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Abstract. This paper is concerned with iterative solution methods for large linear systems
of equations with a matrix of ill-determined rank and an error-contaminated right-hand side. The
numerical solution is delicate, because the matrix is very ill-conditioned and may be singular. It
is natural to require that the computed iterates live in the range of the matrix when the latter is
symmetric, because then the iterates are orthogonal to the null space. Computational experience
indicates that it can be beneficial to require that the iterates live in the range of the matrix also
when the latter is nonsymmetric. We discuss the design and implementation of iterative methods
that determine iterates with this property. New implementations that are particularly well suited
for use with the discrepancy principle are described.
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1. Introduction. Heinrich Voss has made numerous contributions in many areas
of scientific computing, including nonlinear eigenvalue problems, automated multilevel
substructuring, fluid structure interaction, and inverse problems; see, e.g., [20, 29, 30].
This paper is concerned with the latter area. We consider the design of minimal
residual iterative methods for the computation of approximate solutions of linear
systems of equations

Ax = b, A ∈ R
m×m, x, b ∈ R

m,(1.1)

with a large matrix A of ill-determined rank. Thus, A has many “tiny” singular
values of different orders of magnitude. In particular, A is severely ill-conditioned and
may be singular. Linear systems of equations (1.1) with a matrix of ill-determined
rank commonly are referred to as linear discrete ill-posed problems. They arise, for
instance, from the discretization of linear ill-posed problems, such as Fredholm integral
equations of the first kind with a smooth kernel. We discuss iterative methods both
for symmetric and nonsymmetric systems.

In many linear discrete ill-posed problems that arise in science and engineering,
the right-hand side vector b is obtained through measurement and is contaminated by
error, stemming from measurement inaccuracies and possibly discretization. Thus,

b = b̂ + e,(1.2)

where b̂ ∈ R
m denotes the unknown error-free right-hand side. While b̂ is assumed

to be in the range of A, the available error-contaminated right-hand side b might not
be. We refer to the error vector e as “noise.”

We would like to compute the solution of minimal Euclidean norm, x̂, of the
consistent linear discrete ill-posed problem with the unknown error-free right-hand
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side b̂,

Ax = b̂.(1.3)

Since the right-hand side is not known, we seek to determine an approximation of
x̂ by computing an approximate solution of the available linear system of equations
(1.1). We remark that due to the severe ill-conditioning of the matrix A and the error
e in b, the least-squares solution of minimal Euclidean norm of (1.1) generally is not
a useful approximation of x̂.

In order to be able to compute a meaningful approximation of x̂, it is often
necessary to first replace the linear system (1.1) by a system that is less sensitive to
the error e in b, and then solve the latter. This replacement commonly is referred
to as regularization. Truncated iteration is a popular regularization technique, which
seeks to determine a useful approximation of x̂ by applying sufficiently few steps of an
iterative solution method to (1.1). One can show that the sensitivity of the computed
solution to the error e increases with the number of iterations. The difference xk − x̂
typically decreases as k increases and is small, but increases with k for k large. It
is therefore important not to carry out too many iterations. When an estimate of
the norm of e is available, the discrepancy principle can be used to determine how
many iterations to carry out. Truncated iteration based on the discrepancy principle
is analyzed in, e.g., [9, 15, 16].

GMRES is a popular iterative method for the solution of large nonsymmetric
linear systems that arise from the discretization of well-posed problems; see, e.g., Saad
[27]. The kth iterate, xk, determined when this method is applied to the solution of
(1.1) with initial iterate x0 = 0 satisfies

‖Axk − b‖ = min
x∈Kk(A,b)

‖Ax − b‖, xk ∈ Kk(A, b),

where

Kk(A, b) = span{b, Ab, . . . , Ak−1b}

is a Krylov subspace and ‖ · ‖ denotes the Euclidean vector norm. We tacitly assume
that k is sufficiently small so that dim(Kk(A, b)) = k. When x̂ represents a nonsmooth
function, GMRES may give more accurate approximations of x̂ with less arithmetic
work than the conjugate gradient method applied to the normal equations associated
with (1.1); see, e.g., [6, 7, 10] for illustrations, as well as [8] for related examples.

For linear discrete ill-posed problems, for which the desired solution x̂ represents a
smooth function, it has been observed in [7, 18] that the following variation of GMRES,
referred to as Range Restricted GMRES (RRGMRES), often delivers more accurate
approximations of x̂ than GMRES. The kth iterate, xk, determined by RRGMRES
with initial iterate x0 = 0 satisfies

‖Axk − b‖ = min
x∈Kk(A,Ab)

‖Ax − b‖, xk ∈ Kk(A, Ab),(1.4)

where

Kk(A, Ab) = span{Ab, A2b, . . . , Akb}.(1.5)

Properties of and computed examples with RRGMRES can be found in [2, 7, 26], and
an implementation is available in Regularization Tools [17]. For many nonsymmetric
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linear discrete ill-posed problems of the form (1.1), RRGMRES yields as good or
better approximations of x̂ with less computational work than the conjugate conjugate
gradient method applied to the associated normal equations,

AT Ax = AT b,(1.6)

though there are problems for which RRGMRES performs poorly.
Example 1.1. Let A in (1.1) be the downshift matrix

A =
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
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



0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0

0
. . .

