffeeiteria have been used
when determining the most suitable interpolating schentefine a continuous ex-
tension. (See [16] for a detailed discussion of this isstee)interpolants that interest
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us have optimal order (in that they agree with the local smhuio O(hip“) and their
derivatives agree with the derivative of the local solutio®(hP) ).

We will consider two types of optimal order interpolantscleaf which satisfies
an equation of the form,

Ui(X) =Yi—1+h i bj (1)kj = z(x) + O(hP*Y).
=1

The[ui(x)]N.; define a piecewise polynomidl(x) for x € [Xo, =] and it is this piece-
wise polynomial that will be considered the numerical Solutgenerated by the
CRK method when applied to (1). A simple set of constraintstteb;(7) and
on the additional stage&s( 1,ks;2---ks), (such aks;1 = f(x,¥i), bj(1) = w; for
i=212--- sandbs;1(1) = bs;2(1) = --- = bs(1) = 0) will ensure thaty;(X) inter-
polatesy_1,Vi, f(x_1,¥i_1) and f(x;,yi) and therefor& (x) € C1[xo, ¢ ].

The numerical solutiob) (x) has an associated defect or residual,

It can be shown that, fdd (x) € C[xo, X¢], defined in this way (see [3] for details),
8(x) = GO +O(hP*™), for x € [xi-1,%], (6)

where
G(1) = GQu(T)FL+ Ga(T)F2 + -+ AL(T)R, (7)

and theq;(T1)’s are polynomials irr that depend only on the CRK formula while the
F;’s are constants that depend only on the problem.

Methods can be designed and implemented with the objectiegljasting the
stepsizéy; in an attempt to ensure that the maximum magnitudg®f is bounded by
a specified error toleranc€QL, on each step. From (6) and (7) we see thdt as 0
the defect will behave like a linear combination of #ng7) over eachx_1,Xi]. In
the special case that= 1 the shape of the defect will be the samel{as- 0) for all
problems and all steps. That is, the defect will almost awagnverge’ to a multiple
of 1(1). The maximum defect should then occur fas~ 0) at the location irf0, 1)
of the local extremum ofj1(7). In this case we can reliably estimate the maximum
defect on a step using a single evaluation of the defect aed §ample point and we
will refer to the defect control strategy &srict Defect Control (SDC).

In the general case, whén> 1, the associate@(7) defined in (7) can be very
different for different problems and for different stejpsnd this makes it difficult
to choose a fixed sample point that would give a robust estimate of the maximum
defect across the timestep. In this case we have used a wloé that is not near
any of the zeros of the;(7),q2(7)---qL(T) [3] and we refer to this defect control
strategy afRRelaxed Defect Control (RDC) The two types of continuous extensions



Formula | p s s| §
CRK4 4 4 6 8
CRK5 5 6 91 12
CRK6 6 71 11| 15
CRK7 7 9 (15| 20
CRK8 8| 13| 21| 27

Table 1 Cost per step of some specific explicit RDC and SDC CRK forswwa have investgated. The
formulas in bold are the ones which we have implemented atddeand which we will discuss in more
detail in this paper.

that we consider in detail arg(x) corresponding to RDC ang(X) corresponding to
SDC.

RDC: ui(X) =yi_1+hi i bj(1)kj =z (x) + O(hP*™),
=1

G(1) =qu(T)F1+ Qa(T)F2+ -+ quL(T)FL,  (8)

bj(kj =z +0(hP*), G(1) =d(D)FL. (9)

th

SDC: Gi(x) =Yyi—1+h;
i

The RDC methods that we have implemented and will investigatdetail in
subsequent sections correspond to CRK5, CRK6 and CRK84b&e1). These un-
derlying CRK formulas have been derived and analysed pusiydsee [4]) and are
investigated here in more detail to help quantify the pagé¢nbst and improvements
in performance that can be realised when one implements &nilgBrpolant for the
same discrete RK formula. The SDC implementation of CRK5KGRBnd CRK8 that
we introduce and analyse in this paper are new. We will alsoudis some potential
difficulties which can arise with our SDC methods and we wibgose a modified
SDC CRK (denoted SDCV CRK) which, at a modest increase in egistetect and
address this difficulty.

Note that the analysis, justification and implementatiofooél interpolants dis-
cussed in this investigation applies to general implicihgerKutta formulas repre-
sented by (3). If the underlying discrete Runge-Kutta foianisi explicit (i.e.,c; =0
andaj, = 0 forr > j ) then no nonlinear equations need be solved on each step and
the “cost” of taking a step should be proportional to the namiif stagesqor $)
required in the definition of the associated local interpb(@®), (9). The numerical
results we present and the extensive testing we have pextbame for explicit CRK
methods. We have also had limited experience with some @ih@QIRK methods (see
[7] for example) where we have observed similar performamggovements with
even less increase in cost.

