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ORTHOGONAL POLYNOMIALS IN SEVERAL VARIABLES FOR

MEASURES WITH MASS POINTS

ANTONIA M. DELGADO, LIDIA FERNÁNDEZ, TERESA E. PÉREZ, MIGUEL A. PIÑAR∗,
AND YUAN XU

Abstract. Let dν be a measure in R
d obtained from adding a set of mass

points to another measure dµ. Orthogonal polynomials in several variables
associated with dν can be explicitly expressed in terms of orthogonal polyno-
mials associated with dµ, so are the reproducing kernels associated with these
polynomials. The explicit formulas that are obtained are further specialized
in the case of Jacobi measure on the simplex, with mass points added on the
vertices, which are then used to study the asymptotics kernel functions for dν.

1. Introduction

Let dµ be a measure on Rd with all finite moments and we assume that dµ is
positive definite in the sense that

∫

Rd p
2(x)dµ > 0 for every p ∈ Πd, p 6= 0, where

Πd denotes the space of real polynomials in d–variables. Let 〈·, ·〉µ denote the inner
product defined by

(1.1) 〈p, q〉µ :=

∫

Rd

p(x)q(x)dµ(x), p, q ∈ Πd.

Then orthogonal polynomials of several variables with respect to 〈p, q〉µ exist. Let
N ≥ 1 be a positive integer and let ξ1, ξ2, . . . , ξN be distinct points in Rd. Let Λ be
a positive definite matrix of size N ×N . We define a new inner product 〈·, ·〉ν by

(1.2) 〈p, q〉ν := 〈p, q〉µ + (p(ξ1), p(ξ2), . . . , p(ξN ))Λ(q(ξ1), q(ξ2), . . . , q(ξN ))tr,

where the superscript tr indicates the transpose, which can be defined via an integral
as in (1.1) against a measure dν that is obtained from adding N mass points to
dµ. A typical example is when Λ is a diagonal matrix with positive entries. The
purpose of this paper is to study orthogonal polynomials with respect to the new
inner product 〈·, ·〉ν .

In the case of one–variable, the first study of orthogonal polynomials for measures
with mass points was carried out, as far as we know, by Uvarov ([9]), who gave a
short discussion on the case of adding a finite set of mass points to a measure and
showed how to express the orthogonal polynomials with respect to the new measure
in terms of those with respect to the old one. The problem was later revitalized by
A. M. Krall ([7]), who considered orthogonal polynomials for measures obtained by
adding mass points at the end of the interval on which a continuous measure lives.
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Junta de Andalućıa, Grupo de Investigación FQM 0229.

1

http://arxiv.org/abs/0911.2818v1
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The case of Jacobi measure with additional mass points at the end of [−1, 1] was
studied in [5], where explicit formulas of orthogonal polynomials were constructed.
For Jacobi weight with multiple mass points, it is possible to study asymptotic
properties of orthogonal polynomials [4]. In the case of several variables, however,
only the case of N = 1 has been studied [3].

Our main results contain explicit formulas that express orthogonal polynomials
and reproducing kernels with respect to 〈·, ·〉ν in terms of those with respect to
〈·, ·〉µ. These results are stated and proved in Section 2. As an example, we consider

the case of Jacobi weight function on the simplex in Rd, with mass points added at
the vertices, for which our formulas can be further specified and expressed in terms
of the classical Jacobi polynomials. The result is then used to study the asymptotic
expansion of the Christoffel functions with respect to 〈·, ·〉ν .

2. Orthogonal polynomials for measures with mass points

We start with a short subsection on necessary definitions, for which we follow
essentially [2], and prove our main results in the second subsection.

2.1. Preliminary. Through this paper, we will use the standard multi–index no-
tation. Let N0 denote the set of nonnegative integers. For a multi–index α =
(α1, . . . , αd) ∈ Nd

0 and x = (x1, . . . , xd) ∈ Rd, a monomial in d variables is defined
as xα = xα1

1 · · ·xαd

d . The integer |α| = α1 + · · ·+αd is called the total degree of xα.

We denote by Pd
n the space of homogeneous polynomials of degree n in d–variables,

Pd
n := span{xα : |α| = n}, and denote by Πd

n the space of polynomials of total
degree at most n. The collection of all polynomials in d–variables is Πd. It is well
known that

dimΠd
n =

(

n+ d

n

)

and dimPd
n =

(

n+ d− 1

n

)

:= rdn.

Let 〈·, ·〉µ be the inner product defined in (1.1). A polynomial p ∈ Πd
n is orthog-

onal with respect to (1.1) if

〈p, q〉µ = 0, ∀q ∈ Πd
n−1.