... 0 0
. . . 0 0

0 1 0





















∈ R
n×n

and let b = e2. Here and below ej = [0, . . . , 0, 1, 0, . . . , 0]T denotes the jth axis
vector. The minimal-norm solution of the linear system of equations (1.1) then is
x = e1. Since Kk(A, Ab) = span{e3, e4, . . . , ek+2}, it follows that the solution of (1.4)
is xk = 0 for 1 ≤ k < n− 2. These are poor approximations of e1. The minimal-norm
solution of the normal equations (1.6) is e1. �

The observation that iterative methods perform well for some linear discrete
ill-posed problems and poorly for others is reminiscent of the situation for well-
conditioned problems, for which it is well known that GMRES may perform better
than the conjugate gradient method applied to the normal equations and vice-versa;
see Nachtigal et al. [23] for examples. Illustrations for linear discrete ill-posed prob-
lems can be found in [7, 18, 19].

We are interested in the application of RRGMRES to the computation of approx-
imate solutions of linear discrete ill-posed problems (1.1) for two reasons: for a large
number of problems RRGMRES requires fewer matrix-vector product evaluations
than the conjugate gradient method applied to (1.6) to determine an approximation
of x̂ of comparable quality. The main reason for this is that each iteration with the
conjugate gradient method applied to (1.6) demands the evaluation of one matrix-
vector product with the matrix A and one with the matrix AT , while each iteration
with RRGMRES requires the evaluation of one matrix-vector product with A, only;
see, e.g., [7] for illustrations. Similar results in the context of a multilevel method are
reported in [22]. Moreover, for some linear systems of equations the matrix A is not
explicitly known; only a function for the evaluation of matrix-vector products may be
available. Then it can be difficult to evaluate matrix-vector products with AT . This
situation arises, for instance, when matrix-vector products with A are defined by a
multipole method or when A is the Jacobian matrix of a nonlinear problem; see, e.g.,
[13] for an example of the latter.

It is the purpose of this paper to compare several implementations of RRGMRES.
We present a new implementation that is easier to use with the discrepancy principle
than available ones and show that it has superior numerical properties.

When the matrix A is symmetric, GMRES simplifies to the Conjugate Residual
(CR) method or the MINRES method, which both can be implemented with short
recursion relations; see [24, 27] for details. Similarly, RRGMRES can be implemented
with short recursion relations when the matrix A is symmetric. Different implemen-
tations with short recursion relations are described in [7, 12, 16]. We compare these
implementations and present a new one.
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This paper is organized as follows. Section 2 discusses RRGMRES implemen-
tations and Section 3 is concerned with range restricted minimal residual methods
for symmetric linear discrete ill-posed problems. Tikhonov regularization methods
related to these iterative schemes are commented on in Section 4, and numerical
examples are presented in Section 5. Concluding remarks can be found in Section 6.

2. Implementations of RRGMRES. We assume the matrix A to be non-
symmetric in this section, and first describe the RRGMRES implementation in Reg-
ularization Tools [17]. This method was first discussed in [5, 7]. A modification, in
which the projected right-hand side is computed differently, also is discussed. These
implementations are based on the Arnoldi process for generating an orthonormal basis
for Krylov subspaces of the form (1.5). We conclude this section with a new variant
of the Arnoldi process and an associated implementation of RRGMRES.

Application of k steps of the Arnoldi process to the matrix A with initial vector
v1 = Ab/‖Ab‖ yields the decomposition

AVk = Vk+1H̄k,(2.1)

where Vk+1 = [v1, v2, . . . , vk, vk+1] ∈ R
m×(k+1) has orthonormal columns, which span

the Krylov subspace Kk+1(A, Ab), and the matrix Vk ∈ R
m×k consists of the first k

columns of Vk+1. We assume that k is chosen sufficiently small so that H̄k ∈ R
(k+1)×k

is an upper Hessenberg matrix with nonvanishing subdiagonal entries. Then H̄k is of
rank k. Following [21], we refer to (2.1) as a range restricted Arnoldi decomposition,
because R(Vk) ⊂ R(A). Here and elsewhere in this paper R(M) denotes the range of
the matrix M and N (M) denotes its null space. The Arnoldi process is said to break
down when the last subdiagonal entry of H̄k vanishes. This is a rare event, which
will not be considered in the present paper; see [2, 4, 5, 26] for discussions on this
situation.

Substituting the decomposition (2.1) into (1.4) yields

‖Axk − b‖2 = min
y∈Rk

‖Vk+1H̄ky − b‖2

= min
y∈Rk

‖H̄ky − V T
k+1b‖

2 + ‖zk+1‖
2,(2.2)

where

zk+1 = (I − Vk+1V
T
k+1)b.(2.3)

Denote the solution of the minimization problem (2.2) by yk. Then the solution xk

of (1.4) is given by xk = Vkyk.
The following algorithm from [7, 17] implements RRGMRES. We use MATLAB

inspired notation. For instance, the entries c(i) determine the vector c, and the entries
H(j, k) the matrix H . We let H(1 : j, k) denote the vector made up of the first j
entries of the kth column of H , and H(1 : j, 1 : j) is the leading j × j principal
submatrix of H . Unspecified entries are assumed to be initialized to zero. Vectors are
column vectors by default. The expression [τ, σ] denotes a row vector and [τ, σ;−σ, τ ]
the 2 × 2 matrix

[

τ σ
−σ τ

]

.

