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Abstract

We present a spectral method for parabolic partial differential equa-

tions with zero Dirichlet boundary conditions. The region Ω for the prob-

lem is assumed to be simply-connected and bounded, and its boundary is

assumed to be a smooth surface. An error analysis is given, showing that

spectral convergence is obtained for sufficiently smooth solution functions.

Numerical examples are given in both R
2 and R

3.

1 INTRODUCTION

Consider solving the parabolic partial differential equation

∂u (s, t)

∂t
=

d∑

k,ℓ=1

∂

∂sk

(
ak,ℓ(s, t, u (s, t))

∂u(s, t)

∂sℓ

)
+ f (s, t, u (s, t)) , (1)

for s ∈ Ω ⊆ R
d, 0 < t ≤ T . The solution u is subject to the Dirichlet boundary

condition
u(s, t) ≡ 0, s ∈ ∂Ω, 0 < t ≤ T (2)

and to the initial condition

u (s, 0) = u0 (s) , s ∈ Ω. (3)
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The region Ω is open, bounded, and simply connected in R
d for some d ≥ 2,

and the boundary ∂Ω is assumed to be several times continuously differen-
tiable. This paper presents a spectral method for solving this problem. The
functions ai,j (s, t, z) and f (s, t, z) are assumed to be continuous for (s, t, z) ∈
Ω× [0, T ]× R. Additional assumptions are given later in the paper. These as-
sumptions are stronger than needed for the results we obtain, but they simplify
the presentation. In addition, we assume that there is a unique solution u to
the problem (1)-(3). For an introduction to the theory of nonlinear parabolic
problems using variational methods, see [26, Chap. 30].

We transform the above problem to one over the unit ball Bd in R
d, and

then we use Galerkin’s method with a suitably chosen polynomial basis to ap-
proximate the solution u. This is similar in spirit to earlier work in [2], [5], [7].
This approach reduces the problem to the solution of an inital value problem
for a system of ordinary differential equations, for which there is much excel-
lent software. The convergence analysis of the paper depends on the landmark
paper of Douglas and Dupont [13]. The methods of this paper also extend to
having the functions ai,j and f depend on the first derivatives ∂u/∂sj, although
this is not considered here. For related books on spectral methods for partial
differential equations, see [10]-[12], [16], [17], [22], [23].

The spectral method is presented and analyzed in §2, implementation issues
are discussed in §3, and numerical examples in R

2 and R
3 are given in §4.

2 A spectral method

We transform the problem (1)-(3) to one over the unit ball Bd, and then we ap-
ply Galerkin’s method using multivariate polynomials as approximations of the
solution. To transform a problem defined on Ω to an equivalent problem defined
on Bd, we review some ideas from [2] and [7], modifying them as appropriate
for this paper.

Assume the existence of a function

Φ : Bd
1−1−→
onto

Ω (4)

with Φ a twice–differentiable mapping, and let Ψ = Φ−1 : Ω
1−1−→
onto

Bd. For

v ∈ L2 (Ω), let
ṽ(x) = v (Φ (x)) , x ∈ Bd ⊆ R

d (5)

and conversely,
v(s) = ṽ (Ψ (s)) , s ∈ Ω ⊆ R

d. (6)

Assuming v ∈ H1 (Ω), we can show

∇xṽ (x) = J (x)
T∇sv (s) , s = Φ(x)

with J (x) the Jacobian matrix for Φ over the unit ball Bd,

J(x) ≡ (DΦ) (x) =

[
∂ϕi(x)

∂xj

]d

i,j=1

, x ∈ Bd. (7)
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To use our method for problems over a region Ω, it is necessary to know explicitly
the functions Φ and J . We assume

detJ(x) 6= 0, x ∈ Bd. (8)

Similarly,
∇sv(s) = K(s)T∇xṽ(x), x = Ψ(s)

with K(s) the Jacobian matrix for Ψ over Ω. By differentiating the identity

Ψ (Φ (x)) = x, x ∈ Bd

we obtain
K (Φ (x)) = J (x)

−1
.

Assumptions about the differentiability of ṽ (x) can be related back to assump-
tions on the differentiability of v(s) and Φ(x).

Lemma 1 If Φ ∈ Cm
(
Bd

)
and v ∈ Ck

(
Ω
)
, then ṽ ∈ Cq

(
Bd

)
with q =

min {k,m}.