Our assumption that dµ is positive definite implies that orthogonal polynomials
with respect to 〈·, ·〉µ exist. Let us denote by Vd

n the space of orthogonal polynomials
of total degree n. It follows that dimVd

n = rdn. Let {Pn
α }|α|=n denote a basis of

Vd
n. It is often convenient to use vector notations introduced in [6] and [10]. Let

{α1, α2, . . . , αrdn
} be an enumeration of the set {α ∈ Nd

0 : |α| = n} according to a
fixed monomial order, say the lexicographical order or the reversed lexicographical
order. Then the basis {Pn

α }|α|=n can be written as

Pn =
{

Pn
α1
, Pn

α2
, . . . , Pn

α
rdn

}

.

We will treat Pn both as a set of functions and as a column vector of functions. As
column vectors, the orthogonality of {Pn

αj
} can be expressed as

〈Pn,P
tr

m〉µ =

∫

Rd

Pn(x)P
tr

m(x)dµ =

{

0, if n 6= m,

Hn, if n = m,

where the superscript denotes the transpose (so that Ptr is a row vector) and Hn is
a matrix of size rdn×rdn, necessarily symmetric, and in fact a positive definite matrix
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by our assumption on dµ. For convenience, we shall call the system {Pn}∞n=0 =
{Pn

α : |α| = n, n = 0, 1, . . .} an orthogonal polynomial system (OPS). If Hn is the
identity matrix, then {Pn

α : |α| = n} is an orthonormal basis for Vd
n and the OPS

is called an orthonormal polynomial system.
Likewise, we can write xn := {xα : |α| = n} = {xα1 , xα2 , . . . , x

α
rdn } and regard

it as a column vector. Since each element in Pn is a polynomial of degree n, it can
be written as a sum of monomials, which, in vector notation, becomes

Pn =

n
∑

j=0

Gj,n xj , where Gj,n ∈ Mrdn×rd
j
,

in which Mp×q denotes the set of real matrices of size p × q. In particular, Gn,n

is a square matrix and it is necessarily invertible since Pn is a basis of Vd
n. We call

Gn,n the leading coefficient of Pn.
With respect to dµ, the reproducing kernel of Vd

n, denoted by Pn(dµ;x, y), is
defined by 〈Pn(dµ;x, ·), p〉µ = p(x), p ∈ Vd

n. In terms of a basis Pn of Vd
n, it satisifes

Pn(dµ;x, y) = Ptr

n(x)H
−1
n Pn(y) with Hn = 〈Pn,Pn〉µ.

Similarly, the reproducing kernel of Πd
n, denoted by Kn(dµ;x, y), is defined by

〈Kn(dµ;x, ·), p〉µ = p(x), p ∈ Πd
n, and satisfies

Kn(dµ;x, y) =

n
∑

j=0

Pj(dµ;x, y), n ≥ 0.

Since the definitions of Pn(dµ;x, y) and Kn(dµ;x, y) are independent of the choice
of a particular basis, (see [2, Theorem 3.5.1]), it is often more convenient to work
with an orthonormal basis. The kernel Kn(dµ;x, y) plays an important role in
studying Fourier orthogonal expansions, as it is the kernel function of the partial
sum operator. The reciprocal of Kn(dµ;x, x) is called Christoffel function, denoted
by Λn(x), and it satisfies

Λn(x) :=
1

Kn(dµ;x, x)
= inf

P (x)=1,P∈Πd
n

∫

Rd

|P (y)|2dµ(y).

2.2. Main results. Our goal is to study orthogonal polynomials with respect to
the inner product 〈·, ·〉ν defined in (1.2). Let us recall that Λ is a given positive
definite matrix of order N and {ξ1, ξ2, . . . , ξN} is a set of distinct points in Rd.
Introducing the notation

p(ξ) = {p(ξ1), p(ξ2), . . . , p(ξN )} ,
and regarding it also as a column vector, we can then rewrite the inner product
〈·, ·〉ν in (1.2) as

(1.2′) 〈p, q〉ν = 〈p, q〉µ+p(ξ)tr Λq(ξ),

where 〈·, ·〉µ denotes the inner product defined in (1.1). In the case that Λ is a
diagonal matrix, Λ = diag{λ1, . . . , λN}, the inner product 〈·, ·〉ν takes the form

(2.1) 〈p, q〉ν = 〈p, q〉µ +

N
∑

j=1

λjp(ξj)q(ξj).

Our first result shows that orthogonal polynomials with respect to 〈p, q〉ν can be
derived in terms of those with respect to 〈p, q〉µ. The statement and the proof of
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this result relies heavily on the vector–matrix notation. To facilitate the study, we
shall introduce several new notations.

