Skip to main content
Log in

Inverse problems for regularization matrices

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Discrete ill-posed problems are difficult to solve, because their solution is very sensitive to errors in the data and to round-off errors introduced during the solution process. Tikhonov regularization replaces the given discrete ill-posed problem by a nearby penalized least-squares problem whose solution is less sensitive to perturbations. The penalization term is defined by a regularization matrix, whose choice may affect the quality of the computed solution significantly. We describe several inverse matrix problems whose solution yields regularization matrices adapted to the desired solution. Numerical examples illustrate the performance of the regularization matrices determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baart, M.L.: The use of auto-correlation for pseudo-rank determination in noisy ill-conditioned linear least-squares problems. IMA J. Numer. Anal. 2, 241–247 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brezinski, C., Redivo-Zaglia, M., Rodriguez, G., Seatzu, S.: Multi-parameter regularization techniques for ill-conditioned linear systems. Numer. Math. 94, 203–224 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brezinski, C., Rodriguez, G., Seatzu, S.: Error estimates for linear systems with application to regularization. Numer. Algorithms 49, 85–104 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brezinski, C., Rodriguez, G., Seatzu, S.: Error estimates for the regularization of least squares problems. Numer. Algorithms 51, 61–76 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Calvetti, D., Reichel, L., Shuibi, A.: Invertible smoothing preconditioners for linear discrete ill-posed problems. Appl. Numer. Math. 54, 135–149 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20, 1964–1977 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)

    Book  MATH  Google Scholar 

  8. Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia (1998)

    Book  Google Scholar 

  9. Hansen, P.C.: Regularization tools version 4.0 for MATLAB 7.3. Numer. Algorithms 46, 189–194 (2007)

    Article  MATH  Google Scholar 

  10. Huckle, T., Sedlacek, M.: Data based regularization for discrete deconvolution problems. (submitted for publication)

  11. Huckle, T., Sedlacek, M.: Tikhonov-Phillips regularization with operator dependent seminorm. (preprint)

  12. Kindermann, S.: Convergence analysis of minimization-based noise level-free parameter choice rules for linear ill-posed problems. Electron. Trans. Numer. Anal. 38, 233–257 (2011)

    MathSciNet  Google Scholar 

  13. Morigi, S., Reichel, L., Sgallari, F.: A truncated projected SVD method for linear discrete ill-posed problems. Numer. Algorithms 43, 197–213 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Noschese, S., Pasquini, L., Reichel, L.: The structured distance to normality of an irreducible real tridiagonal matrix. Electron. Trans. Numer. Anal. 28, 65–77 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Noschese, S., Pasquini, L., Reichel, L.: Tridiagonal Toeplitz matrices: properties and novel applications. Numer. Linear Algebra Appl. (in press)

  16. Noschese, S., Reichel, L.: The structured distance to normality of banded Toeplitz matrices. BIT 49, 629–640 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Phillips, D.L.: A technique for the numerical solution of certain integral equations of the first kind. J. ACM 9, 84–97 (1962)

    Article  MATH  Google Scholar 

  18. Reichel, L., Sgallari, F., Ye, Q.: Tikhonov regularization based on generalized Krylov subspace methods. Appl. Numer. Math. (in press)

  19. Reichel, L., Trefethen, L.N.: Eigenvalues and pseudo-eigenvalues of Toeplitz matrices. Linear Algebra Appl. 162–164, 153–185 (1992)

    Article  MathSciNet  Google Scholar 

  20. Reichel, L., Ye, Q.: Simple square smoothing regularization operators. Electron. Trans. Numer. Anal. 33, 63–83 (2009)

    MathSciNet  Google Scholar 

  21. Shaw, C. B., Jr.: Improvements of the resolution of an instrument by numerical solution of an integral equation. J. Math. Anal. Appl. 37, 83–112 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  22. Trefethen, L.N., Embree, M.: Spectra and Pseudospectra. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  23. Weickert, J., Romeny, B.M.H., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. Image Processing 7, 398–410 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Noschese.

Additional information

Dedicated to Claude Brezinski and Sebastiano Seatzu on the Occasion of Their 70th Birthdays.

Research of S. Noschese was supported by a grant from SAPIENZA Università di Roma.

Research of L. Reichel was supported in part by NSF grant DMS-1115385.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noschese, S., Reichel, L. Inverse problems for regularization matrices. Numer Algor 60, 531–544 (2012). https://doi.org/10.1007/s11075-012-9576-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9576-8

Keywords

Navigation