Skip to main content
Log in

An algorithm for second order initial and boundary value problems with an automatic error estimate based on a third derivative method

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A third derivative method (TDM) with continuous coefficients is derived and used to obtain a main and additional methods, which are simultaneously applied to provide all approximations on the entire interval for initial and boundary value problems of the form y′′ = f(x, y, y′). The convergence analysis of the method is discussed. An algorithm involving the TDMs is developed and equipped with an automatic error estimate based on the double mesh principle. Numerical experiments are performed to show efficiency and accuracy advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amodio, P., Iavernaro, F.: Symmetric boundary methods for second initial and boundary value problems. Mediterr. J. Math. 3, 383–398 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ananthakrishnaiah, U.: P-stable Obrechkoff methods with minimal phase-lag for periodic initial value problems. Math. Comput. 49, 553–559 (1987)

    MathSciNet  MATH  Google Scholar 

  3. Ascher, U.M., Mattheij, R.M.M., Russell, R.D.: Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations, 2nd edn. SIAM, Philadephia, PA (1995)

  4. Awoyemi, D.O.: A new sixth-order algorithm for general second order ordinary differential equation. Int. J. Comput. Math. 77, 117–124 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beentjes, P.A., Gerritsen, W.J.: High order Runge–Kutta methods for the numerical solution of second order differential equations without first derivative. Report NW 34/76. Center for Mathematics and Computer Science, Amsterdam (1976)

  6. Brugnano, L., Trigiante, D.: Solving Differential Problems by Multistep Initial and Boundary Value Methods. Gordon and Breach Science Publishers, Amsterdam (1998)

    Google Scholar 

  7. Chawla, M.M., Sharma, S.R.: Families of three-stage third order Runge–Kutta–Nystrom methods for y′′ = f(x, y, y′ ). J. Aust. Math. Soc. 26, 375–386 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coleman, J.P., Gr. Ixaru, G.: P-stability and exponential-fitting methods for y′′ = f(x, y). IMA J. Numer. Anal. 16, 179–199 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Conte, S.D., de Boor, C.: Elementary numerical analysis. In: An Algorithmic Approach, 3rd edn. McGraw-Hill, Tokyo, Japan (1981)

    Google Scholar 

  10. Fang, Y., Song, Y., Wu, X.: A robust trigonometrically fitted embedded pair for perturbed oscillators. J. Comput. Appl. Math. 225, 347–355 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Franco, J.M.: Runge–Kutta–Nyström methods adapted to the numerical integration of perturbed oscillators. Comput. Phys. Commun. 147, 770–787 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gladwell, I., Sayers, D.K.: Computational Techniques for Ordinary Differential Equations. Academic, London, New York (1976)

    Google Scholar 

  13. Hairer, E., Nörsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Springer, Berlin (1987)

    MATH  Google Scholar 

  14. Hairer, E.: Méthodes de Nyström pour l’équation différentielle y′′ = f(x, y). Numer. Math. 25, 283–300 (1977)

    Google Scholar 

  15. Jain, M.K., Aziz, T.: Cubic spline solution of two-point boundary value with signifigant first derivatives. Comput. Methods Appl. Mech. Eng. 39, 83–91 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jator, S.N.: A sixth order linear multistep method for the direct solution of y′′ = f(x, y, y′). Int. J. Pure Appl. Math. 40, 457–472 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Jator, S.N., Li, J.: Boundary value methods via a multistep method with variable coefficients for second order initial and boundary value problems. Int. J. Pure Appl. Math. 50, 403–420 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Keller, H.B.: Numerical Methods for Two-Point Boundary Value Problems. Dover, New York (1992)

    Google Scholar 

  19. Lambert, J.D., Watson, A.: Symmetric multistep method for periodic initial value problem. J. Instrum. Math. Appl. 18, 189–202 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mahmoud, S.M., Osman, M.S.: On a class of spline-collocation methods for solving second-order initial-value problems. Int. J. Comput. Math. 86, 613–630 (2009)

    Article  MathSciNet  Google Scholar 

  21. Onumanyi, P., Sirisena, U.W., Jator, S.N.: Continuous finite difference approximations for solving differential equations. Int. J. Comput. Math. 72, 15–27 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ramadan, M.A., Lashien, I.F., Zahra, W.K.: Polynomial and nonpolynomial spline approaches to the numerical solution of second order boundary value problems. Appl. Math. Comput. 184, 476–484 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Simos, T.E.: Dissipative trigonometrically-fitted methods for second order IVPs with oscillating solution. Int. J. Mod. Phys. 13, 1333–1345 (2002)

    Article  MathSciNet  Google Scholar 

  24. Sommeijer, B.P.: Explicit, high-order Runge–Kutta–Nyström methods for parallel computers. Appl. Numer. Math. 13, 221–240 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tsitouras, Ch.: Explicit eight order two-step methods with nine stages for integrating oscillatory problems. Int. J. Mod. Phys. 17, 861–876 (2006)

    Article  MATH  Google Scholar 

  26. Twizell, E.H., Khaliq, A.Q.M.: Multiderivative methods for periodic IVPs. SIAM J. Numer. Anal. 21, 111–121 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. Van der Houwen, P.J., Sommeijer, B.P.: Predictor-corrector methods for periodic second-order initial value problems. IMA J. Numer. Anal. 7, 407–422 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Vigo-Aguiar, J., Ramos, H.: Variable stepsize implementation of multistep methods for y′′ = f (x, y, y′). J. Comput. Appl. Math. 192, 114–131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yusuph, Y., Onumanyi, P.: New Multiple FDMs through multistep collocation for y′′ = f(x, y). In: Proceedings of the National Mathematical Center, Abuja Nigeria (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel N. Jator.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jator, S.N., Li, J. An algorithm for second order initial and boundary value problems with an automatic error estimate based on a third derivative method. Numer Algor 59, 333–346 (2012). https://doi.org/10.1007/s11075-011-9492-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-011-9492-3

Keywords

Mathematics Subject Classification (2010)

Navigation