The input parameter k in the algorithm specifies the number of iterations.
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Algorithm 2.1. RRGMRES

Input: A, b, k.

Output: Approximate solutions x1, x2, . . . , xk of (1.1).

v1 := Ab/‖Ab‖; f(1) := vT
1 b; Q(1, 1) := 1; x0 := 0;

for j = 1, 2, . . . , k do

w := Avj;
for i = 1, 2, . . . , j do

d(i) := vT
i w; w := w − vid(i);

end
α := ‖w‖; vj+1 := w/α;
f(j + 1) := vT

j+1b; H(1 : j, j) := Q(1 : j, 1 : j)T d(1 : j);
if α = 0

τ := 1; σ := 0;
else if |α| > |H(j, j)|

µ := −H(j, j)/α; σ := 1/
p

1 + µ2; τ := σµ;
else

µ := −α/H(j, j); τ := 1/
p

1 + µ2; σ := τµ;
end
H(j, j) := τH(j, j) − σα;
Q(1 : j, j : j + 1) := Q(1 : j, j)[τ, σ]; Q(j + 1, j : j + 1) := [−σ, τ ];
W (:, j) := (vj − W (:, 1 : j − 1)T H(1 : j − 1, j))/H(j, j);
xj := xj−1 + (Q(1 : j + 1, j)T f)W (:, j);

end �

The solution of the minimization problem (2.2) requires the vector f = V T
k+1b.

The above implementation computes the entries as f(j) := vT
j b, 1 ≤ j ≤ k + 1,

where vj is the jth column of Vk+1. Due to round-off errors introduced during the
computations, the columns vj typically are not numerically orthogonal. Therefore the
computed values of vT

j b may be inaccurate. This, in turn, may result in poor accuracy
of the computed solution yk of (2.2).

We can improve the accuracy of the computed entries f(j) by evaluating them
in a modified Gram-Schmidt-like fashion. Instead of computing the entries of f inde-
pendently, we remove the component of vj from b as soon as the coefficient f(j) has
been determined. This leads to the recursion formula

f(j) = vT
j b, b = (I − vjv

T
j )b = b − (vT

j b)vj , j = 1, 2, . . . .

We refer to the algorithm obtained by modifying Algorithm 2.1 in this manner as
Modified RRGMRES.

Assume that a bound δ for ‖e‖ is known and let η > 1 be a user-specified con-
stant independent of δ. The discrepancy principle prescribes that we terminate the
iterations with RRGMRES as soon as an iterate xk that satisfies

‖Axk − b‖ ≤ ηδ(2.4)

has been determined. This iterate is our computed approximation of x̂. Properties of
GMRES when used with this stopping criterion are discussed in [9]. Similar results
hold for RRGMRES. A general discussion on the discrepancy principle can be found,
e.g., in [15].

The application of this stopping criterion is not straightforward with the imple-
mentations of RRGMRES described above, because the norm of the residual error
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is a function of both the residual error for the reduced problem and the projection
error; see (2.2). If the projection error (2.3) is large, then the residual error of the
reduced problem may be “tiny” at termination. In this situation, we solve the re-
duced problem almost exactly. Since V T

k+1b is contaminated by error and H̄k can be
ill-conditioned, this may result in low accuracy in the computed approximate solution
xk due to a large propagated error. If we instead terminate the iterations as soon as
the reduced problem satisfies the discrepancy principle, i.e., when

min
y∈Rk

‖H̄ky − V T
k+1b‖ ≤ ηδ,(2.5)

then the discrepancy may be unnecessarily large, in the sense that it may be possible
to determine a more accurate approximation of x̂ by carrying out one or several more
iterations. We illustrate these aspects with computed examples in Section 5. In the
alternative implementation of RRGMRES described below, the residual norm of the
reduced problem equals the residual norm of the original problem.

Both Algorithm 2.1 and Modified RRGMRES require the evaluation of the vector
V T

k+1b, where Vk+1 is defined by the range restricted Arnoldi decomposition (2.1). We

now describe a variant of this decomposition that obviates the evaluation V T
k+1b.

Application of k steps of the Arnoldi process to the matrix A with initial vector
v1 = b/‖b‖ gives the (standard) Arnoldi decomposition

AVk = Vk+1H̄k,(2.6)

where Vk+1 = [v1, v2, . . . , vk, vk+1] ∈ R
m×(k+1) has orthonormal columns, which span

the Krylov subspace Kk+1(A, b). This decomposition is the basis for the standard
GMRES implementation; see Saad [27]. It differs from (2.1) in the choice of first
column of Vk+1; we have V T

k+1b = ‖b‖e1.
Introduce the QR factorization of the upper Hessenberg matrix H̄k in (2.6),

H̄k = Qk+1R̄k,(2.7)

where Qk+1 ∈ R
(k+1)×(k+1) is orthogonal and R̄k ∈ R

(k+1)×k has a leading k×k upper
triangular submatrix, Rk, and a vanishing last row. Since H̄k is upper Hessenberg,
the matrix Qk+1 can be expressed as a product of k elementary reflections,

Qk+1 = G1G2 · · ·Gk,(2.8)

where Gj ∈ R
(k+1)×(k+1) is an elementary reflection in the planes j and j + 1. Thus,

Gj is the identity matrix except for a 2×2 block in the rows and columns j and j +1.
The representation (2.8) shows that Qk+1 is upper Hessenberg.