Proof. A proof is straightforward using (5).

A converse statement can be made as regards ṽ, v, and Ψ in (6).
Often a mapping ϕ is given from S

d−1 onto ∂Ω, and it will not be clear as
to how to extend the mapping to Φ satisfying (4) and (8). This is explored in
[6] with several methods given for constructing Φ.

To obtain a space for approximating the solution u of our problem, we pro-
ceed as follows. Denote by Πn the space of polynomials in d variables that are
of degree ≤ n: p ∈ Πn if it has the form

p(x) =
∑

|i|≤n

aix
i1
1 x

i2
2 . . . xidd

with i a multi–integer, i = (i1, . . . , id), and |i| = i1+· · ·+id. Our approximation
space with respect to Bd is

X̃n =
{(

1− |x|2
)
p(x) | p ∈ Πn

}
⊆ H1

0 (Bd) (9)

With respect to Ω, the approximating subspace is

Xn =
{
ψ (s) = ψ̃ (Ψ (s)) : ψ̃ ∈ X̃n

}
⊆ H1

0 (Ω) (10)

Let Nn = dimXn = dim X̃n = dimΠn. For d = 2, Nn = (n+ 1) (n+ 2) /2.
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2.1 The approximation

We reformulate the parabolic problem (1)-(3) as a variational problem. Multi-
ply (1) by an arbitrarily chosen v ∈ H1

0 (Ω) and perform integration by parts,
obtaining

(
∂u (·, t)
∂t

, v

)
= −

d∑

i,j=1

∫

Ω

ai,j (s, t, u (s, t))
∂u (s, t)

∂si

∂v (s, t)

∂sj
ds

+(f (·, t, u (·, t)) , v) , v ∈ H1
0 (Ω) , t ≥ 0.

(11)

In this equation, (·, ·) denotes the usual inner product for L2 (Ω) . Equation
(11), together with (3), is used to develop our approximation method.

We look for a solution of the form

un (s, t) =

Nn∑

k=1

αk (t)ψk (s) (12)

with {ψ1, . . . , ψN} a basis of Xn. The coefficients {α1, . . . , αNn
} generally will

vary with n, but we omit the explicit dependence to simplify notation. Substi-
tute this un into (11) and let v run through the basis elements ψℓ. This results
in the following system:

Nn∑

k=1

α′
k (t) (ψk, ψℓ)

= −
Nn∑

k=1

αk (t)

d∑

i,j=1

∫

Ω

ai,j

(
s, t,

Nn∑

k=1

αk (t)ψk (s)

)
∂ψk (s, t)

∂si

∂ψℓ (s, t)

∂sj
ds

+

(
f

(
·, t,

Nn∑

k=1

αk (t)ψk

)
, ψℓ

)
, ℓ = 1, . . . , Nn, t ≥ 0

(13)
This is a system of ordinary differential equations for the coefficients αk, for
k = 1, . . . , Nn. For the initial conditions, calculate

u0 (s) ≈ u0,n (s) ≡
Nn∑

k=1

α
(0)
k ψk (s) (14)

by some means, and then use

αk (0) = α
(0)
k , k = 1, . . . , Nn. (15)

The implementation of (12)-(15) is discussed in §3.

2.2 Convergence analysis

Our error analysis of (12)-(15) is based on Douglas and Dupont [13, Thm. 7.1];
and as in that paper, we assume the functions {ai,j} and f satisfy a number of
properties.
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A1 As stated earlier, we assume the functions ai,j (s, t, z) and f (s, t, z) are
continuous for (s, t, z) ∈ Ω× [0, T ]× R. Moreover, assume

|f (s, t, r)− f (s, t, ρ)| ≤ K |r − ρ| ,

for all (s, t, r) , (s, t, ρ) ∈ Ω× [0, T ]× R, and

|ai,j (s, t, r)− ai,j (s, t, ρ)| ≤ K |r − ρ|

for all (s, t, r) , (s, t, ρ) ∈ Ω× [0, T ]× R, 1 ≤ i, j ≤ d.

A2 We assume that the matrix A (s, t, z) ≡ [ai,j (s, t, z)]
d

i,j=1 is symmetric,
positive definite, and has a spectrum that is bounded above and below by
positive constants η1 and η2, uniformly so for (s, t, z) ∈ Ω× [0, T ]× R.