For ap" order discrete RK formula, we are primarily interested itimpl order
(i.e., the corresponding defect@(hip) ) local interpolants satisfying (8) or (9). In-
terpolants with lower order defects can be used effectiveome applications but,
when defect error control is used, such methods will not glyebe as efficient. Ta-
ble 1 summarizes the relative costs of some known opdexplicit, RDC and SDC
CRK'’s. Itis interesting to observe that, for the orders we@nsidering, the cost of
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an RDC CRK is about 50 % more than that of the underlying disd@mula while
the cost of a SDC CRK is about double that of the underlyingrdie formula.

For an SDC CRK (9) we know from (6) that the leading coefficiarthe asymp-
totic expansion of the defect satisfies,

G(1) = Gu(1)F1. (10)

We will show thatFlhip is a multiple of the discrete local error associated wjth
That is, there is a direct asymptotic relationship betwéerldcal error of the under-
lying discrete RK formula and the continuous defect of arsoamted SDC CRK.
This relationship will be analyzed in more detail in the nsa&ttion (see also [14]
for a discussion of this relationship for a different cla$<C&®Ks). Sinceqi(1) is
independent of the problem we should observéas 0 that the shape o, and
consequently the (norm of the) local maximum defect, shoelgroportional to the
fixed polynomialdi (1), independent of the problem and the sitephe value to use
for T is then the location of the maximum @@ (1), T € [0, 1]. In the following sec-
tions we verify that this is indeed the case. Note that thapshof the defect” over a
step can be represented by a ploddki_1 + th;)/0(Xi—1+ T*h;) for 0< 1 < 1 and
this plot should approaaty (7)/G1(7*) for all steps and for all problems &s— 0.
The only exception would be on those special steps wheis equal to zero or is
very small in magnitude. To illustrate this expected bebawifigure 1 presents an
plot of 6(7) vs T (scaled by its local extremum) for all steps required by a GBK
solve a typical problem witifOL = 1076,
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Fig. 1 Plot of defect vst (scaled by its local extremum) for each step of a typldék) computed by
CRKE6.

2 Deriving an SDC CRK

One can analyze the error in any CRK by considering the lotatpolanty;(x), to
be an approximation to the local solutiaiix) for x € [xi_1,x;]. For this analysis it is
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convenientto introduce the interpolantx], of degree at mogi+ 1, that interpolates
the exact local solution at_1,x;, and the derivative of the exact local solution at
Xi—1,%i, %1+ M-hy, forr =1,2---p— 2. This approach allows one to decompose the
error inu;(X) into two components — the error inherent in polynomial iptéation
(the local interpolation error) and the error that arisea asnsequence of “inexact”
values being interpolated (the data error). This approasfisst used for the analysis
of CRKs by Shampine [15] and Gladwell et al. [9] to investeytte associated local
errors. It was also subsequently used by Higham ([10] [Ilitestigate the defects
and the quality of the defect estimates for a particularsctd <CRKs.

The polynomialz(x) always exists and is unique (if the’s are distinct and not
equal to 0 or 1). This polynomial has an associated locatpotation errotL| E; (x)
that satisfies:

(p+2) () p-2

(x) =1 LA ) (CORCE

LIE(X) =z(X) — (P2t

N

for somen € [x_1,x] with T = (x—x_1)/h.
For a prescribed set of interpolation points (L2 - - Hp-2), We can represent
Z(x) interms of the corresponding ‘generalized Lagrange bagj$k), j =1,2---(p+

2(x) = Qo(x) (xi—1) + Qu(¥)z (%) + Q2(X)7 (Xi—1) + Qa(X)Z (%)
+ :JZjCA?sﬂ' (X7 (%i—1+ Kjhi).
= Qo()¥i-1+ Qu(¥)Z (%) + Q2(x) f (X1, ¥i-1) + Qa(x)Z (%)
+ TZ?QSH (07 (-1 +Kjhi).  (12)

Qo(x) is the unique polynomial of degree at mst 1 satisfying thep+ 2 equations,

Qo(xi-1) =1, Qo(%) = Qp(%i—1) = Qp(%) =0
andQ)(xi_1+ prhi) =0forr=1,2.--(p—2). (13)

Qa1(x) is the unique polynomial of degree at mst 1 satisfying thep+ 2 equations,

Qu(xi-1) = Qh(xi—1) = Q1 (%) =0, Q1 (x) =1
andQ’l(xi,l—HJrhi) =0forr=1,2---(p—2). (14)

Q2(x) is the unique polynomial of degree at mst 1 satisfying thep+ 2 equations,

Q2(xi-1) = Qa(x) = Qo(x) = 0,Q5(%i-1) = 1,
andQ,(x_1+ prhi) =0forr=1,2.--(p—2). (15)
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Qs(x) is the unique polynomial of degree at m@st 1 satisfying thep+ 2 equations,
Qa(x-1) = Qa(x) = Q3(%-1) = 0,Q5(%) = 1,
andQ,(x_1+ prhi) =0forr=1,2.--(p—2). (16)

Similarly, forj=1,2---(p—2), Qj+3(x) is the unique polynomial of degree at most
p+ 1 satisfying,

