Skip to main content
Log in

On the solution of systems of equations with constant rank derivatives

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The famous for its simplicity and clarity Newton–Kantorovich hypothesis of Newton’s method has been used for a long time as the sufficient convergence condition for solving nonlinear equations. Recently, in the elegant study by Hu et al. (J Comput Appl Math 219:110–122, 2008), a Kantorovich-type convergence analysis for the Gauss–Newton method (GNM) was given improving earlier results by Häubler (Numer Math 48:119–125, 1986), and extending some results by Argyros (Adv Nonlinear Var Inequal 8:93–99, 2005, 2007) to hold for systems of equations with constant rank derivatives. In this study, we use our new idea of recurrent functions to extend the applicability of (GNM) by replacing existing conditions by weaker ones. Finally, we provide numerical examples to solve equations in cases not covered before (Häubler, Numer Math 48:119–125, 1986; Hu et al., J Comput Appl Math 219:110–122, 2008; Kontorovich and Akilov 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Argyros, I.K.: On the Newton–Kantorovich hypothesis for solving equations. J. Comput. Appl. Math. 169, 315–332 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Argyros, I.K.: A unifying local–semilocal convergence analysis and applications for two-point Newton-like methods in Banach space. J. Math. Anal. Appl. 298, 374–397 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Argyros, I.K.: On the semilocal convergence of the Gauss–Newton method. Adv. Nonlinear Var. Inequal. 8, 93–99 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Argyros, I.K.: Computational theory of iterative methods. In: Chui, C.K., Wuytack, L. (eds.) Studies in Computational Mathematics, vol. 15. Elsevier, New York (2007)

    Google Scholar 

  5. Argyros, I.K.: On a class of Newton-like methods for solving nonlinear equations. J. Comput. Appl. Math. 228, 115–122 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Argyros, I.K., Hilout, S.: Efficient Methods for Solving Equations and Variational Inequalities. Polimetrica Publisher, Milan (2009)

    Google Scholar 

  7. Argyros, I.K., Hilout, S.: Enclosing roots of polynomial equations and their applications to iterative processes. Surv. Math. Appl. 4, 119–132 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. With a Foreword by Richard M. Karp.. Springer, New York (1998)

    Google Scholar 

  9. Ben-Israel, A.: A Newton–Raphson method for the solution of systems of equations. J. Math. Anal. Appl. 15, 243–252 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ben-Israel, A., Greville, T.N.E.: Generalized Inverses. Theory and Applications, 2nd edn. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 15. Springer, New York (2003)

    MATH  Google Scholar 

  11. Dedieu, J.P., Kim, M.-H.: Newton’s method for analytic systems of equations with constant rank derivatives. J. Complex. 18, 187–209 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dedieu, J.P., Shub, M.: Newton’s method for overdetermined systems of equations. Math. Comput. 69, 1099–1115 (2000)

    MathSciNet  MATH  Google Scholar 

  13. Ezquerro, J.A., Hernández, M.A.: Generalized differentiability conditions for Newton’s method. IMA J. Numer. Anal. 22, 187–205 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ezquerro, J.A., Hernández, M.A.: On an application of Newton’s method to nonlinear operators with w-conditioned second derivative. BIT 42, 519–530 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Gutiérrez, J.M.: A new semilocal convergence theorem for Newton’s method. J. Comput. Appl. Math. 79, 131–145 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gutiérrez, J.M., Hernández, M.A.: Newton’s method under weak Kantorovich conditions. IMA J. Numer. Anal. 20, 521–532 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Häubler, W.M.: A Kantorovich-type convergence analysis for the Gauss–Newton-method. Numer. Math. 48, 119–125 (1986)

    Article  MathSciNet  Google Scholar 

  18. Hernández, M.A.: The Newton method for operators with Hölder continuous first derivative. J. Optim. Theory Appl. 109, 631–648 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hu, N., Shen, W., Li, C.: Kantorovich’s type theorems for systems of equations with constant rank derivatives. J. Comput. Appl. Math. 219, 110–122 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kantorovich, L.V., Akilov, G.P.: Functional Analysis. Pergamon, Oxford (1982)

    MATH  Google Scholar 

  21. Li, C., Zhang, W.-H., Jin, X.-Q.: Convergence and uniqueness properties of Gauss–Newton’s method. Comput. Math. Appl. 47, 1057–1067 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, C., Hu, N., Wang, J.: Convergence bahavior of Gauss–Newton’s method and extensions to the Smale point estimate theory. J. Complex. 26, 268–295 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Potra, F.A.: On the convergence of a class of Newton-like methods. In: Iterative Solution of Nonlinear Systems of Equations (Oberwolfach, 1982). Lecture Notes in Math., vol. 953, pp. 125–137. Springer, New York (1982)

    Chapter  Google Scholar 

  24. Potra, F.A.: On an iterative algorithm of order 1.839 ⋯ for solving nonlinear operator equations. Numer. Funct. Anal. Optim. 7(1), 75–106 (1984/85)

    Article  MathSciNet  Google Scholar 

  25. Potra, F.A.: Sharp error bounds for a class of Newton-like methods. Libertas Mathematica 5, 71–84 (1985)

    MathSciNet  MATH  Google Scholar 

  26. Shub, M., Smale, S.: Complexity of Bezout’s theorem. IV. Probability of success, extensions. SIAM J. Numer. Anal. 33, 128–148 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Smale, S.: The fundamental theorem of algebra and complexity theory. Bull. Am. Math. Soc. 4, 1–36 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  28. Smale, S.: Newton’s method estimates from data at one point. In: The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics (Laramie, Wyo., 1985), pp. 185–196. Springer, New York (1986)

    Google Scholar 

  29. Smale, S.: Complexity theory and numerical analysis. In: Acta Numerica, pp. 523–551. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  30. Traub, J.F., Woźniakowski, H.: Convergence and complexity of Newton iteration for operator equations. J. Assoc. Comput. Mach. 26, 250–258 (1979)

    MathSciNet  MATH  Google Scholar 

  31. Wedin, P.A.: Perturbation theory for pseudo-inverse. BIT 13, 217–232 (2000)

    Article  Google Scholar 

  32. Xu, X., Li, C.: Convergence of Newton’s method for systems of equations with constant rank derivatives, J. Comput. Math. 25, 705–718 (2007)

    MathSciNet  MATH  Google Scholar 

  33. Xu, X., Li, C.: Convergence criterion of Newton’s method for singular systems with constant rank derivatives. J. Math. Anal. Appl. 345, 689–701 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saïd Hilout.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Argyros, I.K., Hilout, S. On the solution of systems of equations with constant rank derivatives. Numer Algor 57, 235–253 (2011). https://doi.org/10.1007/s11075-010-9426-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-010-9426-5

Keywords

Mathematics Subject Classifications (2010)

Navigation