Theorem 2 (Douglas and Dupont) Assume the functions ai,j (s, t, z) and f (s, t, z)
satisfy the conditions A1-A2. Let u be the solution of (1)-(3) and assume it is
continuously differentiable over Ω × [0, T ]. Let un be the solution of (12)-(15).
Then there are positive constants γ and C for which

‖u− un‖2L2×L∞ + γ‖u− un‖2H1
0
×L2

≤ C
{
‖u0 − u0,n‖2L2 + ‖u− w‖2

L2×L∞

+‖u− w‖2
H1

0
×L2 + ‖ ∂

∂t
(u− w) ‖2

L2×L2

} (16)

for any w of the form given on the right side of (12).

The norms used in (16) are given by

‖v‖L2×L∞ = sup
0≤t≤T

‖v (·, t) ‖L2(Ω)

‖v‖L2×L2 = ‖v‖L2(Ω×[0,T ])

‖v‖2H1
0
×L2 =

∫ T

0

‖v (·, t) ‖2H1
0
(Ω) dt

The assumptions of the theorem imply the assumptions used in [13, Thm. 7.1],
and the conclusion follows from the cited paper.

To apply this theorem, we need bounds on the norms given in (16) for u−w.
To obtain these, we use the following approximation theoretic result that follows
from Ragozin [20].

Lemma 3 Assume that g (x, t) , ∂g (x, t) /∂t are k times continously differen-
tiable with respect to x ∈ Bd, for some k ≥ 0 and 0 ≤ t ≤ T . Further,
assume that all such kth-order derivatives satisfy a Hölder condition with ex-
ponent γ ∈ (0, 1] and with respect to x ∈ Bd,

|h (x, t)− h (y, t)| ≤ ck,γ (g) |x− y|γ ,
∣∣∣∣
∂h (x, t)

∂t
− ∂h (y, t)

∂t

∣∣∣∣ ≤ ck,γ (g) |x− y|γ ,
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uniformly for x, y ∈ Bd and 0 ≤ t ≤ T , where h denotes a generic kth-order
derivative of g with respect to x ∈ Bd. The quantity ck,γ (g) is called the Hölder
constant. Let {ϕ1, . . . , ϕN} denote a basis of Πn. Then for each degree n ≥ 1,
there exists

gn (x, t) =

Nn∑

k=1

βk (t)ϕk (x)

which satisfies

max
0≤t≤T

max
x∈Bd

|g (x, t)− gn (x, t)| ≤
bk,γ
nk+γ

ck,γ (g) ,

max
0≤t≤T

max
x∈Bd

∣∣∣∣
∂g (x, t)

∂t
− ∂gn (x, t)

∂t

∣∣∣∣ ≤
bk,γ
nk+γ

ck,γ (g) ,

for some constant bk,γ > 0 that is independent of g.

Proof. This result can be obtained by a careful examination of the proof of
Ragozin [20, Thm. 3.4]. A similar argument for approximation of a parameter-
ized family g (x, t) over the unit sphere S

d−1 is given in [9]. The present result
over Bd follows by combining that of [9, §4.2.5] over S

d with the argument of
Ragozin over Bd.

Next, we must look at the approximation of the solution ũ (x, t) by means
of polynomials of the form given on the right side of (12). To do this, we use a
trick from [2, (9)-(15)]. Begin with the result that

∆ : X̃n
1−1−→
onto

Πn. (17)

A short proof is given in [4, §2.2]. For any t ∈ [0, T ], consider a function ũ which
satisfies ũ (x, t) = 0 for all x ∈ S

d−1 = ∂Bd. Define g = ∆xũ. Then

ũ (x, t) =

∫

Bd

G (x, y) g (y, t) dy, x ∈ Bd,

with G the Green’s function for the elliptic boundary value problem

−∆v (x) = g (x) , x ∈ Bd,

v (x) = 0, x ∈ S
d−1.