Let Wk ∈ R
m×k consist of the first k columns of Vk+1Qk+1. Then it follows from

(2.1) and (2.7) that

AVk = WkRk.(2.9)

In particular, this equation shows that R(Wk) = Kk(A, Ab). The minimization prob-
lem (1.4) therefore can be written as

min
y∈Rk

‖AWky − b‖ = min
y∈Rk

‖A(AVk)R−1
k y − b‖

= min
y∈Rk

‖AVk+1H̄kR−1
k y − b‖

= min
y∈Rk

‖Vk+2H̄k+1Qk+1Īky − b‖

= min
y∈Rk

‖H̄k+1Qk+1Īky − e1‖b‖ ‖,
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where Īk ∈ R
(k+1)×k consists of the first k columns of the identity matrix of order k+1,

and e1 denotes the first axis vector. The last equality follows from Vk+2e1 = b/‖b‖.
Since both matrices H̄k+1 and Qk+1 are upper Hessenberg, their product vanishes

below the sub-subdiagonal. It follows that the QR factorization

H̄k+1Qk+1Īk = Q′

k+2R̄
′

k+1,(2.10)

can be computed in only O(k2) arithmetic floating point operations. Here Q′

k+2 ∈

R
(k+2)×(k+2) is orthogonal and R̄′

k+1 ∈ R
(k+2)×(k+1) has a leading (k + 1) × (k + 1)

upper triangular submatrix and a vanishing last row. We obtain

min
y∈Rk

‖AWky − b‖ = min
y∈Rk

‖R̄′

k+1y − (Q′

k+2)
T e1‖b‖ ‖.

The norm of the residual error of the large problem on the right equals the norm
of the residual error of the reduced problem on the left. This makes the present
decomposition suitable to use with the discrepancy principle. The reason for the
generally better numerical performance of this decomposition, to be illustrated in
Section 5, depends on that that the vector V T

k+1b does not have to be computed.
The following algorithm describes an implementation. The matrix V in the al-

gorithm has the columns [v1, v2, . . . , vk+2]. We access the jth column either as vj or
V (:, j).

Algorithm 2.2. Alternative RRGMRES

Input: A, b, k.

Output: Approximate solutions x1, x2, . . . , xk.

Q := Ik+2; Q̆ := Ik+2;

v1 := b/‖b‖; f(1) := ‖b‖;

for j = 1, 2, . . . , k + 1 do

w := Avj;
for i = 1, 2, . . . , j do

H(i, j) := vT
i w; w := w − H(i, j)vi;

end
H(j + 1, j) := ‖w‖; vj+1 := w/‖w‖;
R(1 : k + 2, j) := H(1 : k + 2, j); R(1 : j, j) := Q(1 : j, 1 : j)H(1 : j, j);
µ := ‖R(j : j + 1, j)‖; σ := R(j + 1, j)/µ; τ := R(j, j)/µ;
Q(j : j + 1, :) := [τ, σ;−σ, τ ]Q(j : j + 1, :);
R(j : j + 1, j) := [τ, σ;−σ, τ ]R(j : j + 1, j);
f(j : j + 1) := [τ, σ;−σ, τ ]f(j : j + 1);
if j > 1

R̆(1 : j, j − 1) := R(1 : j, 1 : j)Q(j − 1, 1 : j)T ;
R̆(1 : j, j − 1) := Q̆(1 : j, 1 : j)R̆(1 : j, j − 1);
µ := ‖R̆(j − 1 : j, j − 1)‖; σ := R̆(j, j − 1)/µ; τ := R̆(j − 1, j − 1)/µ;
Q̆(j − 1 : j, :) := [τ, σ;−σ, τ ]Q̆(j − 1 : j, :);
R̆(j − 1 : j, j − 1) := [τ, σ;−σ, τ ]R̆(j − 1 : j, j − 1);
f̆(j − 1 : j + 1) := Q̆(j − 1 : j + 1, 1 : j + 1)f(1 : j + 1);
Y (:, j − 1) := V (:, 1 : j)Q(j − 1, 1 : j)T ;
for i = 1, 2, . . . , j − 2 do

Y (:, j − 1) := Y (:, j − 1) − Y (:, i)R̆(i, j − 1);
end
Y (:, j − 1) := Y (:, j − 1)/R̆(j − 1, j − 1);
if j = 2

X̃(:, 1) := Y (:, 1)f̆(1);
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else
X̃(:, j − 1) := X̃(:, j − 2) + Y (:, j − 1)f̆(j − 1);

end
end

end �

3. Algorithms for symmetric problems. Iterative methods proposed in the
literature for the solution of inconsistent linear discrete ill-posed problems with a
symmetric matrix A determine iterates in the range of the matrix to ensure that the
iterates are orthogonal to the null space of the matrix. Algorithm 3.1 in [12] and
algorithm MR-II in [16] are Orthodir-implementations of minimal residual methods
with this property. They generate orthogonal bases of range restricted Krylov sub-
spaces (1.5) with three-term recursion formulas and differ only in their use of scaling
factors. The storage requirement for both algorithms is bounded independently of
the number of iterations carried out. We illustrate the performance of Orthodir-type
methods with MR-II in Section 5 because of its popularity for the solution of large-
scale symmetric linear discrete ill-posed problems. This method explicitly computes
the residual error associated with each iterate, which makes it easy to use MR-II in
conjunction with the discrepancy principle. However, numerical examples in Section 5
shows this implementation to be sensitive to round-off errors when A is ill-conditioned.

