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Abstract. In this paper we propose a parallel preconditioner for the CG solver based on successive appli-
cations of the FSAI preconditioner. We first compute an FSAI factor Gout for coefficient matrix A, and then
another FSAI preconditioner is computed for either the preconditioned matrix S = GoutAGT

out or a sparse ap-
proximation of S. This process can be iterated to obtain a sequence of triangular factors whose product forms
the final preconditioner. Numerical results onto large SPD matrices arising from geomechanical models account
for the efficiency of the proposed preconditioner which provides a reduction of the iteration number and of the
CPU time of the iterative phase with respect to the original FSAI preconditioner.

1. Introduction. The efficient parallel solution of sparse linear systems of equations

Ax = b, (1.1)

where A ∈ Rn×n, x and b ∈ Rn, is a key issue in many numerical computations in science and
engineering. Iterative methods based on Krylov subspaces involve matrix-vector products, dot
products, and daxpy only, so they can be, at least in principle, almost ideally implemented on
parallel computers. However, the computation of an effective preconditioner often is not, and
perhaps this is the most decisive effort for the efficient solution to (1.1).

Factorized sparse approximate inverses are inherently parallel since their application to a
vector consists in two matrix-by-vector products. In a parallel computation, however, the algo-
rithm bottleneck can be the approximate inverse setup. Two main approaches are followed: in-
complete biorthogonalization and Frobenius norm minimization. Factored approximate inverses
can be efficiently constructed by an incomplete Gram–Schmidt procedure, which provides an
approximation of the triangular factorization of A−1 relying on the A entries only. This is the
basis of the so-called AINV and SAINV algorithms [2, 3, 1]. The incomplete biorthogonaliza-
tion of matrix A used to compute (S)AINV, however, is inherently sequential, and the efforts
to parallelize its construction did not reveal completely satisfactory.

Differently, the approximate inverse M computed by minimizing the Frobenius norm of
(I−AM) can be obtained from the solution of n independent least-squares problems subject to
some sparsity constraints. In a distributed computing environment, each processor can exchange
the matrix coefficients needed to form the local least-squares problems at a preliminary stage.
Hence, the corresponding algorithm can be efficiently implemented on a parallel machine because
each processor can then perform the preconditioner setup with no additional communication
overhead.

Among the preconditioners belonging to this class, a most effective one for a wide range
of problems is the factored sparse approximate inverse (FSAI), which was originally developed
for symmetric positive definite (SPD) matrices in [16]. The FSAI preconditioner is based on an

a-priori determination of the sparsity pattern which is usually selected as that of Ãd where Ã is
obtained from A by dropping the elements below a prescribed threshold (prefiltration) and d =
1, 2, · · · is a small positive integer. Once the triangular factor of the preconditioner is obtained,
it is furtherly sparsified by a second dropping procedure called postfiltration. Parallelization of
FSAI preconditioners has been performed and tested e.g. in [5, 7, 6] where prefiltration and
postfiltration have been implemented together with a priori sparsity pattern based on nonzeros
of Ad with d ≤ 4.

The drawback of the FSAI approach can be summarized as follows:
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1. The inverse of a sparse matrix may be dense with the entries of A−1 in most cases
slowly decaying away from the main diagonal.

2. A fixed sparsity pattern, based on small powers of A, can hardly capture all the most
important nonzeros in A−1.

For these reasons the FSAI preconditioner, despite of its powerful parallel potential of the setup
phase, very often produces slow convergence of iterative methods. Recently, an attempt to
enlarge the sparsity patterns without computing higher powers of A have been performed in [12]
where an adaptive sparsity pattern is constructed by minimizing the Kaporin number.

In this paper we propose an implicit enlargement of the sparsity pattern using a target
matrix B as in [11]. Here we choose B to be a banded matrix: the lower factor of the FSAI
preconditioner is obtained by minimizing ‖B −GL‖F over the set of matrices G having a fixed
sparsity pattern. Denoting with Gout the result of this minimization, we propose to compute
explicitly the preconditioned matrix GoutAG

T
out and then to compute a second FSAI factor Gin

for this matrix. Thus the final preconditioner can be written as the product GoutGinG
T
inG

T
out.

