Skip to main content
Log in

The IIM in polar coordinates and its application to electro capacitance tomography problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In a numerical study of the electric field inside an Electro Capacitance Tomography (ECT) device and other applications, often a Poisson equation with a discontinuous coefficient needs to be solved in polar coordinates. This paper is devoted to the Immersed Interface Method (IIM) in polar coordinates and the application to the solution of the electric potential inside an ECT device. The numerical algorithm is based on a finite difference discretization on a uniform polar coordinates grid. The finite difference scheme is modified at grid points near and on the interface across which the coefficient is discontinuous so that the natural jump conditions are satisfied. The algorithm and analysis here is one step forward in applying the IIM for 3D problems in axisymmetric situations or in the spherical coordinates. Numerical examples against exact solutions and the application to ECT problems are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Beck, M.S., Dyakowski, T., Williams, R.A.: Process tomography-the state of the art. Meas. Control 20, 163–177 (1998)

    Article  Google Scholar 

  2. Borcea, L.: Electrical impedance tomography. Institute of physics publishing. Inverse Probl. 18, R99–R136 (2002)

    Article  MathSciNet  Google Scholar 

  3. Fang, W.: Reconstruction of permittivity profile from boundary capacitance data. Appl. Math. Comput. 177, 178–188 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fang, W.: Multi-phase permittivity reconstruction in electrical capacitance tomography by level-set methods. Inverse Probl. Sci. Eng. 15(3), 213–247 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hua, Y., Qun, S.F., Hui, X., Shi, W.: Three-dimensional analysis of electrical capacitance tomography sensing fields. Institute of physics publishing. Meas. Sci. Technol. 10, 717–725 (1999)

    Article  Google Scholar 

  6. LeVeque, R.J., Li, Z.: The immersed interface method for eliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31, 1019–1044 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, Z., Ito, K.: The immersed interface method. Numerical solutions of PDEs involving interfaces and irregular domains. SIAM Frontiers in Applied Mathematics, vol. 33. Philadelphia (2006)

  8. Li, Z., Wang, W.-C., Chern, I.-L., Lai, M.-C.: New formulations for interface problems in polar coordinates. SIAM J. Sci. Comput. 25, 224–245 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu, S., Yang, W.Q., Wang, H., Jiang, F., Su, Y.: Investigation of square fluidized beds using capacitance tomography: preliminary results. Institute of physics publishing. Meas. Sci. Technol. 12, 1120–1125 (2001)

    Article  Google Scholar 

  10. Liu, Y., Niu, G., Wang, J.: Design of capacitance sensor system for void fraction measurement. J. Zhejiang Univ. Sci. 6A(12), 1424–1429 (2005)

    Article  Google Scholar 

  11. Loser, T., Wajman, R., Mewes, D.: Electrical capacitance tomography: image reconstruction along electrical field lines. Institute of physics publishing. Meas. Sci. Technol. 12, 1083–1091 (2001)

    Article  Google Scholar 

  12. Martinez, A., Alberdi, J., Fernandez, J.L.: Influence of shielding arrangement on ECT sensors. Sensors 6, 1118–1127 (2006)

    Article  Google Scholar 

  13. Reinecke, N., Mewes, D.: Resolution enhancement for multi-electrode capacitance sensors. In: Proc. European Concerted Action on Process Tomography, pp. 50–61. Oporto (1994)

  14. Soleimani, M., Lionheart, W.R.B.: Nonlinear image reconstruction for electrical capacitance tomography using experimental data. Institute of physics publishing. Meas. Sci. Technol. 16, 1987–1996 (2005). doi:10.1088/0957-0233/16/10/014

    Article  Google Scholar 

  15. Yang,W.Q., Peng, L.: Image reconstruction algorithms for electrical capacitance tomography. Institute of physics publishing. Meas. Sci. Technol. 14, R1–R13 (2003)

    Article  Google Scholar 

  16. York, T.A.: Status of electrical tomography in industrial applications. J. Electron. Imaging 10, 608–619 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Ruiz Álvarez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz Álvarez, J., Chen, J. & Li, Z. The IIM in polar coordinates and its application to electro capacitance tomography problems. Numer Algor 57, 405–423 (2011). https://doi.org/10.1007/s11075-010-9436-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-010-9436-3

Keywords

Mathematics Subject Classifications (2010)

Navigation