The RRMR algorithm in [7] is another implementation of the range restricted
minimal residual method for symmetric problems. This implementation evaluates an
LQ-factorization of the symmetric tridiagonal matrix generated by the underlying
Lanczos process. This approach is analogous to that of the MINRES method by
Paige and Saunders [24]. A drawback of RRMR is that the norm of the residual error
is expressed by formula (2.2). As already mentioned, this formula is not ideal for
use together with the discrepancy principle. Moreover, the RRMR implementation
also is sensitive to round-off errors introduced during the computations when A is
ill-conditioned.

The following algorithm is derived in a similar fashion as Algorithm 2.2. It differs
from the latter in that it uses short recursion formulas. Therefore, the number of
vectors required simultaneously in computer storage is bounded independently of the
number of iteration steps. We access the jth column of the matrix V in the algorithm
below either as vj or V (:, j).

Algorithm 3.1. Alternative RRGMRES for symmetric matrices)

Input: A,b,k

Output: Approximate solutions x1, x2, . . . , xk stored as columns of the matrix X̃.

Q := Ik+2; Q̆ := Ik+2;

v1 := b/‖b‖; f(1) := ‖b‖;

for j = 1, 2, . . . , k + 1 do

if j = 1
w := Avj;

else
w := Avj − g(j − 1)vj−1;

end
c(j) := vT

j w; w := w − c(j)vj ;
g(j) := ‖w‖; vj+1 := w/g(j);
if j = 1

T (1, 1) := c(1); T (2, 1) := g(1);
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R(1 : 2, 1) := T (1 : 2, 1);
µ := ‖R(1 : 2, 1)‖; σ := R(2, 1)/µ; τ := R(1, 1)/µ;
Q(1 : 2, 1 : 2) := [τ, σ;−σ, τ ]Q(1 : 2, 1 : 2);
R(1 : 2, 1) := [τR(1, 1) + σR(2, 1); 0];
f(1 : 2) := [τ, σ;−σ, τ ]f(1 : 2);

else
T (j − 1 : j + 1, j) := [g(j − 1); c(j); gj+1];
R(j − 1 : j + 1, j) := T (j − 1 : j + 1, l);
if j = 2

R(j − 1 : j, j) := Q(j − 1 : j, j − 1 : j + 1)T (j − 1 : j + 1, j);
else

R(j − 2 : j, j) := Q(j − 2 : j, j − 1 : j + 1)T (j − 1 : j + 1, j);
end
µ := ‖R(j : j + 1, j)‖; σ := R(j + 1, j)/µ; τ := R(j, j)/µ;
Q(j : j + 1, 1 : j + 1) := [τ, σ;−σ, τ ]Q(j : j + 1, 1 : j + 1);
R(j : j + 1, j) := [τR(j, j) + σR(j + 1, j); 0];
f(j : j + 1) := [τ, σ;−σ, τ ]f(j : j + 1);

end
if j > 1

if j = 2
R̆(j − 1 : j, j − 1) := R(j − 1 : j, j − 1 : j)Q(j − 1, j − 1 : j)T ;

else
R̆(j − 2 : j, j − 1) := R(j − 2 : j, j − 2 : j)Q(j − 1, j − 2 : j)T ;
R̆(1 : j, j) := Q̆(1 : j, 1 : j)R̆(1 : j, j − 1);

end
µ := ‖R̆(j − 1 : j, j − 1)‖; σ := R̆(j, j − 1)/µ; τ := R̆(j − 1, j − 1)/µ;
Q̆(j − 1 : j, 1 : j + 1) := [τ, σ;−σ, τ ]Q̆(j − 1 : j, 1 : j + 1);
R̆(j − 1 : j, j − 1) := [τR̆j−1,j−1 + σR̆(j, j − 1); 0];
f̆(j − 1 : j + 1) := Q̆(j − 1 : j + 1)f(1 : j + 1);
Y (:, j − 1) := V (:, 1 : j)Q(j − 1, 1 : j)T ;
for i = 1, 2, . . . , j − 2 do

Y (:, j − 1) := Y (:, j − 1) − Y (:, i)R̆(i, j − 1);
end
Y (:, j − 1) := Y (:, j − 1)/R̆(j − 1, j − 1);
if j = 2

X̃(:, 1) := Y (:, 1)f̆(1);
else

X̃(:, j − 1) := X̃(:, j − 2) + Y (:, j − 1)f̆(j − 1);
end

end

end �

4. Tikhonov regularization. One of the most popular regularization methods
is due to Tikhonov. In its simplest form Tikhonov regularization replaces (1.1) by the
minimization problem

min
x∈Rn

{‖Ax − b‖2 + λ‖x‖2},(4.1)

where λ is a positive real scalar referred to as the regularization parameter. The value
of λ determines the sensitivity of the solution xλ of (4.1) to the error e in b, and how
much xλ differs from the minimal-norm solution x̂ of (1.3); see, e.g., Engl et al. [15]
for properties of this regularization method.