This procedure, which we call RFSAI – recursive FSAI – can be iterated a number of times to
yield a preconditioner written as a product of several triangular factors.

We present the numerical results obtained using the RFSAI preconditioner in combination
with the PCG solver in the solution of large linear systems arising from Finite Element dis-
cretization of geomechanical models. We compare the proposed approach with the naive FSAI,
showing that, for a fixed number of processors, RFSAI produces on the average a more efficient
preconditioner (in terms of iteration number and CPU time) for a given nonzero number. The
setup time often increases due to the increasing complexity of the preconditioner but it can be
kept under control mainly by proper choice of the prefiltration parameters. We also success-
fully tried RFSAI to accelerate a PCG-like iterative eigensolver (DACG, see [4]) to compute the
leftmost eigenpairs of our SPD test matrices.

The paper is organized as follows. In Section 2 we describe the RFSAI algorithm and its
parallel implementation. Section 3 is devoted to the presentation of our test matrices while a
numerical comparison between RFSAI and the original FSAI in the solution of linear systems is
performed in Section 4 where also the scalability results are reported. In Section 5 we present
the parallel results of the RFSAI-DACG solver. The conclusions end the paper in Section 6.

2. The Recursive FSAI (RFSAI) algorithm. Let A ∈ Rn×n be a SPD matrix. The
basic idea of the native FSAI is to find a matrix G ∈ AS such that:

G =
argmin

G∈AS

‖I −GL‖F , (2.1)

where L is the lower triangular Cholesky factor of A, i.e. A = LLT , and AS is the set of matrices
with a prescribed lower triangular non-zero pattern, i.e. all matrices such that:

Gij = 0 ∀(i, j) /∈ S (2.2)

with:

{(i, j) : 1 ≤ i = j ≤ n} ⊆ S ⊆ {(i, j) : 1 ≤ j ≤ i ≤ n}. (2.3)

The matrix G satisfying (2.1) can be obtained by solving a set of n independent linear systems
since

‖I −GL‖2F =

n∑
i=1

‖eTi − gT
i L‖22 =

n∑
i=1

‖Lgi − ei‖22 (2.4)

where gT
i is the ith row of matrix G. Minimum of ‖I − GL‖F is obtained by minimizing

separately ‖Lgi−ei‖2, i = 1, · · · , n; such a minimization can be accomplished in a lest-squares
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sense by solving:

AR
i gi = LTei, i = 1, · · · , n (2.5)

where AR is the ni × ni matrix obtained from A by setting to zero all the rows and columns of
A of index j such that (i, j) 6∈ AS . Under this constraint, also the right hand side simplifies to
LTei = liiei, being lii generally unknown. In practice, the dense linear system to be solved is

AR
i gi = ei

and matrix G is properly diagonally scaled afterwards.

2.1. 2-step RFSAI preconditioners. RFSAI can be viewed as a generalization of FSAI.
Differently from the classical FSAI approach, and following the idea of [11] we look for Gout ∈ AS

such that:

Gout =
argmin

G∈AS

‖B −GL‖F (2.6)

where we choose B to be an arbitrary (possibly dense) triangular banded matrix, depending on
a positive integer parameter nband:

bij = 0 ⇐= |i− j| > nband. (2.7)

The development that follows is in part inspired by the work in [13] in which the authors choose
B to be instead block diagonal where the numbers of blocks equate the number of processors
in view of an incomplete Cholesky factorization of the blocks. They obtain a very efficient
preconditioner for a relatively small number of processors, where their approach still retains
the good convergence properties of IC(0). However this preconditioner is not scalable since the
number of iteration increases, sometimes dramatically, with the number of processors.

Reasoning as before, minimization (2.6) is accomplished by solving independently n least
square problems

AR
i gi = liibi. (2.8)

Vector bi is the i-th row of matrix B. In view of (2.7) it plays a number of entries equal to zero,
the remaining ones being arbitrary so that we can partition the vector c = liibi, and gi and AR

i

accordingly, as

c =

(
0
c2

)
, gi =

(
gout

gin

)
AR

i =

(
A11 A12

A21 A22

)
.

Since c2 is arbitrary, we are free of choosing the vector gin 6= 0. The most natural choice is
gin = ei which reduces system (2.8) to

A11gout = −A12ei.