Qj:a(xi-1) = Qja(%) = Q}13(xi-1) = Qjy3(x) =0, Qfya(Xi-1+pjhi) =1,
and Q) 3(x—1+ prhi) =0for r=1,2---(p—2), r#j. (17)

In this investigation we will find it convenient to introdueescaled version of
the generalized Lagrange basis to repreggrt &nd the local interpolants(x) and
Gi(x) (where the sequencely, - - - Up_2) corresponds to a subset @ (1,Cs2- - - Cs)

). This representation will be used in the construction)ysmisand implementation
of the specific SDC CRK formulas we develop. We also find it mmevenient to
work with the variabler (rather tharx) when defining and implementing the local
interpolants. With this change of variable t@qa(x) will be represented as a suitably
scaled polynomial irr and will be independent afandh;. To see this leQo(T) =
Qo(x),Qu(7) = Q1(x) andQ;(1) = (1/h)Qj(x) for j = 2,3---(p—2). The Qj(x)
will satisfy equations ((13) - (17)) if th@; (1) are defined by the following sets of
equations (where, in these equations, the syrhtﬂ:present% rather thané’—x ) and

we knowéj—ij ()= hilQ’J (1)). Note that each of these sets of equations can be solved

in Maple using a short script (see ([5] or [12] ) for details).
Qo(1) is defined by,

Qo(0) =1,Qo(1) = Qp(0) = Qu(1) =0
and Qy(ir) =0forr=1,2---(p—2). (18)

Q1(1) is defined by,

Q1(0) =0,Q1(1) = 1,Q4(0) = Q4(1) =0
and Q(y) =0forr=1,2---(p—2). (19)

Q2(7) is defined by,

Q2(0) = Q2(1) = Q5(1) = 0,Q5(0) =1,
and Q)(i) =0forr=1,2---(p—2). (20)

Qs(7) is defined by,

Q3(0) = Qs(1) = Q3(0) =0,Q5(1) =1,
and Q5(ir) =0forr=1,2---(p—2). (21)



Forj=1,2---(p—2), Qj4+3(1) is defined by,
Q34j(0) = Qayj(1) = Q5.(0) = Q5,4 (1) =0, Qayj(kj) =1,
and Qg (k) =0forr=1,2.--(p—2), r#j. (22)

We can then writg(x) from (12) as,
Z(x) = Qo(1)yi-1+ Q1(1)z (%) + MQ2(T) f (X - 1,yi 1) +hiQs(1)Z (%)
+hIZ\Q3+J i(Xi-1+pjhi). (23)

Typically we will ask that the local interpolants introdacen step interpolate
some of the approximate solution and derivative value®éhiced on the step. In
particular, for the local interpolants we are consideriwg, assume the first stage
satisfiesky =y _; = f(Xi_1,¥i—1) and the first additional stage satisfles, =y, =
f(xi,Yi). As an example, consider the polynomiglx) of degree at mogp+ 1, that
interpolates the four valueg_1,yi,Y/_;,y; as well as the additiongd — 2 derivative
approximations,

ke ~Y(X_1+chi), r=ss—1.--5—p+3.
When written as a polynomial in, we see (from (23)),
Ui(Xi—1 4 Thi) = Qo(T)Yi—1 + Qu(T)yi + hiQa(T)ks + h-Q3( )Ks1

+h Z Q3 (T)ks- profr - (24)

That is,u;(x) will interpolate the stagels; andks,1 as well as the lagh — 2 stages,
Ks—pt+3,Ks_pra---ks: Subtracting (24) from (23) we see that, fo€ (X_1,%),

Z(x) = Gi(x) = Qu(1)(z (%) — i) + Qa(7) (hiZ (%) — hiks;1)
43 QD140 1+ s prare) ks pra). (25)
r=1

Differentiating both sides of (25) with respecttave obtain,

H@=%m®@%%%%mﬁwﬂm—&m

+ Zfi%r Z(xi_1+hics pr2+r) —Ks pi2ir), (26)

whereq; () = &Q;(1) for j = 1,2--- (p+1).

There are different approaches that can be used to derive @RCformulas.
We will use a “bootstrapping” approach similar to that imtnged in [6] to derive
higher order local interpolants. Other approaches, sut¢hedirect solution of the
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continuous order conditions, are also possible and cowd te a wider class of
suitable SDC CRK formulas.

To derive an appropriate SDC CRK formula we will assume weehav RDC
CRK formula, u;(x) satisfying (8). For example, for the particular fifth, sixhd
eighth order CRKs we will implement and investigate in thgtreection, the corre-
sponding RDC CRKs we begin with have been identified and dismliin [5]. For
§= s+ p—2 and any choice ofp — 2) abscissa if{0,1), (Cs;1,Cs12, - C5) we then
defineksy for j =1,2,---(p—2) by,

ksj = f(Xi—1+cCsjhi,ui(Xi—1+Csijhi)).