For example, in R
2,

G (x, y) =
1

2π
log

|x− y|
|T (x)− y| , x, y ∈ B2,

with T (x) the inverse of x with respect to the unit circle S
1. Let gn (x, t) be

the polynomial referenced in the preceding Lemma 3, and define

w̃n (x, t) =

∫

Bd

G (x, y) gn (y, t) dy, x ∈ Bd. (18)

From (17), w̃n (·, t) ∈ X̃n , 0 ≤ t ≤ T ; and w̃n is an approximation of the original
function ũ.
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Lemma 4 Assume ũ (·, t) ∈ Ck,γ
(
Bd

)
for 0 ≤ t ≤ T , with k ≥ 2, 0 < γ ≤ 1.

Then for n ≥ 1, the function w̃n (x, t) of (18) is of the form

w̃n (x, t) =

Nn∑

k=1

αk (t) ψ̃k (x) (19)

and it satisfies

‖ũ (·, t)− w̃n (·, t)‖
C(Bd) ≤

bk,γα1 (G)

nk+γ−2
ck,γ (g) , (20)

‖∇x [ũ (·, t)− w̃n (·, t)]‖
C(Bd) ≤

bk,γα2 (G)

nk+γ−2
ck,γ (g) , (21)

∥∥∥∥
∂

∂t
[ũ (·, t)− w̃n (·, t)]

∥∥∥∥
C(Bd)

≤ bk,γα1 (G)

nk+γ−2
ck,γ (g) (22)

for 0 ≤ t ≤ T . The constants α1 and α2 are given by

α1 (G) = max
x∈Bd

∫

Bd

|G (x, y)| dy,

α2 (G) = max
x∈Bd

∫

Bd

|∇xG (x, y)| dy,

and these are easily shown to be finite. The remaining constants bk,γ and ck,γ (g)
are taken from Lemma 3.

Proof. For the error in approximating ũ, we have

ũ (x, t)− w̃n (x, t) =

∫

Bd

G (x, y) [g (y, t)− gn (y, t)] dy,

∇x [ũ (·, t)− w̃n (·, t)] =
∫

Bd

∇xG (x, y) [g (y, t)− gn (y, t)] dy,

∂

∂t
[ũ (·, t)− w̃n (·, t)] =

∫

Bd

G (x, y)
∂

∂t
[g (y, t)− gn (y, t)] dy

Thus
‖ũ (·, t)− w̃n (·, t)‖

C(Bd) ≤ α1 (G) ‖g (·, t)− gn (·, t)‖C(Bd)

showing (20); and (21) and (22) follow similarly.

These results can be extended to the approximation of u (·, t) over Ω, by the
subspace Xn.

Lemma 5 Assume u (·, t) ∈ Ck,γ
(
Ω
)
for 0 ≤ t ≤ T , with k ≥ 2, 0 < γ ≤ 1;

and assume Φ ∈ Cm
(
Bd

)
with m ≥ k + 3. Then for n ≥ 1 there exists

wn (s, t) =

Nn∑

k=1

αk (t)ψk (s) , s ∈ Ω, 0 ≤ t ≤ T, (23)
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for which

‖u (·, t)− wn (·, t)‖C(Ω) ≤
ω1 (k, γ, u)

nk+γ−2
, (24)

‖∇x [u (·, t)− wn (·, t)]‖C(Ω) ≤
ω2 (k, γ, u)

nk+γ−2
, (25)

∥∥∥∥
∂

∂t
[u (·, t)− wn (·, t)]

∥∥∥∥
C(Ω)

≤ ω3 (k, γ, u)

nk+γ−2
(26)

for 0 ≤ t ≤ T .

Proof. Use the transformation s = Φ(x) to move between functions over
Ω and functions over Bd. By means Lemma 1 for the transformation Φ, these
results follow immediately from Lemma 4.

Combining these results with the Douglas and Dupont Theorem 2 leads to
the following convergence result for the Galerkin method (13)-(15).

Theorem 6 Assume that the solution u of the parabolic problem (1)-(3) satis-
fies u (·, t) ∈ Ck,γ

(
Ω
)
for 0 ≤ t ≤ T , with k ≥ 2, 0 < γ ≤ 1. Moreover, assume

the transformation Φ ∈ Cm
(
Bd

)
with m ≥ k + 3. Then for n ≥ 1, the solution

un of (13)-(15) satisfies

‖u− un‖2L2×L∞ , ‖u− un‖2H1
0
×L2 = O

(
n−(k+γ−2)

)
.

3 Implementation issues

Recall the method (12)-(15) and the notation used there. For notation, let

aN (t) = [α1 (t) , . . . , αN (t)]
T
.