As a consequence, the dense linear systems to be solved by RFSAI will be smaller than those
needed to compute FSAI.

Our choice of matrix B will produce a fixed number of iterations, irrespective of the number
of processors employed. Once matrix Gout has been computed the second step is to explicitly
form matrix B = GoutAG

T
out. This matrix should resemble a banded matrix in view of the

minimization (2.6), so that we can define a banded matrix B̃ = drop(B, nband) with coefficients
defined as

b̃ij =

{
bij if |i− j| ≤ nband

0 otherwise
.
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In general we can not guarantee B̃ to be SPD, so that an SPD FSAI preconditioner may not
exist. However the following theorem states that if we choose for B̃ the parameter d = 1, i.e.
we use the lower triangular part of the matrix itself as the sparsity pattern, then the FSAI
preconditioner is well defined.

Theorem 2.1. Given an SPD matrix A and its sparsity pattern SA. Given another sparsity
pattern SB such that {(i, i), i = 1, · · · , n} ⊂ SB ⊂ SA we define the matrix B = {bij} as

bij =

{
aij if (i, j) ∈ SB

0 otherwise
.

Then the FSAI preconditioner for B using d = 1 is the same as that for A, obtained using the
lower triangular part of SB as the sparsity pattern if the same prefiltration and postfiltration
parameters are used.

Proof. In the construction of row i of the FSAI preconditioner for B, the matrix BR in
dense system

BRgi = ei.

has as coefficients akj such that (i, j) ∈ SB and (i, k) ∈ SB, which are exactly the same as if we
computed the ith row of the FSAI preconditioner for A with SB as the sparsity pattern.

The second step of our preconditioner setup can therefore be summarized as follows
• Compute an FSAI preconditioner for B̃ using the lower triangular part of this matrix

as the sparsity pattern.

GinG
T
in ≈ B̃−1.

The final 2-step RFSAI preconditioner is given by the sequential application of Gout and Gin

to A. The resulting preconditioned matrix is:

GinGoutAG
T
outG

T
in = WAWT . (2.9)

If we chose higher powers to determine the sparsity pattern for this second preconditioner factor,
the existence of the FSAI preconditioner would not be guaranteed since B̃ is not SPD. This can
limit the possibility of finding an efficient approximation of B̃−1 and, consequently, of developing
a performing overall preconditioner.

To overcome this problem, we will investigate the following variant of the preconditioner
just described: once the Gout matrix has been provided, we can compute the whole matrix
product B = GoutAG

T
out and then compute a preconditioner factor Gin for B:

GinG
T
in ≈ B−1.

The preconditioned matrix takes on the same form as in (2.9). In this second approach the
preconditioner setup CPU time is expected to be larger due to computation of matrix B, however
we have more freedom in the choice of the sparsity pattern of the Gin preconditioner factor hence
we expect to produce a more efficient preconditioner.

2.2. Recursive FSAI preconditioners. The procedure just described can be iterated a
number of times on order to define a sequence of triangular factors

G(1), G(2), · · · ,

as described in Algorithms 2.1 and 2.2. We denote as FSAIout the procedure which computes
the Gout factor by minimizing (2.6), as described in the previous section. FSAIout depends on
the nband parameter in addition to the usual FSAI parameters δout, prefiltration threshold, dout,
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power of Ã defining the sparsity pattern and εout postfiltration parameter. With drop(A, nband)
we denote the matrix B such that

bij =

{
aij if |i− j| ≤ nband

0 otherwise
.

The RFSAI1 algorithm implements recursively the first approach described in §2.1. The second
preconditioner factor, Gin, is obtained by applying the canonical FSAI procedure to the matrix

drop(G
(k)
outA

(k−1)G
(k)
out

T
, nband) with parameters δin = 0, din = 1 and εin.

In the implementation of the second approach, RFSAI2, the Gin factor is the result of the

FSAI procedure applied to the whole product matrix G
(k)
outA

(k−1)G
(k)
out

T
, with parameters δin, din

and εin.