Many implementations are based on partial Lanczos bidiagonalization of the ma-
trix A; see, e.g., [3, 11, 14] and references therein. The application of the range
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restricted Arnoldi decomposition (2.1) to Tikhonov regularization is described in [21].
Computed examples reported in [21] show that this approach can be competitive.
Since the implementation is based on (2.1), the projection error (2.3) has to be taken
into account; see [21, Theorem 2.1]. This is not necessary when applying the decom-
position (2.9). It therefore is attractive to use the latter decomposition for Tikhonov
regularization; the advantage of not having to deal with a projection error is the same
as for RRGMRES, see the discussion around equation (2.5).

Minimization over the range restricted Krylov subspace (1.5) in (4.1), using (2.9)
and (2.10), and letting x = Wky, yields

min
x∈Kk(A,Ab)

{‖Ax − b‖2 + λ‖x‖2} = min
y∈Rk

{‖AWky − b‖2 + λ‖y‖2}

= min
y∈Rk

{‖R̄′

k+1y − (Q′

k+2)
T e1‖b‖ ‖ + λ‖y‖2}.

The matrix R̄′

k+1 is small in most applications. Therefore, the last least-squares
problem can be solved with little computational effort for several values of the reg-
ularization parameter λ > 0. The computations can be organized similarly as in
[21].

5. Computed examples. We compare the performance of the implementations
of range restricted minimal-residual methods for nonsymmetric and symmetric linear
discrete ill-posed problems (1.1) discussed in Sections 2 and 3. In most computed
examples, we assume that an estimate of the norm of the noise in the right-hand side,
δ = ‖e‖, is known, and terminate the computations as soon as an iterate xk that sat-
isfies the discrepancy principle (2.4) has been determined. Thus, xk is our computed
approximation of the desired solution x̂ of the unavailable noise-free problem (1.3).
We let η = 1.001 in all examples.

When the matrix A is nonsymmetric and the noise-level

ν =
δ

‖b̂‖

is moderate or large, Algorithms 2.1 & 2.2, and Modified RRGMRES, perform simi-
larly. However, computed examples of this section illustrate that when the noise-level
is very small, these implementations may produce significantly different approximate
solutions. Analogously, Algorithm 3.1, RRMR, and MR-II, determine approximate
solutions of about the same quality when the noise-level is moderate or large, but
this is not always the case for very small noise-levels; see illustrations below. The
most important advantage of the Algorithms 2.2 and 3.1 is their better performance
in conjunction with the discrepancy principle. The first two examples compare the
stopping criteria (2.4) and (2.5).

implementation # iterations k ‖xk − x̂‖/‖x̂‖
Algorithm 2.1 1 5.8849 · 10−1

Modified RRGMRES 1 5.8849 · 10−1

Algorithm 2.2 4 1.6835 · 10−1

Table 5.1

Example 5.1: Number of iterations k and relative error in iterate xk determined with stop-
ping criterion (2.5) for Algorithm 2.1 and Modified RRGMRES, and stopping criterion (2.4) for
Algorithm 2.2.



Range restricted iterative methods 11

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

Fig. 5.1. Example 5.1: Computed solutions determined by Algorithm 2.2 (continuous graph)
and Algorithm 2.1 and Modified RRGMRES (both represented by the dashed graph). The exact
solution is also shown (dotted graph).

Example 5.1. Let the matrix A be obtained by discretizing the integral equation

∫ π/2

−π/2

κ(τ, σ)x(σ)dσ = b(τ), −
π

2
≤ τ ≤

π

2
,(5.1)

where

κ(σ, τ) = (cos(σ) + cos(τ))

(

sin(ξ)

ξ

)2

, ξ = π(sin(σ) + sin(τ)).

The right-hand side function b(τ) is chosen so that the solution x(σ) is the sum of two
Gaussian functions. This integral equation is discussed by Shaw [28]. We discretize it
by a Nyström method based on the trapezoidal rule with n = 2000 equidistant nodes.
This yields the nonsymmetric matrix A ∈ R

2000×2000 and the discretized solution
x̂ ∈ R

2000 from which we determine b̂ = Ax̂. A vector e ∈ R
2000 with normally

distributed random entries with zero mean simulates noise; it is scaled to correspond
to the noise-level ν = 0.1. We determine the contaminated right-hand side in (1.1)
from (1.2).

We consider the application of Algorithm 2.1 and Modified RRGMRES with
stopping criterion (2.5). This criterion terminates the computations when the first
iterate, x1, has been computed. The relative error in x1 is quite large; see Table 5.1.

If, instead, Algorithm 2.2 is applied with the stopping criterion (2.4), then 4 iter-
ations are carried out before termination. This results in the computed approximate
solution x4 with a smaller error. Table 5.1 reports the relative errors in the computed
approximations of the desired solution x̂.

Figure 5.1 displays the approximate solution obtained by Algorithm 2.2 with the
stopping criterion (2.4) and approximate solutions determined by Algorithm 2.1 and
Modified RRGMRES with the stopping criterion (2.5). �
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implementation # iterations k ‖xk − x̂‖/‖x̂‖
Algorithm 2.1 5∗ 1.9505 · 10−3

Modified RRGMRES 5∗ 1.9505 · 10−3

Algorithm 2.2 5 1.9504 · 10−3

Table 5.2

Example 5.2: Number of iterations k and relative error in iterate xk determined with stopping
criterion based on (2.2) for Algorithm 2.1 and Modified RRGMRES, and stopping criterion (2.4)
for Algorithm 2.2. The superscript ∗ indicates that the stopping criterion was not satisfied within
200 iterations. Algorithm 2.2 required 5 iterations to satisfy the stopping criterion. The table reports
the relative error after 5 iterations for all implementations.