Note thatks; ; will then be anO(hip“) approximation taz (x_1 + sy jhi) if f(x,y)
satisfies a Lipschitz condition with respectytdl hereforehiks, j will be an O(hip+2)
approximation tdZ (xi_1 + cs; jhy). This is sufficient to ensure that data errors asso-
ciated with theks;j terms will not contribute to the leading coefficient in thepar-
sion of the defect ofi(x) . To see this consider the defeXix) defined by

F(x,Gi (%)) = @) = [f(x G (X)) = f(x.z(X))]
+ [f(xz2(x) = Z(X)] + [Z(x) -G (27)

Since the second term in the RHS of (27) is zero, we can expacit & the other
two terms to obtain,

0(x) = [F(x Ui(x) = f(x2())] + [f(%2(x)) = F(xz(x)]
+[Z0-Z(0] + [0 - w(x)]. (28)

Of the four terms comprising the RHS of (28), the first terr@(:hip*l) (from (25)),

the second term i©(hP"?) (from (11)), and the third term i©(hP™*) (from (11))
and standard interpolation theory. The fourth term (fro@)J2an be written as,

200~ F) = aa(m 2K opr)

and we observe that tr@(hi’”l) contribution arising from this term will be directly
related to they; (1), j = 3,4--- p+1, but there will be other contributions as well that
arise from the first and third terms. We then have that theatl&fex) will satisfy,

3(x) = qu(T)Fth? + (Qu(T)FL+ Ga(T)F2+ -6 (T)F )P TE 4+ O(hPT2),  (29)

whereFihP = z(x) — i, the discrete local error associated with the current step,
and the set of polynomial coefficients(7),a3(7) - - - qp+1(7)], (defined in (26), are
contained in the s€tji(1),G2(1)--- G; (1)]. This will be true for any choice of the
parameterss, 1,Cs12- - - Cs. The particular choice we make in our development of a
suitable SDC CRK is motivated by an attempt to avoid some@ptbtential difficul-

ties identified in the next section.



10

2.1 Modified Defect Control Strategy : SDCV

Let Gi(x) be a given SDC CRK defined by (9) and satisfying (29). Theretwece
potential deficiencies of this formula that could affect tst of the method and/or
the reliability of the estimatéd(1*)||,

— q1(1) may have a large maximum value. (Note that its ‘average’evahust be
one sincey (0) = g1(1) = 0 andQy (1) = 1= f3 qu(1)d1 )

— Thedj(t) may be large in magnitude relative ¢g(7) (and therefordy would
have to be small before the estimate is justified). (Thaté$ote |hi§;(1)| <<

(7))

These two potential difficulties were addressed by perfognai search (for each
value ofp) over thep — 2 free parameters to identify a suitable SDC CRK. For each
set of free parameters we determined

Dj :TQ%MJ(UH =12--p+1,

where theqgj(1) are defined in (26). The corresponding SDC CRK was considered
to be suitable iD1 was not much larger than 2 afj /D, < 1 for j =3,4---p+1.
Such a requirement will at least ensure that some ofgt®| in (29) will be small
relative toD;.

There are two other situations that can arise on some prahdenisolated steps
for any SDC CRK, which can result in an unreliable defectneate. The first situa-
tion arises whefF| is zero or very small in magnitude. Extensive testing ofalé
SDC CRKs revealed that, on the very few steps where the estiwas too small,
|F1| was inevitably near zero. In this case the first term of (29)darly zero and

the contributions to the defect arise from a combinatio@(ﬁip*l) terms. On these
isolated steps, the actual maximum defect was usually entalin TOL, but the es-
timated value was not close to the true maximum. We introdacealidity check (or
confirmation check) to detect this situation. This validibeck, as we explain below,
involves two additional defect samples. If this check issti@d on all steps, one can
have increased confidence in the reliability of the inteagratWe then modified the
underlying SDC defect control strategy so that, when theckhs not satisfied, two
extra sampled defect evaluations are performed to deteraninore appropriate esti-
mate of the maximum defect. These two extra samples, togettiethe first sample
at 7* and the two from the validity check, give us five samples ofdatect, and we
choose the largest of these to be our estimate of the maxinaiectd We call this
modified defect control strate@dDCV.

To justify the particular validity check we have adopted,abserve thaty; (1) is
zero att = 0,7 =1 and attains its maximum magnituderatLet r; < ™ andt, > *
satisfy

(1) = ou(12) = ou(7%)/2.

If we then letRy = % andR, = %, then ash — 0 we expect botlR;

andR; to approach 12. We compute these two ratios and consider the validitylchec
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to be satisfied if both are close tg2. In our tests we interpreted “close tg2l' to
mean “in the rangé3,.7]".

The second situation, where the estimate of the maximunctéiea suitable
SDC CRK may be unreliable, arises on problems where rouhdrodrs are not
dominated by the local errors in the various computatioss@ated with a single
step. The polynomial coefficients defining a CRK (bjér) andb;(t) in (8) and (9) )
can be large in magnitude, particularly foe> 6. In addition, the defect is defined and
estimated as the difference between quantities that mustitmest equal”. This can
lead to large relative errors (due to the accumulated affgictound-off error) when
evaluating the interpolant and when evaluating the defiéds issue is investigated
in detail in [5] where it is observed that, if we know in advarthe values & 11 <
T,--- Ty < 1 where the method will be evaluating either the interpgligmterivative,
or the associated defect, then the polynomial coefficieautal@ated at these special
points) can be computed to full precision and stored intgriia the method. It is
easy to do this for the CRKs we have implemented as the defectly evaluated at
one point (fora RDC CRK or an SDC CRK) or at three points (foS&/CV CRK).