Algorithm 2.1: RFSAI1

Set A(0) = A

for k = 1 to K do

G
(k)
out = FSAIout(A(k−1), nband, δout, dout, εout)

A(k) = drop(G
(k)
outA

(k−1)G
(k)
out

T
, nband)

G
(k)
in = FSAI(A(k), 0.0, 1, εin)

end for.

Algorithm 2.2: RFSAI2

Set A(0) = A

for k = 1 to K do

G
(k)
out = FSAIout(A(k−1), nband, δout, dout, εout)

A(k) = G
(k)
outA

(k−1)G
(k)
out

T

G
(k)
in = FSAI(A(k), δin, din, εin)

end for.

In both algorithms, the final preconditioner takes on the form:

WWT =

K∏
k=1

G
(k)
in G

(k)
out

1∏
k=K

G
(k)
out

T
G

(k)
in

T

whose application consists in 4K matrix-vector products.

Remark 2.1. Setting nband = 1 in RFSAI1 we obtain the classical FSAI preconditioner.

Remark 2.2. Our RFSAI2 algorithm shares a number of common features with the DFSAI
(Double FSAI) preconditioner which was proposed in [15]. However, differently from [15], we first
construct an approximate and sparser FSAI Gout so as to have a sparser product S = GoutAGout.
Then we compute the exact FSAI preconditioner for S whereas within the DFSAI preconditioner
the sparse approximate inverse for S is computed by iteratively solving to a low accuracy the
dense linear systems (2.5).
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2.3. Parallel implementation. We have developed a parallel code which implements the
construction and application inside parallel PCG, of the two FSAI based algorithms described
so far along with the original FSAI preconditioner. The resulting program is written in Fortran
90 and exploits the MPI library for exchanging data among the processors. We use a block row
distribution of all matrices, that is, with complete rows assigned to different processors. All the
matrices are stored in static data structures in CSR format.

The FSAI and the RFSAI preconditioners will be used to accelerate the PCG solver. In our
implementation, we made use of an optimized parallel matrix-vector product which has been
developed in [17] showing its effectiveness up to 1024 processors.

3. Test problems. We report in the subsequent sections the results of our experiments
with RFSAI1 and RFSAI2 preconditioners in the solution of a set of problems of large size.

The test cases are all realistic examples of large size arising from 2D and 3D FE discretization
of geomechanical problems. In detail:

1. FAULT-639: arises from the numerical solution by a linear FE of the inequality-constrai-
ned minimization problem governing the mechanical equilibrium of a3D body with
contact surfaces. The contact is solved with the aid of a penalty formulation that gives
rise to an SPD ill-conditioned linear system.

2. EMILIA-923: arises from the regional geomechanical model of a deep hydrocarbon
reservoir. It is obtained discretizing the structural problem with tetrahedral Finite
Elements. Due to the complex geometry of the geological formation it was not possible
to obtain a computational grid characterized by regularly shaped elements.

3. GEO-1438: arises from a regional geomechanical model of the sedimentary basin un-
derlying the Venice lagoon discretized by a linear FE with randomly heterogeneous
properties. The computational domain is a box with an areal extent of 50 x 50 km and
10 km deep consisting of regularly shaped tetrahedral Finite Elements.

These matrices are publicly available in the University of Florida Sparse Matrix Collection at
http://www.cise.ufl.edu/research/sparse/matrices. The size and number of nonzero
terms for each matrix is provided in Table 3.1.

Table 3.1
Size n and number of nonzeros nnz of the test matrices.

name n nnz
FAULT-639 638 812 14 626 683
EMILIA-923 923 136 41 005 206
GEO-1438 1 437 960 63 156 690

All tests are performed on the IBM SP6/5376 cluster at the CINECA Centre for HCP, equipped
with IBM Power6 processors at 4.7 GHz with 168 nodes, 5376 computing cores, and 21 Tbytes
of internal network RAM. The Fortran 90 is compiled with -O4 -q64 -qarch=pwr6 -qtune=pwr6

-qnoipa -qstrict -bmaxdata:0x70000000 options.