The system (13) can be written symbolically as

Gna
′

N (t) = Bn (t, un) aN (t) + fN (t, un) , (27)

Gn = [(ψk, ψℓ)]
N
k,ℓ=1 , (28)

(Bn (t, un))k,ℓ = −
d∑

i,j=1

∫

Ω

ai,j (s, t, un (s, t))
∂ψk (s, t)

∂si

∂ψℓ (s, t)

∂sj
ds, (29)

fN (t, un)ℓ = (f (·, t, un (·, t)) , ψℓ) , ℓ = 1, . . . , N. (30)

For the implementation, we discuss separately the cases of Ω ⊆ R
2 and

Ω ⊆ R
3. In both cases we must address the following issues

A1. Select a basis {ψ1, . . . , ψN} for Xn.

A2. Discuss the numerical integration of the integrals in (28)-(30).
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A3. Approximate the initial value u0 by some u0,n ∈ Xn, as suggested in (14).

A4. Discuss the solution of the nonlinear system of differential equations (27).

A5. Evaluate the solution un at points of Ω for each given t.

Several of these issues were addressed in the previous papers [2], [5], [7], and
we refer to the discussion in those papers for more complete discussions.

3.1 Two dimensions

Let Πn (B2) denote the restriction to B2 of the polynomials over R
2. To con-

struct a basis for the approximation space Xn of (10), begin by choosing an
orthonormal basis {ϕ1, . . . , ϕN} for Πn (B2), using the standard inner product
for L2 (B2). The dimension of Πn (B2) is

N ≡ Nn =
1

2
(n+ 1) (n+ 2)

There are many possible choices of an orthonormal basis, a number of which are
enumerated in [14, §2.3.2] and [25, §1.2]. We have chosen one that is particularly
convenient for our computations. These are the ‘ridge polynomials’ introduced
by Logan and Shepp [19] for solving an image reconstruction problem. We
summarize here the results needed for our work.

Let
Vn = {P ∈ Πn (B2) : (P,Q) = 0 ∀Q ∈ Πn−1}

the polynomials of degree n that are orthogonal to all elements of Πn−1 (B2).
Then the dimension of Vn is n+ 1; moreover,

Πn (B2) = V0 ⊕ V1 ⊕ · · · ⊕ Vn (31)

It is standard to construct orthonormal bases of each Vn and to then combine
them to form an orthonormal basis of Πn (B2) using the latter decomposition.
As an orthonormal basis of Vn we use

ϕ̃n,k(x) =
1√
π
Un (x1 cos (kh) + x2 sin (kh)) , x ∈ D, h =

π

n+ 1
(32)

for k = 0, 1, . . . , n. The function Un is the Chebyshev polynomial of the second
kind of degree n:

Un(t) =
sin (n+ 1) θ

sin θ
, t = cos θ, −1 ≤ t ≤ 1, n = 0, 1, . . .

The family {ϕ̃n,k}nk=0 is an orthonormal basis of Vn. As a basis of Πn, we order
{ϕ̃n,k} lexicographically based on the ordering in (32) and (31):

{ϕ̃ℓ}Nℓ=1 ≡ {ϕ̃0,0, ϕ̃1,0, ϕ̃1,1, ϕ̃2,0, . . . , ϕ̃n,0, . . . , ϕ̃n,n}

9



Returning to (10), we define

ψ̃n,k(x) =
(
1− |x|2

)
ϕ̃n,k(x)

and the basis {ψm,k : 0 ≤ k ≤ m, 0 ≤ m ≤ n} for Xn is defined using (10),

ψm,k (s) = ψ̃n,k(x), s = Φ(x) .

We will also refer to this basis as {ψ1, . . . , ψN}. In general, this is not an

orthonormal basis; but the hope is that {ϕ̃ℓ}Nℓ=1 being orthonormal will result
in a reasonably well-conditioned matrix for the linear systems associated with
the solution of (13). Examples of this for elliptic problems are given in [2], [5],
[7].

To calculate the first order partial derivatives of ψ̃n,k(x), we need U ′
n(t).