Throughout this section, we shall fix Pn as an orthonormal basis for Vd
n associated

with dµ. We denote by Pn(ξ) the matrix that has Pn(ξi) as columns,

(2.2) Pn(ξ) := (Pn(ξ1)|Pn(ξ2)| . . . |Pn(ξN )) ∈ Mrdn×N ,

denote by Kn−1 the matrix whose entries are Kn−1(dµ; ξi, ξj),

(2.3) Kn−1 :=
(

Kn−1(dµ; ξi, ξj)
)N

i,j=1
∈ MN×N ,

and, finally, denote by Kn−1(ξ, x) the vector of functions

(2.4) Kn−1(ξ, x) = {Kn−1(dµ; ξ1, x),Kn−1(dµ; ξ2, x), . . . ,Kn−1(dµ; ξN , x)} ,
which we again regard as a column vector.

From the fact that Kn(dµ;x, y)−Kn−1(dµ;x, y) = Pn(dµ;x, y), we have imme-
diately the following relations,

P
tr

n(ξ)Pn(x) = Kn(ξ, x)−Kn−1(ξ, x),(2.5)

Ptr

n(ξ)Pn(ξ) = Kn −Kn−1,(2.6)

which will be used below. Let IN denote the identity matrix of order N .

Lemma 2.1. The matrix IN + ΛKn−1 is invertible.

Proof. First we show that the matrix Kn−1 is positive definite, By the definition
of Kn(dµ; ·, ·), for every c ∈ RN , c 6= 0, we have

ctrKn−1c =
∑

|α|≤n−1

N
∑

i,j=1

cicjPα(ξi)Pα(ξj) =
∑

|α|≤n−1

∣

∣

∣

N
∑

j=0

cjPα(ξj)
∣

∣

∣

2

> 0,

so that Kn−1 is positive definite. The matrix Λ is also positive definite, by as-
sumption, so that it is invertible. Since Λ−1(IN + ΛKn−1) = Λ−1 +Kn−1, we see
that it is positive definite as well, hence invertible. Consequently, IN + ΛKn−1 is
invertible. �

We are now ready to state and prove our first main result.

Theorem 2.2. Define a polynomial system {Qn}n≥0 by Q0(x) := P0(x) and

(2.7) Qn(x) = Pn(x) − Pn(ξ) (IN + ΛKn−1)
−1 ΛKn−1(ξ, x), n ≥ 1.

Then {Qn}n≥0 is a sequence of orthogonal polynomials with respect to 〈·, ·〉ν defined

in (1.2). Conversely, any sequence of orthogonal polynomials with respect to (1.2)
can be expressed as in (2.7).

Proof. Let us assume that {Qn}n≥0 is an OPS with respect to 〈·, ·〉ν and Qn has the
same leading coefficient as Pn, which implies, in particular, that Q0 is a constant
and Q0 = P0. We show that Qn satisfies (2.7). By the assumption, the components
of Qn − Pn are elements in Πd

n−1 for n ≥ 1. Since {Pn}n≥0 is a basis of Πd, we
can express these components as linear combinations of orthogonal polynomials in
P0,P1, . . . ,Pn−1. In vector-matrix notation, this means that

Qn(x) = Pn(x) +

n−1
∑

j=0

Mn
j Pj(x),
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where Mn
j are matrices of size rdn × rdj . These coefficient matrices can be deter-

mined from the orthonormality of Pn and Qn. Indeed, by the orthogonality of Qn,
〈Qn,Pj〉ν = 0 for 0 ≤ j ≤ n − 1, which shows, by the definition of 〈·, ·〉ν and the
fact that Pj is orthonormal,

Mn
j = 〈Qn,P

tr

j 〉µ = −Qn(ξ)
trΛPn(ξ),

where Pn(ξ) is defined as in (2.2) and Qn(ξ) = {Qn(ξ1)|Qn(ξ2)| . . . |Qn(ξN )} in the
analogous matrix with Qn(ξi) as its column vectors. Consequently, we obtain

Qn(x) = Pn(x) −
n−1
∑

j=0

Qn(ξ) ΛP
tr

j (ξ)Pj(x)(2.8)

= Pn(x) − Qn(ξ) ΛKn−1(ξ, x).

where the second equation follows from the relation (2.5), which leads to a tele-
scoping sum that sums up to Kn−1(ξ, x). Setting x = ξi, we obtain

Qn(ξi) = Pn(ξi)− Qn(ξ) ΛKn−1(ξ, ξi), 1 ≤ i ≤ N,

which leads to, by the definition of Kn−1 at (2.3), that

Qn(ξ) = Pn(ξ)− Qn(ξ) ΛKn−1.

Solving for Qn(ξ) from the above equation gives

(2.9) Qn(ξ) = Pn(ξ)(IN + ΛKn−1)
−1.