On the other hand, when a user is interested in sampling tlglant, its deriva-
tive, or the defect at an arbitrary poirte [x_1,%], the total computation must be
performed at the working precision and the contributionaefrrd-off error to the re-
turned approximation will be greater. As an example, figutésplays a plot of the
computed scaled defect for a sixth order SDC CRK evaluatedfiae mesh of 100
sampled points over a single step wiAgL = 10-'2. The plot on the left corresponds
to the case where the evaluation of the polynomial coeffisisrperformed in double
precision, while the plot on the right corresponds to theeaisere these coefficients
are evaluated in extended precision (but the remaindeeafdmputation performed
in double precision). As expected, the effect of round-ofoeis greater ag — 1
and the contribution to the error that is due to round-oftiteto oscillate in sign and
grow in magnitude as increases. This suggests that a credible indication olakign
that round-off errors cannot be ignored would be if a sampleféct value close to
T =1 has a magnitude that is comparabldd@x_; + t*h;)|. What is not clear is
what action should be taken when this signal is raised. Adtives would include
halting the integration with a warning suggesting that dbigprecision implementa-
tion of the method or a lower order method be used. Note thetifficulty, arising
from round-off errors introduced on a single step, is re&dyi easy to detect and will
usually only arise at stringent accuracy requests (for @t@mhenTOL < 10 1%in
double precision).

3 Implementation and testing

We derived new SDC CRKs and implemented the resulting metfmdseveral un-
derlying RDC CRKs including SDC CRKS5 which is based on thewdite 3"-order
Runge-Kutta formula that is implementeda:45 in Matlab. We also implemented
SDC CRK®6 and SDC CRK8 based on RDC CRK6 and RDC CRK8 which were i
troduced and investigated in [5]. These particular RDC CRksthemselves based
on underlying discrete Runge-Kutta formulas derived bynee{16] as the higher



12

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

Fig. 2 Plot of defect var (scaled by its local extremum) for SDC CRKG6 on a typical stéyere round-off
error is comparable to truncation error s~ 1.0. Plot on left is when the defect is evaluated in double
precision while the plot on right is when the same defect éduated using extended precision.

order formula of an ord€(5, 6) formula pair and the higher order formula of an order
(7,8) formula pair. Each method was extensively tested using tB€HEST pack-
age [8], which assesses the performance of a method on ao$@ifeproblems. We
modified the testing package so that it would determine apdrteneasures of the
cost and reliability of an approximate solution, as well axrendirect measures of
the reliability of the estimate of the maximum defect. Thefpenance assessment
summaries that we report for each method then has two comgmne

— Two measures of how well Kethod controls the maximum magnitude of the
defect. We report the ratio of the maximum defect to TOL ovestaps and the
fraction of steps where this ratio is greater than 1.

— Two measures of how well thestimate of the maximum defect reflects its true
value. We determine the ratio of the true maximum defectecetftimated value
on each step and report the maximum of this ratio over allsstéfe also report
the the fraction of steps where the estimated maximum isinvidhe percenof
the true maximum.

We have implemented and tested three versions of each CRIKgsponding to
RDC CRKp, SDC CRKp and SDCV CRKp ( whepe=5,6,8). The user selects the
defect control strategy by setting an integer parameterh&ie run all versions on
the 25 test problems of DETEST (all non-stiff), at 9 toler@smérom 101 to 102,
We report performance summaries over all problems (for argiOL), but detailed
results are available for each method on each problem. Watrepo measures of
cost: NSTP (the number of steps) and NFCN (the number of aldrésevaluations),
two measures of the reliability of the method: DMAX and FRag¢gmaximum ratio
over all steps of the true maximum defecft®L and the fraction of steps where this
ratio exceeded one), and two measures of the reliabilitheftstimate: R-Max and
Frac-G ( maximum ratio over all steps of the true maximum cete the estimate
and the fraction of steps where this ratio was bounded ®%)1
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0
1/5| 1/5 0

3/10,  3/40 9/40 0

4/5| 4445 —56/15 32/9 0

8/9 |19372/6561 —2536(/2187 644486561 —212/729 0

9017/3168 —355/33 467325247 49176 —5103/18656 O
35/384 0 5001113 125192 —2187/6784 1184 0

35/384 0 5001113 125192 —2187/6784 11840

Table 2 The tableau corresponding tdatlab’s ode45. The first six rows correspond to the discrete
tableau. The last row defines the extra stage from wMeliab builds an interpolant with associated
local error that is Of) and defect that i©(h*).