4. Numerical results. PCG solution of linear systems. The linear system (1.1) is
solved by PCG using the exact solution as a vector of all ones. The exit test for the iterative

solver is
‖rk‖
‖b‖

≤ 10−10, rk being the relative residual at iteration k. Each matrix has been

preliminarily reordered by a Reverse Cuthill McKee (RCM) algorithm [10]. In all the forthcom-
ing tables we provide the number of iteration (iter), two indicators of the density of the RFSAI
preconditioner:

ρ1 =
2nnz(Gout)− n

nnz(A)
, ρ2 =

2nnz(Gin)− n
nnz(A)

,
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as well as three CPU times. In particular we report: Tprec, the cost of FSAI computation, Tsol,
the cost of the iterative solver and Ttot = Tprec+Tsol, the total time. For a fixed test case all the
runs have been performed using a fixed number of processors (p = 16). All the results reported
in this Section are obtained using K = 1.

4.1. Role of the parameter nband in the RFSAI1 algorithm. The parameter nband
plays a twofold role:

• The complexity of the Gout preconditioner is directly proportional to its value.
• The complexity of the Gin preconditioner is inversely proportional to nband.

Regarding the number of iterations, we can expect a slight increasing when nband grows.

Table 4.1
Timings and iteration number for RFSAI1-PCG. Matrix GEO-1438.

Gout nband Gin ρ1 ρ2 iter Tprec Tsol Ttot
δ d ε δ d ε

0.1 4 0.1 10000 0.0 1 0.05 0.16 0.19 641 17.05 13.57 30.62
0.1 4 0.1 1000 0.0 1 0.05 0.21 0.15 602 19.19 12.69 31.88
0.1 4 0.1 100 0.0 1 0.05 0.25 0.11 601 22.30 13.34 35.64
0.1 4 0.1 10 0.0 1 0.05 0.27 0.09 601 22.68 12.62 35.30
0.1 4 0.1 2 0.0 1 0.05 0.33 0.04 589 23.56 12.47 36.03
0.1 4 0.1 0.34 585 20.37 11.89 32.25

Table 4.1 shows the RFSAI1 behavior for a number of values of nband between 2 and 10000
for matrix GEO-1438. From Table 4.1 we note that both the CPU time for the linear solver and
the number of iterations are roughly constant, while high values of nband produce a reduction
in the setup CPU time. This suggests that the RFSAI1 algorithm may be used to reduce the
setup CPU time and the density of a given FSAI preconditioner, without significantly affecting
the number of iterations.

This is even more evident in Table 4.2 where a more dense Gout is computed. Passing from
nband = 1 (original FSAI) to nband = 10000, the setup time is halved, and also the solution
time is reduced.

Table 4.2
Timings and iteration number for RFSAI1-PCG. Matrix GEO-1439.

Gout nband Gin ρ1 ρ2 iter Tprec Tsol Ttot
δ d ε δ d ε

0.05 4 0.1 10000 0.0 1 0.05 0.17 0.19 626 143.54 13.45 147.99
0.05 4 0.1 0.36 585 261.62 18.90 280.52

4.2. Comparisons between RFSAI2 and FSAI. In this section we compare the per-
formances of RFSAI2 and FSAI for a fixed number of processors. Table 4.3 reports the results
for matrix EMILIA-923. For this matrix we note that the best RFSAI requires three times less
iterations than the best FSAI and this is accomplished by setting to 1 the value of nband. For
this combination of parameters, however, there is a high setup CPU time. Regarding the time
for the iterative solution only, the reduction provided by RFSAI is by a factor 2 or more.

Considering now matrix GEO-1438, whose results are summarized in Table 4.4 we may
note that the only improvement provided by RFSAI2 is in terms of iteration count. However,
the larger setup CPU time and the increased density of the resulting preconditioner makes our
approach not competitive in terms of CPU time.

Matrix FAULT-639 is once again an example of the potential of the RFSAI2 approach. As
it can be seen from Table 4.5, using nband = 1, RFSAI2 produces an important reduction of the
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Table 4.3
Timings and iterations for FSAI and RFSAI2. Matrix EMILIA-923.

