Skip to main content
Log in

Analysis for one-dimensional time-fractional Tricomi-type equations by LDG methods

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we consider the local discontinuous Galerkin (LDG) finite element method for one-dimensional linear time-fractional Tricomi-type equation (TFTTE), which is obtained from the standard one-dimensional linear Tricomi-type equation by replacing the first-order time derivative with a fractional derivative (of order α, with 1 < α ≤ 2). The proposed LDG is based on LDG finite element method for space and finite difference method for time. We prove that the method is unconditionally stable, and the numerical solution converges to the exact one with order O(h k + 1 + τ 2), where h, τ and k are the space step size, time step size, polynomial degree, respectively. The comparison of the LDG results with the exact solutions is made, numerical experiments reveal that the LDG is very effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  2. He, J.H.: Nonlinear oscillation with fractional derivative and its applications. In: International Conference on Vibrating Engineering’98. Dalian, China, pp. 288–291 (1998)

    Google Scholar 

  3. He, J.H.: Some applications of nonlinear fractional differential equations and their approximations. Bull Sci Technol. 15, 86–90 (1999)

    Google Scholar 

  4. He, J.H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods Appl. Mech. Eng. 167, 57–68 (1998)

    Article  MATH  Google Scholar 

  5. Mainardi, F.: Fractional calculus, some basic problems in continuum and statistical mechanics. In: Carpinteri, A., Mainardi, F., (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 291–348. Springer, Wien (1997)

    Google Scholar 

  6. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  7. Kemppainen, J.T., Ruotsalainen, K.M.: On the spline collocation method for the single layer equation related to time-fractional diffusion. Numer. Algorithms 57 313–327 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Shen, S.J., Liu, F.W., Anh, V.: Numerical approximations and solution techniques for the space-time Riesz–Caputo fractional advection-diffusion equation. Numer. Algorithms 56, 383–403 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, S., Liu, F.W., Anh, V.: A novel implicit finite difference method for the one-dimensional fractional percolation equation. Numer. Algorithms 56 517–535 (2011)

    Article  MathSciNet  Google Scholar 

  10. Lin, Y.M., Xu, C.J.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Tadjeran, C., Meerschaert, M.M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220, 813–823 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56(1), 80–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Meerschaert, M.M., Scheffler, H.P., Tadjeran, C.: Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 211, 249–261 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yuste, S.B., Acedo, L.: An explicit finite difference method and a new von Numann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862–1874 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Meerschaert, M.M., Benson, D.A., Baeumer, B.: Multidimensional advection and fractional dispersion. Phys. Rev. E. 59, 5026–5028 (1999)

    Article  Google Scholar 

  17. Podlubny, I.: The Laplace Transform Method for Linear Differential Equations of Fractional Order. Slovac Academy of Science, Slovak Republic (1994)

    Google Scholar 

  18. Nawaz, Y.: Variational iteration method and homotopy perturbation method for fourth-order fractional integro-differential equations. Comput. Math. Appl. 61, 2330–2341 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Luchko, Y., Srivastava, H.: The exact solution of certain differential equations of fractional order by using operational calculus. Comput. Math. Appl. 29, 73–85 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cveticanin, L.: Homotopy perturbation method for pure nonlinear differential equation. Chaos, Solitons Fractals 30, 1221–1230 (2006)

    Article  MATH  Google Scholar 

  21. Rajabi, A., Ganji, D.D., Taherian, H.: Application of homotopy perturbation method in nonlinear heat conduction and convection equations. Phys. Lett. A 360, 570–573 (2007)

    Article  MathSciNet  Google Scholar 

  22. Feng, X.L., Mei, L.Q., He, G.L.: An efficient algorithm for solving Troesch’s problem. Appl. Math. Comput. 189, 500–507 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Momani, S., Odibat, Z.: Homotopy perturbation method for nonlinear partial differential equations of fractional order. Phys. Lett. A 365, 345–350 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ganji, Z.Z., Ganji, D.D., Jafari, H., et al.: Application of the homotopy perturbation method to coupled system of partial differential equations with time fractional derivatives. Topol. Methods Nonlinear Anal. 31, 341–348 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Yıldırım, A., Hüseyin, K.: Homotopy perturbation method for solving the space-time fractional advection-dispersion equation. Adv. Water Resour. 32, 1711–1716 (2009)

    Article  Google Scholar 

  26. Jafari, H., Golbabai, A., Seifi, S., Sayevand, K.: Homotopy analysis method for solving multi-term linear and nonlinear diffusion wave equations of fractional order. Comput. Math. Appl. 59, 1337–1344 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Elsaid, A.: Homotopy analysis method for solving a class of fractional partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 16(9), 3655–3664 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, X.D., Tang, B., He, Y.N.: Homotopy analysis method for higher-order fractional integro-differential equations. Comput. Math. Appl. 62, 3194–3203 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tricomi, F.: Sulle equazioni lineari alle derivate parziali di secondo ordine, di tipo misto. Rend. R. Accad. Lincei, Cl. Sci. Fis. Mat. Natur. 5(14), 134–247 (1923)