Substituting this expression into (2.8) establishes (2.7).
Conversely, if we define polynomials Qn by (2.7), the above proof shows that

Qn is orthogonal with respect to 〈·, ·〉ν . Since Qn and Pn have the same leading
coefficient, it is evident that {Qn}n≥0 is an OPS in Πd. �

Let {Qn}n≥0 be an OPS with respect to (1.2) as in Theorem 2.2. In general, Qn

is not orthonormal. We denote, in the rest of this section,

Hn := 〈Qn,Q
tr

n〉ν .
Then Hn is a positive definite matrix. It turns out that both Hn and H−1

n can be
expressed in terms of matrices that involve only {Pj}j≥0.

Proposition 2.3. For n ≥ 0,

Hn = Irdn + Pn(ξ)(IN + ΛKn−1)
−1ΛPtr

n(ξ),(2.10)

H−1
n = Irdn − Pn(ξ)(IN + ΛKn)

−1ΛPtr

n(ξ).(2.11)

Proof. Since Pn is orthonormal, 〈Pn,P
tr

n〉µ = Irdn . From (2.7) and (2.9) we obtain

Hn =〈Qn,Q
tr

n〉ν = 〈Qn,P
tr

n〉ν = 〈Qn,P
tr

n〉µ + Qn(ξ)ΛP
tr

n(ξ)

=Irdn + Pn(ξ)(IN + ΛKn−1)
−1ΛPtr

n(ξ),

which proves (2.10). In order to establish (2.11), we need to verify that

Hn(Irdn − Pn(ξ)(IN + ΛKn)
−1ΛPtr

n(ξ)) = Irdn ,

which, by (2.10) and after simplification, reduces to the following equation,

(IN + ΛKn−1)
−1 ΛPn(ξ)

trPn(ξ)(IN + ΛKn)
−1(2.12)

= (IN + ΛKn−1)
−1 − (IN + ΛKn)

−1.

Using (2.6), the above equation can be verified by a simple computation. �
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Our next result gives explicit formulas for the reproducing kernels associated
with 〈·, ·〉ν , which we denote by

Pj(dν;x, y) := Qtr

j (x)H
−1
j Qj(y) and Kn(dν;x, y) :=

n
∑

j=0

Pj(dν;x, y).

Theorem 2.4. For j ≥ 0,

Pj(dν;x, y) = Pj(dµ;x, y)−Ktr

j (ξ, x) (IN + ΛKj)
−1ΛKj(ξ, y)(2.13)

+Ktr

j−1(ξ, x) (IN + ΛKj−1)
−1ΛKj−1(ξ, y).

Furthermore, for n ≥ 0,

(2.14) Kn(dν;x, y) = Kn(dµ;x, y)−Ktr

n(ξ, x) (IN + ΛKn)
−1ΛKn(ξ, y).

Proof. Since Λ−1 (IN +ΛKj−1) = Λ−1 + Kj−1 is a symmetric matrix, so is (IN +
ΛKj−1)

−1 Λ. Using this fact, it follows from (2.7) and (2.11) that

Qtr

j (x)H
−1
j =Ptr

j (x) − Ptr

j (x)Pj(ξ)(I − ΛKj)
−1ΛPtr

j (ξ)

−Ktr

j−1(ξ, x) (IN + ΛKj−1)
−1 ΛPtr

j (ξ)

−Ktr

j−1(ξ, x) (IN + ΛKj−1)
−1ΛP

tr

j (ξ)Pj(ξ)(I + ΛKj)
−1

P
tr

j (ξ),

which simplifies to, upon using (2.12) and (2.5),

Qtr

j (x)H
−1
j =Ptr

j (x) − Ptr

j (x)Pj(ξ)(I − ΛKj)
−1ΛPtr

j (ξ)

−Ktr

j−1(ξ, x) (IN + ΛKj−1)
−1 ΛPtr

j (ξ)

=Ptr

j (x) −Ktr

j (ξ, x) (IN + ΛKj)
−1 ΛPtr

j (ξ).

Using again (2.7) and (2.5), we then obtain

Qtr

j (x)H
−1
j Qj(y) = Ptr

j (x)Pj(y)

− [Ktr

j (ξ, x) −Ktr

j−1(ξ, x)] (IN + ΛKj−1)
−1 ΛKj−1(ξ, y)

−Ktr

j (ξ, x) (IN + ΛKj)
−1 Λ [Kj(ξ, y)−Kj−1(ξ, y)]

+Ktr

j (ξ, x) (IN + ΛKj)
−1 ΛP

tr

j (ξ)Pj(ξ)(IN + ΛKj−1)
−1ΛKj−1(ξ, y),

which simplifies to (2.13) upon using the identity (2.12).
Finally, summing over (2.13) for j = 0, 1, . . . , n, we obtain (2.14). �

