Skip to main content
Log in

Quadratic spline collocation for one-dimensional linear parabolic partial differential equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

New methods for solving general linear parabolic partial differential equations (PDEs) in one space dimension are developed. The methods combine quadratic-spline collocation for the space discretization and classical finite differences, such as Crank-Nicolson, for the time discretization. The main computational requirements of the most efficient method are the solution of one tridiagonal linear system at each time step, while the resulting errors at the gridpoints and midpoints of the space partition are fourth order. The stability and convergence properties of some of the new methods are analyzed for a model problem. Numerical results demonstrate the stability and accuracy of the methods. Adaptive mesh techniques are introduced in the space dimension, and the resulting method is applied to the American put option pricing problem, giving very competitive results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Archer, D.: An O(h 4) cubic spline collocation method for quasilinear parabolic equations. SIAM J. Numer. Anal. 14, 620–637 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bialecki, B., Fairweather, G.: Orthogonal spline collocation methods for partial differential equations. J. Comput. Appl. Math. 128, 55–82 (2001). Numerical analysis 2000, vol. VII, Partial differential equations

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen, T.: An efficient algorithm based on quadratic spline collocation and finite difference methods for parabolic partial differential equations. Master’s thesis, University of Toronto, Toronto, Ontario, Canada (2005)

  4. Christara, C.C.: Quadratic spline collocation methods for elliptic partial differential equations. BIT 34, 33–61 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Christara, C.C., Ng, K.S.: Adaptive techniques for spline collocation. Computing 76, 259–277 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Christara, C.C., Ng, K.S.: Optimal quadratic and cubic spline collocation on nonuniform partitions. Computing 76, 227–257 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dang, D.M.: Adaptive finite difference methods for valuing American options. Master’s thesis, University of Toronto, Toronto, Ontario (2007)

  8. de Boor, C., Swartz, B.: Collocation at Gaussian points. SIAM J. Numer. Anal. 10, 582–606 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  9. Douglas, J., Dupont, T.: A finite element collocation method for quasilinear parabolic equations. Math. Comput. 27, 17–28 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  10. Douglas, J., Dupont, T.: Collocation methods for parabolic equations in a single-space variable. Lect. Notes Math. 385, 1–147 (1974)

    Article  MathSciNet  Google Scholar 

  11. Forsyth, P.A., Vetzal, K.: Quadratic convergence for valuing American options using a penalty method. SIAM J. Sci. Comput. 23, 2095–2122 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Greenwell-Yanik, C.E., Fairweather, G.: Analyses of spline collocation methods for parabolic and hyperbolic problems in two space variables. SIAM J. Numer. Anal. 23, 282–296 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  13. Houstis, E.N., Christara, C.C., Rice, J.R.: Quadratic-spline collocation methods for two-point boundary value problems. Int. J. Numer. Methods Eng. 26, 935–952 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. Houstis, E.N., Rice, J.R., Christara, C.C., Vavalis, E.A.: Performance of scientific software. In: Rice, J.R. (ed.) The IMA Volumes in Mathematics and its Applications. Mathematical Aspects of Scientific Software, vol. 14, pp. 123–155 (1988)

  15. Hull, J.C.: Options, Futures, and Other Derivatives, 6th edn. Prentice Hall, Englewood Cliffs (2006)

    Google Scholar 

  16. Iserles, A.: A first Course in the Numerical Analysis of Differential Equations. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  17. Rannacher, R.: Finite element solution of diffusion problems with irregular data. Numer. Math. 43, 309–327 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  18. Wang, R., Keast, P., Muir, P.: BACOL: B-Spline adaptive COLlocation software for 1-D parabolic PDEs. ACM Trans. Math. Softw. 30, 454–470 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wang, R., Keast, P., Muir, P.: A high-order global spatially adaptive collocation method for 1-D parabolic PDEs. Appl. Numer. Math. 50, 239–260 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina C. Christara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christara, C.C., Chen, T. & Dang, D.M. Quadratic spline collocation for one-dimensional linear parabolic partial differential equations. Numer Algor 53, 511–553 (2010). https://doi.org/10.1007/s11075-009-9317-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-009-9317-9

Keywords

Navigation