3.1 CRK5

The tableau for the well-known discrete orddr5) Runge-Kutta formula pair used
by Matlab’s ode45 is shown in Table 2. The first six rows represent the tableau an
definek,, ..., kg for the standard, discrete solution.

TheO(h?) interpolant (with a defect that i3(hi*)) used inode45 is defined by

=
~

1 -183/64 37/12 —145/128

0 o 0 0 .

0 1500/371 —1000/159 1000371 )
3
4

N
~

w
~

(*2EeoRNopNonjonReopRen
N2 A B e D B
\_/\./\./:'/\./vv

0 —125/32 12512 —375/64 (30)

s(T 0 9477/3392 —729/106 255156784
o(T 0 -11/7 113  -55/28
(T Y —4 5/2

This defines the standard local interpolant on $tep

7
Gi(X-1+Thi) = Yi-1+hi ) bj(T)k;.
=

To construct arO(hiG) RDC interpolant;(t), we add 2 more stages (see [2] and [3]
for a justification of these particular choices),

kg = f(xi—1+0.86h;, (i (xi_1 + 0.86h;)),

ko = f(xi_1 +0.93, i (X_1 +0.93h)),
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and then the RDC interpolant,(x) depends on 9 stages with coefficients defined by,

1 _ 17085826211232030660 _ 1663764925 208375
b1 (1) 524156028 262078464 524156928 253952

by (T) 0 0 0 0 0
b O 499875 1618625 871875  _ 15625
3(T) 94976 142464 94976 5936
b (T) 0 499875 ~ 1618625 871875 _ 15625 T
4 65536 98304 65536 4096 ;
T
_ 26237439 28319463 _ 45762975 820125 3
bs(T) | = [ O —%Gsissiec 3473408 — 6046816 434170 T 4 | (31)
T
43989 142439 76725 1375 5
be(7) 0 87 ~ 43008 28672 1792 T
b(T) O _ 2291427 3838251 _ 8579075 199625
100352 50176 100352 6272
bg(T) 0 — 47953125 74828125 155453125 78125
1078784 539392 1078784 1568

8734375 _ 14359375 31234375 234375

bo(7) 145824 72012 145824 3038
with an associated defect that@sh?),

o

9
Ui(Xi-1+Thi) =yi-1+hi H bj(T)k;.
=

To determine a suitable SDC CRK from this RDC CRK we used theaach
justified in section 2.1 to search fofo, c11,¢12 such that the correspondiy sat-
isfies the two constraintd); is not much greater than 2 aridjj /D, < 1 for j =
3,4---(p+1). Figure 3 displays the plots of the polynomialg1),02(1)---gs(T)
for ¢c;0 = .10,c11 = .80,¢12 = .90 which is the choice we have used to define SDC
CRKS5. With this choice, we compute the three new stages,

kio= f(x_1+0.1h;,ui(x_1+0.1h)),

ki1 = f(x_1+0.8h;,ui(x_1+ 0.8h;)),

kiz = f(X—1+0.9h;,ui (%_1+ 0.9h))).
The SDC interpolanti{x;_1 + th;) is then,

12
Gi(Xi—1+Thi) = yi1+h Z bj(1)kj, (32)
=1

where thef)j(r) can be explicitly expressed in terms of the generalized &g
coefficients introduced in the previous section. To see With p=5,11 = .1, =
.8, U3 = .9 we can writau(x) as,

Gi(Xi—14 thi) = Qo(T)yi—1+ Qu(T)yi + Qa(T)hiyi_1 + Qs(T)hiy!

3
+hi Z Q31j(T)kayj. (33)
=1
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Noting thatQo(T) = 1— Qu(T), ¥|_; = k1,y; = k7 and that(wy,wo, ---We) are pre-
scribed by the last row of Table 2, we have (from 33),

6
Gi(xi—1+th) = (1-Qu(1))yi—1+Qu(T)(Yi—1+hi Z\Wj kj)

+ Qa(1)hiks + Q3(T)hiks + hy Z Q34j(T)korj, (34)

which after re-arranging terms is,

6
Gi(%i—14 thi) = Yio1+hi(WaQu(T) + Qa(T))ky + hy _EZWJ'Ql(T)kJJr

hiQS k7+ hi Z Q3+J k9+J (35)

Since this interpolating polynomial is unique we can equia¢ecoefficient polyno-
mials in (35) and (32) and observe that,