The result in this section can be extended without much difficulty to mass points
with derivative values. To be more precise, let ∂α = ∂α1

1 · · · ∂αd

d , where ∂i =
∂

∂xi
,

and for αi ∈ Nd
0, i = 1, 2, . . . , N , define

(2.15) Dαp(ξ) := {∂α1p(ξ1), ∂
α2p(ξ2), . . . , ∂

αNp(ξN )} ,
and regard it also as a column vector. Instead of requiring ξi 6= ξj , we only assume
that ξi 6= ξj when αi = αj . In other word, ξi and ξj can be the same as long as
αi 6= αj . We then consider the inner product defined by

(2.16) 〈p, q〉ν = 〈p, q〉µ +Dαp(ξ)
tr ΛDαq(ξ).

When αi = 0 for all i, this is the inner product in (1.2). Other interesting cases
include, for example,

〈p, q〉ν = 〈p, q〉µ +

N
∑

j=0

λjp(ξj)q(ξj) +

N
∑

j=0

λ′
j∇p(ξj) · ∇q(ξj).
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Our results in Theorem 2.2, Proposition 2.3 and Theorem 2.4 still hold in this
setting, but we need to replace Pn in (2.2), Kn−1 in (2.3), and Kn−1(ξ, x) in (2.4)
by

P
∗
n(ξ) := (∂α1Pn(ξ1)|∂α2Pn(ξ2)| . . . |∂αdPn(ξN )) ∈ Mrdn×N ,

K∗
n−1 :=

(

∂αi

{1}∂
αj

{2}K
∗
n−1(dµ; ξi, ξj)

)N

i,j=1
∈ MN×N ,

K∗
n−1(ξ, x) =

{

∂α1

{1}Kn−1(dµ; ξ1, x), ∂
α2

{1}Kn−1(dµ; ξ2, x), . . . , ∂
αd

{1}Kn−1(dµ; ξN , x)
}

respectively, where ∂α
{1}Kn(u, v) means that the derivative is taken with respect to

u variable.

Theorem 2.5. The results in Theorem 2.2 and Theorem 2.4 hold for the inner

product defined in (2.15) when Pn, Kn−1 and Kn−1(ξ, x) are replaced by P∗
n, K

∗
n−1

and K∗
n−1(ξ, x), respectively.

The proof follows as before almost verbatim with little additional difficulty.

3. Orthogonal polynomials on the simplex

In this section we apply the general result in the previous section to orthogonal
polynomials on the simplex

T d := {x = (x1, . . . , xd) ∈ Rd : xi ≥ 0, 1− |x|1 ≥ 0}
in Rd, where |x|1 = x1 + . . .+ xd.

3.1. Jacobi polynomials on the simplex. We consider the Jacobi weight func-
tion

Wκ(x) = x
κ1−1/2
1 · · ·xκd−1/2

d (1− |x|1)κd+1−1/2, κi ≥ 0,

on the simplex, where

wκ =
Γ(|κ|+ d+1

2 )

Γ(κ1 +
1
2 ) · · ·Γ(κd+1 +

1
2 )

, |κ| := κ1 + κ2 + · · ·+ κd+1,

is the normalization constant of Wκ such that wκ

∫

Td Wκ(x) dx = 1. Associated
with Wκ, we consider the inner product on the simplex

(3.1) 〈f, g〉 = wκ

∫

Td

f(x) g(x)Wκ(x) dx,

which plays the role of 〈·, ·〉µ when we deal with the settings of the previous section.
For d = 1, Wκ is the classical Jacobi weight function, which has orthogonal poly-

nomials P
(κ1,κ2)
n (2t − 1), where P

(a,b)
n is the classical Jacobi polynomial of degree

n that is orthogonal with respect to (1 − t)a(1 + t)b on [−1, 1] and normalized by

P
(a,b)
n (1) =

(

n+a
n

)

. We shall also denote the orthonormal Jacobi polynomials by

p
(a,b)
n (t). Evidently, p

(a,b)
n (t) = cnP

(a,b)
n (t), where the constant cn is given by [8,

(4.3.3)].
To state an orthonormal basis for Vd

n on the simplex, we follow [2, p. 47] and
introduce the following notation. Associated with x = (x1, . . . , xd) ∈ Rd, we define
by xj the truncation of x, namely

x0 = 0, xj = (x1, . . . , xj), 1 ≤ j ≤ d,
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and associated with α = (α1, . . . , αd) ∈ Nd
0 and κ = (κ1, . . . , κd+1) ∈ Rd+1, we

introduce, respectively,

αj := (αj , . . . , αd), 1 ≤ j ≤ d, κj := (κj , . . . , κd+1), 1 ≤ j ≤ d+ 1.