Example 5.2. The Fredholm integral equation of the first kind,

∫ π

0

κ(σ, τ)x(τ)dτ = b(σ), 0 ≤ σ ≤
π

2
,(5.2)

with κ(σ, τ) = exp(σ cos(τ)), b(σ) = 2 sinh(σ)/σ, and solution x(τ) = sin(τ) is dis-
cussed by Baart [1]. We use the MATLAB code baart from [17] to discretize (5.2) by
a Galerkin method with 200 orthonormal box functions as test and trial functions.
The code produces the nonsymmetric matrix A ∈ R

200×200 and the scaled discrete
approximation x̂ ∈ R

200 of x(τ). The noise-free right-hand side is given by b̂ = Ax̂.
The entries of the noise vector e ∈ R

200 are generated in the same way as in Example
5.1 and normalized to correspond to the noise-level ν = 1 · 10−5. The contaminated
right-hand side is defined by (1.2).

We consider the application of Algorithm 2.1 and Modified RRGMRES with
stopping criterion based on (2.2). This criterion fails to terminate the computations
within 200 iterations due to propagated round-off errors. If, instead, Algorithm 2.2
is applied with the stopping criterion (2.4), then only 5 iterations are carried out
before termination. When comparing the relative errors in the computed approximate
solutions for all the algorithms after 5 iterations, we note that the relative errors are
nearly identical; see Table 5.2. However, due to the loss of orthogonality of the
columns of the matrices Vk+1 in (2.1) for 1 ≤ k ≤ 200, the projection error (2.3)
is large and prevents the stopping criterion (2.4) from being satisfied. Thus, while
all implementations give about the same error after 5 iterations, only Algorithm 2.2
reveals that 5 iterations suffice. Continued iteration with the other algorithms gives
iterates xk with large errors. For instance, the iterate x200 computed by Algorithm
2.1 has relative error ‖x200 − x̂‖/‖x̂‖ = 2 · 1017, while the relative error for the
corresponding iterate determined by Modified RRGMRES is 4 · 1011. �

The following three examples illustrate the superior behavior of Algorithm 2.2
for small noise-levels. Due to the ill-conditioning of A, these problems are difficult to
solve accurately.

Example 5.3. We consider the Fredholm integral equation of the first kind de-
scribed in the Example 5.2. The entries of the noise vector e ∈ R

200 are normally
distributed with zero mean, and normalized to yield specified noise-levels ν. The
contaminated right-hand sides are defined by (1.2).

Table 5.3 displays the performance of Algorithms 2.1 & 2.2, and of Modified
RRGMRES for several noise-levels. The iterations are terminated by the discrepancy
principle (2.4). The table shows Algorithm 2.2 to give the smallest error. We remark
that for large noise-levels all implementations perform about the same.

Figure 5.2 displays the relative error ‖xk − x̂‖/‖x̂‖ in the computed iterates de-
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implementation ν # iterations k ‖xk − x̂‖/‖x̂‖
Algorithm 2.1 1 · 10−9 6 9.77 · 10−4

Modified RRGMRES 1 · 10−9 6 9.77 · 10−4

Algorithm 2.2 1 · 10−9 6 9.72 · 10−4

Algorithm 2.1 1 · 10−11 7∗ 2.31 · 10−1

Modified RRGMRES 1 · 10−11 7 3.32 · 10−3

Algorithm 2.2 1 · 10−11 7 2.06 · 10−5

Table 5.3

Example 5.3: Noise-level, number of iterations k, and relative error in iterate xk determined by
the discrepancy principle (2.4) when solving (5.2). The superscript ∗ indicates that the discrepancy
principle was not satisfied within 200 iterations. We report the error after the number of iterations
required by the other implementations to satisfy the discrepancy principle.
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Fig. 5.2. Example 5.3: Relative errors in the computed solutions determined by Algorithm 2.1
(dash-dotted graph), Modified RRGMRES (dashed graph), and Algorithm 2.2 (continuous graph),
as a function of the number of iterations when no “noise” is explicitly added to the right-hand side.

termined by Algorithms 2.1 & 2.2, and Modified RRGMRES. In order to illustrate
the performance of these implementations when the right-hand side is contaminated
by little noise, we let b = b̂, i.e., we let ν = 0. Inaccuracy in the computed iterates
is caused by round-off errors introduced during the computations. The figure shows
Algorithm 2.2 to be able to determine the best approximation of x̂. �

implementation ν # iterations k ‖xk − x̂‖/‖x̂‖
Algorithm 2.1 1 · 10−11 190∗ 1.67 · 104

Modified RRGMRES 1 · 10−11 190 4.59 · 10−6

Algorithm 2.2 1 · 10−11 100 3.76 · 10−6

Table 5.4

Example 5.4: Noise-level, number of iterations k, and relative error in iterate xk determined by
the discrepancy principle (2.4) when solving (5.3). The superscript ∗ indicates that the discrepancy
principle was not satisfied within 200 iterations. We report the error after the number of iterations
required by Modified RRGMRES.
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Example 5.4. Consider the Fredholm integral equation of the first kind

∫ 6

−6

κ(t, s)x(s)ds = b(t), −6 ≤ t ≤ 6,(5.3)

discussed by Phillips [25]. Its solution, kernel, and right-hand side are given by

x(s) =

{

1 + cos(π
3 s), if |s| < 3,

0, otherwise,

κ(t, s) = x(t − s),

b(t) = (6 − |t|)(1 +
1

2
cos(

π

3
t)) +

9

2π
sin(

π

3
|t|).