_by(1) = waQu(1) + (). (36)
bj+1(7) = wj+1Qu(1) for j=1,2,---5, (37)
br(1) = Qu(1), (38)
b (1) = by(1) = 0, (39)

i(T) = Qoy4j(1) for j=1,2,3. (40)
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Solving for theQj (1) by applying Maple to solve equations (18)- (22) (as de-
scribed in section 2), we then use (36)-(40) to obtain,

b {1 _ 13303 791347 _ 1589515 35045 _ 113375
1(T) 1584 28512 38016 1188 14256
ba(1) 0 0 0 0 0 0
B 0 12000 962000 _ 6725000 80000 _ 500000
3(T) 4081 36729 12243 1749 36729
b (1) 0 _375 60125 _ 168125 4375 _ 15625
4 88 1584 2112 66 792
B(T) O 19683 _ 350649 2041515 _ 76545 91125
5 0328 18656 74624 2332 9328 T
2
~ T
6 481 1345 40 250
bs(T) 0 3 & % 3 ~& 3
= 4
b (1) 0 62 16099 14095 _ 14620 16000 T
7 33 891 297 297 891 °
~ 18
bg(1) 0 O 0 0 0 0
bo(T) 0 0 0 0 0 0
E 2500 _ 304250 170750 _ 127250 106250
b1o(T) 0 %57 —%6257 2079 — 5079 6237
E 375 15875 26125 3125 3125
by () 0 % -~ o5 — 320 &
s 500 43750 39250 40750 43750
b12(1) 0 -3 Bt — o7 297 891

Table 3 displays the summary statistics for the numericdstef the three versions
of this CRKS.

TOL | CRK NSTP NFCN DMAX Frac-D| R-Max Frac-G
RDC 609 7153 2.37 199 1885 18
102 | sDC 623 9853 1.02 003 812 63
SDCV 625 11709 0.97 .000 1.05 67
RDC 1070 12130 5.89 179 126.82 14
104 | SDC 1065 16081 1.60 005 7.12 73
SDCV 1065 19033 1.01 001 112 .78
RDC 2176 23146 5.44 233 55.44 09
106 | sbC 2095 30037 1.44 .007 11.49 .83
SDCV 2099 35703 1.01 .002 1.08 .86
RDC 4929 46051 21.28 354 207.40 07
108 | sbC 4562 56953 1.24 .008 32.80 .94
SDCV 4566 66937 1.01 .001 1.07 .95

Table 3 Results on the 25 DETEST Problems for CRKS5 for the three defattrol strategies



17

Fig. 3 Plots ofg; throughgg for SDC CRK5.q; is represented by the solid line and has the highest
magnitude among alf;. The abscissa vector is [.10, .80, .90]. The maximum rati®dfj = 3,4---6)

to D1 is 0.57. The maximum ofi; occurs att* = 0.389, T € [0,1] and the values required to define the
validity check for SDCV area; = .207, 172 = .600.

3.2 CRKG6

The tableau for an effectivé®order discrete Runge-Kutta formula is presented in
[16] and an associated RDC CRK is justified and implementédiiThere ares=7
stages required to define the underlying discréteoéder formula. One additional
stage results in a non-optimal interpolanOJ{hiG) accuracy, an additional three stages
are used to define the RDC CRK(x) with §= 11, ands’= 15 stages are then used
to define the SDC CRKy; ().

A search for a suitable abcissa vectfmy, C13,C14,C15] led us to identify the
choice[.07,.14,.86,.93). Figure 4 displays the corresponding plots of the coeffisien
that form the leading terms in the expansion of the defedisrSDC CRK6. Table
4 displays the summary statistics for the numerical teste@three versions of this
CRKE6.

3.3 CRKS8

The tableau for an effectivéBorder discrete Runge-Kutta formula is prescribed in
[16] and an associated RDC CRK justified and implemented]irildere ares= 13
stages required to define the underlying discrete forns#a21 stages to define the
RDC CRKUui(x), ands= 27 stages to define the SDC CRK.

A search for a suitable abcissa vector led us to the cHdige 14, .21,.79,.86,.93).
Figure 5 displays the corresponding plots of the coeffisighat form the leading
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Fig. 4 Plots of gy throughgy for SDC CRK6.q; is represented by the solid line and has the highest
magnitude among aff;. The abscissa vector is [.07, .14, .86, .93]. The maximuio D (j =3,4---7)

to Dy is 0.67. The maximum ofj; occurs att* = .500,T € [0,1] and the values required to define the
validity check for SDCV ara; = .311 1, = .689.

TOL | CRK NSTP NFCN DMAX Frac-D| R-Max Frac-G
RDC 552 7879 5.27 174 2325 50
102 | sSDC 547 10585 1.00 .00 1.74 .70
SDCV 549 12300 1.00 .00q 1.43 71
RDC 955 13082 4.87 144 1534 55
104 | sbcC 929 17305 4.90 .003 18.90 .87
SDCV 931 19819 1.00 .001 1.08 .87
RDC 1789 23499 10.75 103 112.90 59
10% | sbc 1748 30925 1.01 .001 181 .96
SDCV 1748 35073 1.01 001 1.08 .96
RDC 3622 43288 6.48 098 1286.90 67
108 | sDC 3547 57460 1.01 001 114 .98
SDCV 3547 65148 1.01 001  1.07 .98

Table 4 Results on the 25 DETEST Problems for CRK6 for the three defattrol strategies
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terms in the expansion of the defect for this SDC CRK8. Tahiiisplays the sum-
mary statistics for the numerical tests of the three vessadrihis CRKS.