Then, an orthonormal basis associated with (3.1) is given explicitly by

(3.2) Pα(Wκ;x) = h−1
α

d
∏

j=1

(

1− |xj |1
1− |xj−1|1

)|αj+1|

p(aj ,bj)
αj

(

2xj

1− |xj−1|1
− 1

)

,

where the parameters aj and bj are given by

aj = 2|αj+1|+ |κj+1|+ d− j − 1

2
, bj = κj −

1

2
,

and hα is the normalizing constant given by

h2
α =

(|κ|+ d+1
2 )2|α|

∏d
j=1(2|αj+1|+ |κj |+ d−j+2

2 )2αj

,

in which (a)k := a(a+ 1) . . . (a+ k − 1) denotes the shifted factorial.
In this case, we also have a compact formula for the reproducing kernels, given in

terms of the Gegenbauer polynomials Cλ
n , which are orthogonal with respect to the

weight function (1 − t2)λ−1/2 and normalized by Cλ
n(1) =

(

n+2λ−1
n

)

. The formula,
first derived in [11, Theorem 2.3], is given by

Kn(Wκ;x, y) =
1

2d+1

∫

[−1,1]d+1

Cλ
2n(

√
x1 y1 t1 + · · ·+√

xd+1 yd+1 td+1)(3.3)

×
d+1
∏

j=1

cκj
(1− t2j)

κj−1 dt,

where xd+1 = 1−|x|1, yd+1 = 1−|y|1, λ := |κ|+ d+1
2 , and cκj

=
∫ 1

−1
(1− t2j)

κj−1 dti.

Let us denote the standard Euclidean basis of Rd by {e1, . . . , ed}, where ei =
(0, . . . , 0, 1, 0 . . . , 0) with the single 1 in the i-th position. Furthermore, we set
ed+1 = (0, . . . , 0) ∈ Rd. Then {e1, e2, . . . , ed+1} is the set of vertices of T d.

Proposition 3.1. Let λ = |κ|+ d+1
2 . For 1 ≤ i ≤ d+ 1, we have

(3.4) Kn(Wκ;x, ei) =
1

2d+1

(λ)n
(κi + 1/2)n

P (λ−κi−1/2,κi−1/2)
n (2 xi − 1).

In particular, we have

Kn(Wκ; ei, ei) =
1

2d+1

(λ)n
n!

(λ − κi + 1/2)n
(κi + 1/2)n

, 1 ≤ i ≤ d+ 1.(3.5)

Kn(Wκ; ei, ej) =
(−1)n

2d+1

(λ)n
n!

, 1 ≤ i, j ≤ d+ 1,(3.6)
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Proof. Since Cλ
2n is an even function, for 1 ≤ i ≤ d+ 1 we deduce from (3.3) that

Kn(Wκ;x, ei) =
cκi

2d+1

∫ 1

−1

Cλ
2n(

√
xi ti) (1 − t2i )

κi−1 dti

=
cκi

2d+1

∫ 1

−1

Cλ
2n(

√
xi ti) (1 − ti)

κi−1 (1 + ti)
κi dti

=
1

2d+1
V (κi) Cλ

2n(
√
xi)

=
1

2d+1

(λ)n
(κi + 1/2)n

P (λ−κi−1/2,κi−1/2)
n (2 xi − 1),

where V (κi) is the operator defined in [2, Definition 1.5.1, p. 24] and the last
equality comes from [2, Proposition 1.5.6, p. 27]. In particular, setting x = ej in
(3.4) shows that

Kn(Wκ; ei, ei) =
1

2d+1

(λ)n
(κi + 1/2)n

P (λ−κi−1/2,κi−1/2)
n (1),

and, for i 6= j,

Kn(Wκ; ej, ei) =
1

2d+1

(λ)n
(κi + 1/2)n

P (λ−κi−1/2,κi−1/2)
n (−1),

from which (3.5) and (3.6) follow from [8, (4.1.1) and (4.1.4)]). �

3.2. Orthogonal polynomials on the simplex with mass points. We consider
orthogonal polynomials on the simplex for the Jacobi measure with additional mass
at each of the vertices of the simplex. In order to preserve symmetry, we shall limit
ourself to the situation that every vertex has the same weight M > 0. In other
words, we consider the inner product

(3.7) 〈f, g〉ν = wκ

∫

Td

f(x) g(x)Wκ(x) dx +M

d+1
∑

i=1

f(ei) g(ei), M > 0.

In the language of the inner product (1.2), we assume that Λ is a diagonal matrix
Λ = M Id+1 and the inner product take the form of (2.1).