    Google Scholar 

  30. Frankl, F.: On the problems of Chaplygin for mixed sub- and supersonic flows. Bull. Acad. Sci. USSR Ser. Math. 9, 121–143 (1945)

    MathSciNet  MATH  Google Scholar 

  31. Bers, L.: Mathematical aspects of subsonic and transonic gas dynamics. In: Surveys in Applied Mathematics, vol. 3. Wiley/Chapman & Hall, New York/London (1958)

    Google Scholar 

  32. Cole, J.D., Cook, L.P.: Transonic Aerodynamics. Elsevier/North-Holland, Amsterdam/New York (1986)

    MATH  Google Scholar 

  33. Germain, P.: The Tricomi equation, its solutions and their applications in fluid dynamics. In: Tricomi’s Ideas and Contemporary Applied Mathematics, Rome/Turin (1997). In: Atti Convegni Lincei, vol. 147, pp. 7–26. Accad. Naz. Lincei, Rome (1998)

  34. Morawetz, C.: Mixed equations and transonic flow. J. Hyperbol Differ. Eq. 1(1), 1–26 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nocilla, S.: Applications and developments of the Tricomi equation in the transonic aerodynamics. In: Mixed Type Equations, Teubner-Texte Math., vol. 90, pp. 216–241. Teubner, Leipzig (1986)

  36. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Tech. Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)

  37. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  38. Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  39. Cockburn, B., Shu, C.-W.: The Runge–Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws. Math. Model. Numer. Anal. (M2AN) 25, 337–361 (1991)

    MathSciNet  MATH  Google Scholar 

  40. Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for timedependent convection diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  42. Cockburn, B., Kanschat, G., Perugia, I., Schotzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J. Numer. Anal. 39, 264–285 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yan, J., Shu, C.-W.: A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40, 769–791 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  44. Levy, D., Shu, C.-W., Yan, J.: Local discontinuous Galerkin methods for nonlinear dispersive equations. J. Comput. Phys. 196, 751–772 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205, 72–97 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin method for the Camassa–Holm equation. SIAM J. Numer. Anal. 46, 1998–2021 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Castillo, P.E.: Stencil reduction algorithms for the Local Discontinuous Galerkin method. Int. J. Numer. Methods Eng. 81, 1475–1491 (2010)

    MathSciNet  MATH  Google Scholar 

  48. Shao, L., Feng, X.L., He, Y.N.: The local discontinuous Galerkin finite element method for Burger’s equation. Math. Comput. Model. 54, 2943–2954 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Mustapha, K.: The hp- and h-versions of the discontinuous and local discontinuous Galerkin methods for one-dimensional singularly perturbed models. Appl. Numer. Math. 61, 1223–1236 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Castillo, P., Sequeira, F.A.: Computational aspects of the local discontinuous Galerkin method on unstructured grids in three dimensions. Math. Comput. Model. (2011). doi:10.1016/j.mcm.2011.07.032

    Google Scholar 

  51. Cockburn, B., Dawson, C.: Some extensions of the local discontinuous Galerkin method for convection-diffusion equations in multidimensions. In: Whiteman, J. (ed.) Proceedings of the Conference on the Mathematics of Finite Elements and Applications: MAFELAP X, pp. 225–238. Elsevier (2000)

  52. Castillo, P., Cockburn, B., Schötzau, D., Schwab, Ch.: Optimal a priori error estimates for the hp-version of the Local Discontinuous Galerkin method for convection-diffusion problems. Math. Comput. 71, 455–478 (2001)

    Article  Google Scholar 

  53. Castillo, P.: An optimal error estimate for the local discontinuous Galerkin method. In: Cockburn, B., Karniadakis, G.E., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory, Computation and Applications, Lectures Notes in Computational Science and Engineering, vol. 11, pp. 285–290. Springer (2000)

  54. Wei, L.L., Zhang, X.D., He, Y.N.: Analysis of a local discontinuous Galerkin method for time-fractional advection-diffusion equations. Int. J. Numer. Methods Heat Fluid Flow (2012, in press)

  55. Li, C.P., Zhao, Z.G., Chen, Y.Q.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. Wei, L.L., He, Y.N., Zhang, X.D., Wang, S.L.: Analysis of an implicit fully discrete local discontinuous Galerkin method for the time-fractional Schrödinger equation. Finite Elem. Anal. Des. 59, 28–34 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xindong Zhang.

Additional information

This work is supported by the Key Project of Chinese Ministry of Education (211202), the NSF of China (Nos. 10971166 and 61163027) and the National High Technology Research and Development Program of China (863 Program, No. 2009AA01A135).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Liu, J., Wen, J. et al. Analysis for one-dimensional time-fractional Tricomi-type equations by LDG methods. Numer Algor 63, 143–164 (2013). https://doi.org/10.1007/s11075-012-9617-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9617-3

Keywords

Navigation