Gout nband Gin ρ1 ρ2 iter Tprec Tsol Ttot
δ d ε δ d ε

0.05 4 0.05 0.40 1634 85.60 41.52 127.12
0.1 4 0.05 0.35 1630 7.22 41.61 48.83
0.1 4 0.1 0.24 1695 7.36 37.68 45.04
0.01 2 0.05 0.25 2972 6.69 53.67 60.36
0.1 4 0.1 5000 0.01 1 0.05 0.16 0.24 994 9.23 19.92 29.15
0.1 4 0.1 1000 0.01 1 0.05 0.17 0.23 828 11.65 13.61 25.26
0.1 4 0.1 1 0.05 2 0.05 0.25 0.32 554 18.63 10.66 29.29
0.1 4 0.1 1 0.01 1 0.05 0.25 0.25 813 15.92 13.69 29.61

Table 4.4
Timings and iterations for FSAI and RFSAI2. Matrix GEO-1438.

Gout nband Gin ρ1 ρ2 iter Tprec Tsol Ttot
δ d ε δ d ε

0.1 4 0.1 0.34 585 20.37 11.89 32.25
0.1 2 0.1 0.21 766 1.18 24.94 26.12
0 2 0.05 0.49 629 13.66 15.76 29.32

0.1 4 0.1 1000 0.05 1 0.05 0.21 0.27 509 23.00 18.99 41.99
0.1 4 0.1 1 0.05 2 0.05 0.34 0.33 382 52.90 17.05 69.95
0.1 4 0.1 1 0.01 1 0.05 0.34 0.33 403 39.28 18.12 57.40

number of iterations as well as a smaller CPU time of the PCG solver We note that the density
of the resulting preconditioners remains very low. Here RFSAI2 is the winner also considering
the total CPU time which is reduced from 8.23 (Best FSAI) to 6.41 (Best RFSAI2). The last two
rows in Table 4.5 consider using nband = 1000 parameter. There are no important differences
between the case nband = 1 and the case nband = 1000. However, as expected, using nband

= 1000 the setup time slightly reduces, due to the decreased complexity of the preconditioner,
while the number of iterations increases.

Table 4.5
Timings and iterations for FSAI and RFSAI2. Matrix FAULT-639.

Gout nband Gin ρ1 ρ2 iter Tprec Tsol Ttot
δ d ε δ d ε

0.1 4 0.01 1.32 673 5.07 9.62 14.69
0.2 4 0.01 0.18 986 0.30 8.61 8.91
0.2 4 0.1 0.11 1022 0.32 7.91 8.23
0.2 2 0.01 0.10 1667 0.26 21.86 22.02
0 2 0.01 1.41 938 6.42 13.34 19.76

0.2 4 0.1 1 0.1 4 0.1 0.11 0.14 390 6.90 3.72 10.62
0.2 4 0.01 1 0.1 4 0.1 0.18 0.14 377 9.34 5.38 14.72
0.2 4 0.1 1 0.05 2 0.05 0.11 0.33 349 4.75 3.64 8.39
0.2 4 0.1 1 0.1 2 0.05 0.11 0.17 423 2.42 3.99 6.41
0.2 4 0.1 1000 0.1 4 0.1 0.06 0.19 760 6.72 9.44 16.16
0.2 4 0.01 1000 0.1 4 0.1 0.09 0.18 622 7.83 5.82 13.65
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4.3. Parallel results and scalability. We investigate in this Section the parallel efficiency
of the PCG solver preconditioned by FSAI and RFSAI. We will use a strong scaling measure to
see how CPU times vary with the number of processors for a fixed total problem size. Denoting
with Tp the total CPU elapsed times expressed in seconds on p processors, we define relative

measures of the parallel efficiency and speedup of our code. We define as S
(p̄)
p the pseudo

speedup computed with respect to the smallest number of processors (p̄) used to solve a given

problem and E
(p̄)
p the corresponding efficiency:

S(p̄)
p =

Tp̄p̄

Tp
, E(p̄)

p =
S

(p̄)
p

p
=
Tp̄p̄

Tpp
.