We will further limit ourself to the case that κ1 = κ2 = · · · = κd+1 = ς ≥ 0.
Under this assumption,

λ = (d+ 1)(ς + 1/2).

We further denote

An := Kn(Wκ; ei, ei) =
1

2d+1

(λ)n
n!

(λ− ς + 1/2)n
(ς + 1/2)n

,

Bn := Kn(Wκ; ej , ei) =
(−1)n

2d+1

(λ)n
n!

, j 6= i.
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As a result, we see that the matrix Kn defined in (2.3) is given by

Kn =(Kn(Wκ; ei, ej))
d+1
i,j=1 =











An Bn · · · Bn

Bn An · · · Bn

...
...

. . .
...

Bn Bn · · · An











=(An −Bn)Id+1 +Bn







1 · · · 1
...

...
1 · · · 1







=(An −Bn)Id+1 +Bn







1
...
1






(1, . . . , 1).

This shows that Kn is a rank one perturbation of the identity matrix and, conse-
quently, the inverse of the matrix Id+1 + ΛKn can be easily verified to be

(Id+1 + ΛKn)
−1Λ =

M

[1 +M(An −Bn)][1 +M An + dM Bn]

×






(1 +M An + dM Bn)Id+1 −M Bn







1 · · · 1
...

...
1 · · · 1












.

As a result, we can now use Theorem 2.2 to derive an explicit orthogonal basis for
the inner product (3.7), which is given by

Qn(x) =Pn(x) +
M

1 +M(An−1 −Bn−1)

d+1
∑

i=1

Pn(ei)Kn−1(Wκ;x, ei)

− M2 Bn−1

[1 +M(An−1 −Bn−1)][1 +M An−1 + dM Bn−1]
×

×
d+1
∑

i=1

Pn(ei)

d+1
∑

i=1

Kn−1(Wκ;x, ei),

where {Pn}n≥0 denotes the orthonormal polynomial system on the simplex T d given
by (3.2). Furthermore, by Theorem 2.4, the reproducing kernel Kn(dν;x, y) for Π

d
n

under the inner product (3.7) is given by

Kn(dν;x, y) =Kn(Wκ;x, y) +
M

1 +M(An −Bn)

d+1
∑

i=1

Kn(Wκ;x, ei)Kn(Wκ; y, ei)

− M2 Bn

[1 +M(An −Bn)][1 +M An + dM Bn]
×(3.8)

×
d+1
∑

i=1

Kn(Wκ;x, ei)
d+1
∑

i=1

Kn(Wκ; y, ei).

The explicit formula of the kernel allows us to derive a sharp estimate for the
kernel Kn(dν;x, y) from those for Kn(Wκ;x, y) and for the Jacobi polynomials.
In the case of one variable (d = 1), such an estimate has been carried out in [4].
We shall give one result on the strong asymptotic of the Christoffel function with
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respect to dν on the simplex T d. For this purpose, we will need the following
estimate of the Jacobi polynomials ([8, (7.32.5) and (4.1.3)]):

Lemma 3.2. For an arbitrary real number α and t ∈ [0, 1],

(3.9) |P (α,β)
n (t)| ≤ cn−1/2(1− t+ n−2)−(α+1/2)/2.

The estimate on [−1, 0] follows from the fact that P
(α,β)
n (t) = (−1)nP

(β,α)
n (−t).

Note that (3.9) shows that |P (α,β)
n | ≤ cn−1/2 uniformly inside a compact subset

of (−1, 1). We derive the asymptotic for the difference Kn(dν;x, x)−Kn(Wκ;x, x).

Theorem 3.3. For x in T d,

Kn(dν;x, x)−Kn(Wκ;x, x) =
1

2d+1

Γ(λ− ς + 1/2)Γ(ς + 1/2)

Γ(λ)
(3.10)

×
d+1
∑

i=1

[

P (λ−ς−1/2,ς−1/2)
n (2 xi − 1)

]2
(

1 +O(n−1)
)

.

In particular, for x in the interior of T d,

lim
n→∞

[Kn(dν;x, x) −Kn(Wκ;x, x)] = 0,

and the convergence is uniform in any compact set in the interior of T d.

Proof. From (3.8) we deduce

Kn(dν;x, x)−Kn(Wκ;x, x) =
M

1 +M(An −Bn)

d+1
∑

i=1

Kn(Wκ;x, ei)
2

− M2 Bn

[1 +M(An −Bn)][1 +M An + dM Bn]
×
(

d+1
∑

i=1

Kn(Wκ;x, ei)

)2

=
MC2

n

1 +M(An −Bn)

d+1
∑

i=1

[

P (λ−ς−1/2,ς−1/2)
n (2 xi − 1)

]2

− M2C2
nBn

[1 +M(An −Bn)][1 +M An + dM Bn]
×

×
(

d+1
∑

i=1

P (λ−ς−1/2,ς−1/2)
n (2 xi − 1)

)2

,

where

Cn =
1

2d+1

(λ)n
(ς + 1/2)n

.