We discretize this integral equation by a Nyström method based on a composite
trapezoidal quadrature rule with 200 equidistant nodes. This gives the nonsymmetric
matrix A ∈ R

200×200. A discretization of the exact solution defines x̂ ∈ R
200. The

contaminated right-hand side b ∈ R
200 is defined analogously as in Example 5.1. The

noise-level is 1 · 10−11.
Table 5.4 displays the performance of Algorithms 2.1 and 2.2, as well as of Mod-

ified RRGMRES. The iterations are terminated by the discrepancy principle. Algo-
rithm 2.2 is seen to yield the most accurate approximation of x̂. �

implementation ν # iterations k ‖xk − x̂‖/‖x̂‖
MR-II 1 · 10−6 19 2.65 · 10−2

RRMR 1 · 10−6 14 1.96 · 10−2

Algorithm 3.1 1 · 10−6 15 1.96 · 10−2

MR-II 1 · 10−8 31 1.21 · 10−1

RRMR 1 · 10−8 28 7.19 · 10−3

Algorithm 3.1 1 · 10−8 26 7.23 · 10−3

MR-II 1 · 10−10 41 6.75 · 10−2

RRMR 1 · 10−10 41∗ 2.64 · 10−1

Algorithm 3.1 1 · 10−10 36 3.68 · 10−3

Table 5.5

Example 5.5: Noise-level, number of iterations k, and relative error in iterate xk determined by
the discrepancy principle (2.4) when solving (5.1). The superscript ∗ indicates that the discrepancy
principle was not satisfied within 200 iterations. We report the error after the number of iterations
required by MR-II.

Example 5.5. We consider the same Fredholm integral equation as in Example
5.1, but now discretize it with the code shaw from [17], using a quadrature rule with
200 nodes. This yields the symmetric matrix A ∈ R

200×200 and solution x̂ ∈ R
200.

We determine the noise-contaminated right-hand side vector b of (1.1) similarly as in
Example 5.1.

Table 5.5 displays the performance of the implementations MR-II, RRMR, and
Algorithm 3.1. The iterations are terminated by the discrepancy principle. The table
shows the computed approximate solutions computed by Algorithm 3.1 to be the most
accurate.

Figure 5.3 shows the relative error in the iterates computed by MR-II, RRMR, and
Algorithm 3.1, when b = b̂. The figure shows Algorithm 3.1 to be able to determine
the best approximation of x̂. The associated residual errors are displayed in Figure
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Fig. 5.3. Example 5.5: Relative errors in the computed solutions determined by Algorithm 3.1
(continuous graph), RMRR (dash-dotted graph), and MR-II (dashed graph), as a function of the
number of iterations when no “noise” is explicitly added to the right-hand side.
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Fig. 5.4. Example 5.5: Residual errors associated with the computed solutions, whose relative
errors are shown in Figure 5.3. The continuous, dash-dotted, and dashed graphs display the residual
errors for iterates determined by Algorithm 3.1, RMRR, and MR-II, respectively.

5.4. Algorithm 3.1 yields the fastest decreasing residual error, and therefore may
require fewer iteration to satisfy the discrepancy principle. �

Example 5.6. Our final example is concerned with the restoration of an image.
Figure 5.5 shows the “original” uncontaminated image represented by an array of
2804 × 1975 pixels. We extract a 302 × 302-pixel subimage Heinrich Voss. Figure
5.6 displays a version that has been contaminated by Gaussian blur and 0.1% noise.
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Fig. 5.5. Example 5.6: Original large image showing Lothar Collatz and his graduate students.

Fig. 5.6. Example 5.6: Blurred and noisy subimage “Heinrich Voss” of Figure 5.5.

We apply Algorithm 3.1 to deblur the latter image. The available contaminated
image is stored in the right-hand side b ∈ R

91204 of (1.1) and the system matrix
A ∈ R

91204×91204 models the blurring operator. The discrepancy principle is satisfied
after 21 iterations. Figure 5.7 shows the deblurred image represented by the iterate
x21. �

6. Conclusion. This paper compares new and available algorithms for range
restricted minimal residual methods for linear discrete ill-posed problems with a gen-
eral square matrix or a symmetric matrix. The new algorithms are better suited for
use in conjunction with the discrepancy principle, because the residual error norm of
the reduced problem is the residual error norm of the unreduced problem. Moreover,
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Fig. 5.7. Example 5.6: Deblurred subimage.

the new algorithms are less sensitive to errors in the right-hand side and to round-off
errors introduced during the computations. This is illustrated for linear discrete ill-
posed problems with very little noise in the data (right-hand side). These problems
generally are more difficult to solve than problems with much noise in the data, be-
cause the discrepancy principle requires that more iterations be carried out, and this
increases the ill-conditioning of the reduced problem to be solved.
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5.5 and the referees for comments.
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