Table 4.6
Timings, speedups and efficiencies of FSAI-PCG (top table) and RFSAI2-PCG (bottom table) in the solu-

tion of problem EMILIA-923.

p Tprec Tsol Ttot S
(2)
p E

(2)
p

4 17.0 140.6 157.7
8 10.5 61.6 72.2 8.7 1.09

16 7.4 37.0 44.4 14.2 0.89
FSAI-PCG 32 5.3 19.3 24.6 25.6 0.80

64 3.6 9.4 13.0 48.4 0.76
128 2.7 5.8 8.5 74.6 0.58

4 35.8 44.2 80.0
8 19.7 30.1 49.8 6.4 0.80

16 11.6 13.6 25.3 12.7 0.79
RFSAI2-PCG 32 7.7 9.5 17.1 18.7 0.58

64 5.2 6.6 11.7 27.3 0.43
128 3.5 4.5 8.0 40.1 0.31

Fig. 4.1. Number of communicating processors vs process ID for A, Gout and Gin multiplications times a
vector in problem EMILIA-923 when using p = 128 processors.
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Table 4.7 reports in summary the scalability analysis in solving problem EMILIA-923 with
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FSAI-PCG and RFSAI2-PCG, respectively. The parameters used are: d = 4, δ = 0.1 and
ε = 0.1 for Gout in both cases. RFSAI2 uses nband = 1000 and δ = 0.01, d = 1 and ε = 0.05
for the Gin factor.

Fig. 4.2. Tsol for FSAI and RFSAI2 in solving problem EMILIA-923 vs the number of processors.
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This test case is very hard from the point of view of communication among processors. In
the setup phase as well as in the iterative phase each processor has to exchange data with a
very high number of other processors. As an example, to construct factor Gin with p = 128,
each processor interacts from 2 to 23 other processors, depending on its PID number. For this
reason the scalability of RFSAI2 is worst than that of FSAI, mostly in the iterative phase.

Table 4.7
Timings, speedups and efficiencies of FSAI-PCG (top table) and RFSAI1-PCG (bottom table) in the solu-

tion of problem GEO-1438.

p Tprec Tsol Ttot S
(2)
p E

(2)
p

74.4 41.7 116.1
8 44.0 21.4 65.4 7.1 0.89

16 20.4 11.9 32.3 14.4 0.90
FSAI-PCG 32 11.1 8.3 19.4 23.9 0.75

64 6.6 4.6 11.2 41.5 0.65
128 3.1 2.4 5.5 84.9 0.66
256 1.9 1.6 3.5 132.3 0.52

4 73.4 64.0 137.4
8 42.5 24.3 66.8 8.2 1.03

16 19.1 12.7 31.8 17.3 1.08
RFSAI1-PCG 32 10.1 12.4 22.6 24.3 0.76

64 6.0 4.2 10.1 54.4 0.85
128 3.0 2.4 5.4 101.0 0.79
256 2.0 1.9 3.8 143.5 0.56

Figure 4.1 gives evidence of the amount of communication among processors. For p = 128
we plot the number of active processors vs processor identification index (PID). Application of
both factors Gin and Gout at each iteration of the PCG solver requires a far higher number
of interactions between processors with respect to the product by coefficient matrix A, with
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Gin slightly more demanding in terms of data exchange. However, even using 128 processor,
RFSAI2 CPU time for the iterative part remains significantly smaller (4.5 vs 5.8 seconds) with
respect to the FSAI preconditioner. This is also accounted by Figure 4.2 where the Tsol times
are plotted for both the codes.

In Table 4.7 we report the scalability analysis in the solution of problem GEO-1438 with
FSAI-PCG and RFSAI1-PCG, respectively. The parameters used are: d = 4, δ = 0.1 and
ε = 0.1 for Gout in both cases. RFSAI1 uses nband = 1000 and ε = 0.05 for the Gin factor. We
note from Table 4.7 that our code scales very well up to 256 processors. The parallel efficiency
is always larger than 50% for both codes, and this is true for both setup and iteration phases.

Differently from the previous scalability case, here we do not note any significant difference
between parallel efficiencies of FSAI and RFSAI1. This is so since the Gin preconditioner is
banded and hence its nonzeros are very close to the main diagonal. In fact, the number of
active processors in the application of Gin are in this case only 2, irrespective of the number of
processors employed.