By the Stirling formula for the Gamma function (see [1, (6.1.39), p. 257]), we have

Γ(n+ a)

Γ(n+ 1)
= na−1(1 +O(n−1))

as n → ∞. Consequently, it is easy to see that the following limit relations hold:

MC2
n

1 +M(An −Bn)
=

1

2d+1

Γ(λ− ς + 1/2)Γ(ς + 1/2)

Γ(λ)

(

1 +O(n−1)
)

,

MBn

1 +M An + dM Bn
=(−1)n

Γ(λ− ς + 1/2)

Γ(ς + 1/2)
n−(λ−2ς−1)

(

1 +O(n−1)
)

.
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Since λ− 2ς − 1 = (d− 1)(ς + 1/2) > 0 for d ≥ 2 and
(

d+1
∑

i=1

P (λ−ς−1/2,ς−1/2)
n (2 xi − 1)

)2

≤ (d+ 1)

d+1
∑

i=1

[

P (λ−ς−1/2,ς−1/2)
n (2 xi − 1)

]2

by the Cauchy–Schwarz inequality, it follows readily that

Kn(dν;x, x) −Kn(Wκ;x, x) = cλ,ς

d+1
∑

i=1

[

P (λ−ς−1/2,ς−1/2)
n (2 xi − 1)

]2
(

1 +O(n−1)
)

,

where cλ,ς is the constant

cλ,ς =
1

2d+1

Γ(λ− ς + 1/2)Γ(ς + 1/2)

Γ(λ)
.

This is (3.10). If x is in the interior of T d, then |P (λ−ς−1/2,ς−1/2)
n (2 xi−1)| ≤ cn−1/2,

so that Kn(dν;x, x) −Kn(Wκ;x, x) goes to zero as n → ∞. �

The asymptotic of the Christoffel function for Wκ was studied in [12], where
most of the results were for convergence in the interior of T d. Such results carry
over to Kn(dν;x, y) by Theorem 3.3. In one particular case, κ = 0, the convergence
holds for all T d as given in [12, Theorem 2.3]:

(3.11) lim
n→∞

1
(

n+d
n

)Kn(W0;x, x) = 2d−k, x ∈ T d
k , 0 ≤ k ≤ d,

where T d
k denotes the k–dimensional face of T d, which contains elements of T d

for which exactly d − k inequalities in T d = {x : x1 ≥ 0, . . . , xd+1 ≥ 0} becomes
equalities. In particular, T d

d (when none of the inequalities become equality) is the
interior of T d, and 0–dimensional face T d

0 is the set of the vertices. Setting κ = 0,
so that ς = 0 and λ = (d+ 1)/2, we see that

P (λ−ς−1/2,ς−1/2)
n (2 xi − 1) = P (d/2,−1/2)

n (2 xi − 1) = (−1)nP (−1/2,d/2)
n (1 − 2 xi),

which is bounded by cn−1/2 whenever 1− xi ≥ ε > 0. It follows then that

lim
n→∞

1
(

n+d
n

)

d+1
∑

i=1

[

P (d/2,−1/2)
n (2 xi − 1)

]2

=

{

0 x ∈ T d
k , k > 0

1 x ∈ T d
0 ,

upon using the fact that P
(a,b)
n (1) =

(

n+a
n

)

. By (3.10), we then end up with the
following corollary.

Corollary 3.4. For κ = 0,

lim
n→∞

1
(

n+d
n

)Kn(dν;x, x) =

{

2d−k, x ∈ T d
k , k > 0,

2d + Ed, x ∈ T d
0 ,

where Ed = c(d+1)/2,0 = Γ(d/2 + 1)
√
π/(Γ(d+ 1/2)2d+1).

Comparing to (3.11), the result shows the impact of the additional mass points
at the vertices. More generally, if κi = ς > 0, then (3.10) shows that

Kn(dν;x, x) −Kn(Wκ;x, x) =cλ,ς
(

1 +O(n−1)
)

×
{

(

n+λ−ς−1/2
n

)

, x ∈ T d
0 ,

2k
(

n+ς−1/2
n

)

, x ∈ T d
k , 1 ≤ k ≤ d− 1,
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since, for x ∈ T d, xi = 1 only when x = ei. In particular, we see that

lim
n→∞

1
(

n+d
n

) [Kn(dν;x, x) −Kn(Wκ;x, x)] = 0, x ∈ T d
k , 1 ≤ k ≤ d,

if d > 2ς − 1, whereas this limit is unbounded when x ∈ T d
0 .
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