Skip to main content
Log in

Handling infeasibility in a large-scale nonlinear optimization algorithm

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Practical Nonlinear Programming algorithms may converge to infeasible points. It is sensible to detect this situation as quickly as possible, in order to have time to change initial approximations and parameters, with the aim of obtaining convergence to acceptable solutions in further runs. In this paper, a recently introduced Augmented Lagrangian algorithm is modified in such a way that the probability of quick detection of asymptotic infeasibility is enhanced. The modified algorithm preserves the property of convergence to stationary points of the sum of squares of infeasibilities without harming the convergence to KKT points in feasible cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: On augmented lagrangian methods with general lower-level constraints. SIAM J. Optim. 18, 1286–1309 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andreani, R., Haeser, G., Martínez, J.M.: On sequential optimality conditions for smooth constrained optimization. Optimization 60, 627–641 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andreani, R., Haeser, G., Schuverdt, M. L., Silva, P. J. S.: A relaxed constant positive linear dependence constraint qualification and applications. Math. Program. (2011). doi:10.1007/s10107-011-0456-0

  4. Andreani, R., Haeser, G., Schuverdt, M.L., Silva, P.J.S.: Two new constraint qualifications and applications. Technical report, available in Optimization online (2011)

  5. Andreani, R., Martínez, J.M., Schuverdt, M.L.: On the relation between the constant positive linear dependence condition and quasinormality constraint qualification. J. Optim. Theory Appl. 125, 473–485 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Andreani, R., Martínez, J.M., Svaiter, B.F.: A new sequential optimality condition for constrained optimization and algorithmic consequences. SIAM J. Optim. 20, 3533–3554 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benson, H.Y., Shanno, D.F., Vanderbei, R.J.: Interior-point methods for nonconvex nonlinear programming: filter methods and merit functions. Comput. Optim. Appl. 23, 257–272 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  9. Birgin, E.G., Martínez, J.M.: Improving ultimate convergence of an Augmented Lagrangian method. Optim Methods Softw 23, 177–195 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Birgin, E.G., Martínez J.M.: Large-scale active-set box-constrained optimization method with spectral projected gradients. Comput. Optim. Appl. 23, 101–125 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Byrd, R.H., Curtis, F.E. Nocedal, J.: Infeasibility detection and SQP methods for nonlinear optimization. SIAM J. Optim. 20, 2281–2299 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Byrd, R.H., Gilbert, J.Ch., Nocedal, J.: A trust region method based on interior point techniques for nonlinear programming. Math. Program. 89, 149185 (2000)

    Article  MathSciNet  Google Scholar 

  13. Byrd, R.H., Nocedal, J., Waltz, R.A.: KNITRO: an integrated package for nonlinear optimization. In: Di Pillo, G., Roma, M. (eds.) Large-Scale Nonlinear Optimization, pp. 3559. Springer, New York (2006)

    Google Scholar 

  14. Conn, A.R., Gould, N.I.M., Toint, Ph.L.: Trust region methods. In: MPS/SIAM Series on Optimization. SIAM, Philadelphia (2000)

    Google Scholar 

  15. Dostál, Z.: Optimal Quadratic Programming Algorithms. Springer, New York (2009)

    MATH  Google Scholar 

  16. Dostál, Z., Friedlander, A., Santos, S.A.: Augmented Lagrangians with adaptive precision control for quadratic programming with simple bounds and equality constraints. SIAM J. Optim. 13, 1120–1140 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fletcher, R., Gould, N.I.M., Leyffer, S., Toint, Ph.L., Wächter, A.: Global convergence of trust-region SQP-filter algorithms for general nonlinear programming. SIAM J. Optim. 13, 635–659 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fletcher, R., Leyffer, S.: Nonlinear programming without a penalty function. Math. Program. 91, 239–269 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fletcher, R., Leyffer, S., Toint, Ph.L.: On the global convergence of a filter-SQP algorithm. SIAM J. Optim. 13, 4459 (2002)

    Google Scholar 

  20. Hager, W.W.: Analysis and implementation of a dual algorithm for constrained optimization. J. Optim. Theory Appl. 79, 427–462 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  22. Powell, M.J.D.: A method for nonlinear constraints in minimization problems. In: Fletcher, R. (ed.) Optimization, pp. 283–298. Academic Press, New York (1969)

    Google Scholar 

  23. Prudente, L.F.: Augmented Lagrangian approaches in nonlinear programming. Doctoral dissertation, State University of Campinas (in preparation)

  24. Qi, L., Wei, L. Qi, Wei, Z.: On the constant positive linear dependence condition and its application to SQP methods. SIAM J. Optim. 10, 963–981 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rockafellar, R.T.: Augmented Lagrange multiplier functions and duality in nonconvex programming. SIAM J. Control Optim. 12, 268–285 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shen, C., Xue, W., Pu, D.: A filter SQP algorithm without a feasibility restoration phase. Comput. Appl. Math. 28, 167–194 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shen, C., Leyffer, S., Fletcher, R.: A nonmonotone filter method for nonlinear optimization. Comput. Optim. Appl. (2011). doi:10.1007/s10589-011-9430-2

  28. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Mario Martínez.

Additional information

This author was supported by PRONEX-Optimization (PRONEX—CNPq/FAPERJ E-26/171.164/2003—APQ1), FAPESP (Grant 06/53768-0) and CNPq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez, J.M., Prudente, L.d.F. Handling infeasibility in a large-scale nonlinear optimization algorithm. Numer Algor 60, 263–277 (2012). https://doi.org/10.1007/s11075-012-9561-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9561-2

Keywords

Navigation