5. RFSAI as a preconditioner for eigensolvers. We report in this section the results
of an eigenvalue solver based on PCG optimization, accelerated with the RFSAI preconditioner.
As the eigenvalue solver we choose DACG [4] which seeks the leftmost eigenvalues of an SPD
matrix, sequentially, by minimizing the Rayleigh Quotient

q(x) =
xTAx

xTx

onto a subspace orthogonal to the previously computed eigenvectors. Sequential DACG has
been shown competitive with the Jacobi-Davidson method or the ARPACK package [9]. More
recently, a parallel implementation of FSAI-DACG has been successfully compared in [8] with
the LOBPCG method [14] as implemented within the hypre package.

The preconditioner is computed only once as an FSAI (RFSAI) inverse approximation of A.
For this reason, we expect that the gap between FSAI and RFSAI2 will grow, depending on the
number of eigenpairs being sought, since the cost of the preconditioner setup (on the average
larger for RFSAI2) is only a small percentage of the overall CPU time.

We report the results of FSAI-DACG and RFSAI2-DACG in the computation of the 10
leftmost eigenpairs of matrices EMILIA-923 and FAULT-679. In Tables 5.1 and 5.2 we provide
the outcome of a number of runs obtained by varying the FSAI parameters, keeping the number
of processors to a constant value of 16. It is shown that RFSAI2 acceleration provides on the
average a reduction of three times the number of iteration and twice the overall CPU time for
problem EMILIA-923. As for the FAULT-639 matrix, the reduction is more moderate (40% the
iteration number and 20% the overall CPU time).

Table 5.1
Timings and iterations for FSAI and RFSAI2. Computation of the 10 leftmost eigenpairs of matrix

EMILIA-923 using 16 processors.

Gout nband Gin ρ1 ρ2 iter Tprec Tsol Ttot
δ d ε δ d ε

0.1 4 0.05 0.35 17537 9.03 426.40 435.56
0.2 4 0.1 0.21 19570 0.81 520.44 521.38
0.1 4 0.1 0.26 19268 9.12 433.10 442.22
0.05 2 0.05 0.24 31324 2.19 692.16 694.45
0.1 4 0.1 1000 0.01 1 0.05 0.17 0.24 8693 13.64 236.27 250.59
0.1 4 0.1 1 0.05 2 0.05 0.26 0.30 6165 21.01 225.39 247.12

We finally report in Figure 5.1 the scalability results obtained using the best runs (in terms
of CPU time) taken from the previous tables. In this figure we plot the total CPU time vs
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Table 5.2
Timings and iterations for FSAI and RFSAI2. Computation of the 10 leftmost eigenpairs of matrix FAULT-

639.

Gout nband Gin ρ1 ρ2 iter Tprec Tsol Ttot
δ d ε δ d ε

0.1 4 0.1 0.24 4448 6.63 67.78 74.50
0.0 2 0.05 0.40 5323 8.13 88.07 96.30
0.2 4 0.15 1 0.1 4 0.1 0.09 0.16 2916 11.69 47.03 59.07
0.2 4 0.1 1 0.05 2 0.05 0.11 0.33 2714 4.81 49.31 54.48

number of processors, showing that RFSAI2 is more efficient than FSAI irrespective on the
number of processor employed for both the test cases.

Fig. 5.1. Scalability of FSAI-DACG and RFSAI2-DACG in solving problems FAULT-639 and EMILIA-923.
The total CPU time is plotted vs the number of processors.
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matrix FAULT - FSAI preconditioner                                                                                              
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6. Conclusions. We have proposed and developed a recursive preconditioner (RFSAI)
with the aim of improving the efficiency of the original FSAI preconditioner. Two variants
are described in this paper: RFSAI1 and RFSAI2. Numerical results in the solution of large,
realistic and ill-conditioned matrices arising from discretization of geomechanical models reveal
that RFSAI1 produces on the average a very cheap and perfectly scalable preconditioner. This
approach can be used to reduce the setup time without significantly affecting the number of
iterations. The second approach, RFSAI2, is more powerful since it is shown to greatly reduce
the number of iterations and the iterative solution phase CPU time though at the price of

1. an increased complexity of the setup phase and
2. a possible reduction of the parallel efficiency due to the increased number of nonzero

entries of the preconditioner which are far away from the main diagonal.

As a preconditioner for the DACG eigenvalue solver, where the cost of preconditioner setup
phase is relatively less important, RFSAI2 reveals more efficient than FSAI also in terms of
total CPU time.
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