M |+| 1D

Fig. 5 Plots ofg; throughqg for SDC CRKS8.q; is represented by the solid line and has the highest
magnitude among atl;. The abscissa vector is [0.07, 0.14, 0.21, 0.79, 0.86, 0198 maximum ratio of
Dj(j=3,4---9) to Dy is 0.53. The maximum oy occurs atr* = .500,T € [0,1] and the values required

to define the validity check for SDCV amg = .353 1, = .647.

TOL CRK NSTP NFCN DMAX Frac-D| R-Max Frac-G
RDC 337 8745 10.68 213 36.71 .30

102 SDC 332 11439 7.16 .009 30.50 .35
SDCV 333 12793 1.01 .003 1.65 .35

RDC 495 13285 7.70 139 32.70 17

104 SDC 466 15781 1.02 .002 434 .45
SDCV 465 17319 1.05 .004 1.47 .45

RDC 715 18245 6.09 126 134.32 .10

106 SDC 707 23425 3.01 .008 22.70 .58
SDCV 712 26253 1.02 .001 1.34 .59

RDC 1095 27065 31.12 179 409.09 .08

1078 SDC 1081 34787 1.86 .005 20.80 .62
SDCV 1081 38251 1.12 .00T 2.60 .62

Table 5 Results on the 25 DETEST Problems for CRKS8 for the three defattrol strategies
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4 Observations and Conclusions

In this paper, we have investigated several explicit, cortus Runge-Kutta meth-
ods in which the maximum defect across a timestep can béhekiand efficiently
monitored and controlled. We have analyzed interpolantssetdefect, in the limit
of stringent values oT OL, has a predicted “shape” dependent only on the order of
the discrete formula and not on the problem being integratitdough methods with
similar characteristics have been discussed in the pasm#ihods we have investi-
gated are different in that the order of the defect is optirakative to the order of the
discrete formula. This results in a method in which the ecantrol is both efficient
and theoretically justified for all problems.

The numerical results presented in Section 3 are summdoieth(ee values of
TOL) of the detailed performance assessment of each method 2 mbn-stiff test
problems of the DETEST package [8]. The detailed statifbicaach method on each
problem are presented in [12] where several additional orea®f performance that
guantify the observed relationship between the globakemd the prescribedOL
are presented. Note that some of these measures are nobeapgrt in meaningful
summaries as the relationship between the global errofm®id is very sensitive
to the problem. The detailed statistics do confirm that, fibe point of view of
returning an approximate solution whose error is bounded loyultiple of TOL,
all the methods tested performed well. That is, the appraténsolution generally
satisfied,

[ly() —U(X)|] <K(X)TOL,

whereK(x) depended primarily on the problem and was insensitive totHer of
the method (or the number of steps used to compute the appatexisolution).

We see from the summaries reported in Section 3 that, forengi@L, the num-
ber of steps required to solve all 25 problems was not vergiges to the local
interpolant used (RDC, SDC or SDCV). The number of stagegsired per step for
each of the defect control schemes is then a good predictireofelative costs of
computingU (x) for a givenT OL. Note that, when solving a given problem with the
same underlying discrete RK formula, the RDC interpolarnt e SDC interpolant
will be different. The magnitude of the leading coefficientthe expansion of the
respective defects will likely be smaller for the SDC intglgmt than for the RDC
interpolant and this can result in fewer steps for an SDC CRithed to solve the
problem with an associated smaller maximum defect thanabsdciated with the
RDC CRK.

Looking closely at the summary results for the RDC methodotserve that
we obtain a level of reliability that might well be considdracceptable for most
applications at all tolerances. The maximum defect exc@&dls on ten to twenty
percent of the steps but it rarely exceed§ QL. The SDC methods (without a valid-
ity check) are much more reliable with the maximum defeceexiingT OL on less
than one percent of the steps and never exceedingO0 In addition, the defect
estimate is within one percent of the true maximum defect(@ach step) most of
the time. The extra cost of the SDC methods (relative to th&€ RBrsions of the
same discrete formula) is generally no greater than twéwgypercent. Finally, with
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the validity check, the SDCV methods were able to detect aadiwith the very few
steps where the observed maximum defect was not well estihbgtthe correspond-
ing SDC methods. For the SDCV methods the maximum defectsriarger than
1.2 TOL and R-Max is never very large. (Note that on some problenesiaige 5
for example, with the higher order CRKs, the fraction deediwas greater for the
SDCV method than for the corresponding SDC method. One lplesskplanation
for this is that the number of deceived steps is very smallanydncrease at all will
be reported as a distractingly large increase when repagedfraction of the total
number of steps.) The extra cost of the SDCV methods (rel&tithe RDC versions
of the same discrete formula) is generally no greater thgngdédrcent.

Now that we have developed a class of very reliable SDC CRK$\MBs, we
are investigating how effective this approach will be to @lep improved methods
for other classes of ODEs. For example we are currently tigaging the use of
SDC CRKs in methods for delay differential equations, barmdalue problems and
Volterra integral differential equations. We hope, in theufe, to drive and implement
asymptotically correct defect estimates for multistephuods (in particular for those
based on Adams or BDF formulas).
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