The values of Un(t) and U
′

n(t) are evaluated using the standard triple recursion
relations

Un+1(t) = 2tUn(t)− Un−1(t)

U
′

n+1(t) = 2Un(t) + 2tU
′

n(t)− U
′

n−1(t)

Second derivatives, if needed, can be evaluated similarly.
For the integrals in (13), for any dimension d ≥ 2, we first transform them

to integrals over Bd. For an arbitrary function g defined on Ω, use the transfor-
mation s = Φ(x) to write

∫

Ω

g (s) ds =

∫

Bd

g (Φ (x)) detJ (x) dx

with J (x) the Jacobian matrix (7) for Φ (x). Applying this to the integrals in
(13),

(ψk, ψℓ) =

∫

Ω

ψk (s)ψℓ (s) ds =

∫

Bd

ψ̃k (x) ψ̃ℓ (x) detJ (x) dx (33)

(
f

(
·, t,

Nn∑

k=1

αk (t)ψk

)
, ψℓ

)

=

∫

Bd

f

(
Φ (x) , t,

Nn∑

k=1

αk (t) ψ̃k (x)

)
ψ̃k (x) detJ (x) dx

(34)

d∑

i,j=1

∫

Ω

ai,j (s, t, un (s, t))
∂ψk (s)

∂si

∂ψℓ (s)

∂sj
ds

=

∫

Ω

{∇ψk (s)}TA (s, un (s, t)) {∇ψℓ (s)} ds

=

∫

Bd

{
∇ψ̃k (x)

}T

Ã

(
x, t,

Nn∑

k=1

αk (t) ψ̃k (x)

){
∇ψ̃ℓ (x)

}
detJ (x) dx

(35)
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with
Ã (x, t, z) = J (x)

−1
A (Φ (x) , t, z)J (x)

−T
. (36)

For the numerical approximation of the integrals in (33)-(35) with d = 2,
the integrals being evaluated over the unit disk B2, write a general function g
as

g (x) = ĝ (r, θ) ≡ g (r cos θ, r sin θ) .

Then use the formula

∫

B2

g(x) dx ≈
q∑

l=0

2q∑

m=0

ĝ

(
rl,

2πm

2q + 1

)
ωl

2π

2q + 1
rl (37)

with q ≥ 1 an integer. Here the numbers ωl are the weights of the (q + 1)-point
Gauss-Legendre quadrature formula on [0, 1]. The formula (37) uses the trape-
zoidal rule with 2q+1 subdivisions for the integration over B2 in the azimuthal
variable. This quadrature (37) is exact for all polynomials g ∈ Π2q (B2).

To approximate the initial condition u0, as in (14), we approximate u0 (Φ (x))

by its orthogonal projection onto X̃n,

Pn (u0 ◦ Φ) =
Nn∑

j=1

βjψ̃j

The coefficients {βj} are obtained by solving the linear system

Nn∑

j=1

βj

(
ψ̃j , ψ̃i

)
=
(
u0 ◦ Φ, ψ̃i

)
, i = 1, . . . , Nn. (38)

We approximate further by applying the numerical integration (37) to each of
the inner products in this system. With q ≥ n + 2, the matrix coefficients for
the left side of this linear system will be evaluated exactly. The result of solving
this system with the associated numerical integration yields an approximation
to u0 (Φ (x)); and using s = Φ(x), we have an initial estimate of the form given
in (14).

To solve the system of ordinary differential equations (13), we have used
the Matlab program ode15s, which is based on the multistep BDF methods
of orders 1 through 5; see [3, §8.2], [21, p. 60]. In general, there is often
stiffness when solving differential equations that arise from using a method of
lines approximation for parabolic problems, and that is our reasoning for using
the stiff ode code ode15s rather than an ordinary Runge-Kutta or multistep
code. No difficulty arose in solving any of our examples when using this code,
although further work is needed to know whether or not a stiff ode code is
indeed needed. In our numerical examples, we will give some data on condition
numbers that arise in our method.
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3.2 Three dimensions

Here we denote by Πn(B3) the restriction to B3 of polynomials over R3 of degree
n or less. The first difference to the two dimensional case is that the dimension
of Πn(B3) is given by

N ≡ Nn =
1

6
(n+ 1)(n+ 2)(n+ 3).

But as with the two dimensional case, there is a wide range of orthonormal basis
functions; see [14]. We choose the following orthormal basis for Πn(B3)

ϕ̃m,j,k(x) = cm,j p
(0,m−2j+ 1

2
)

j (2|x|2 − 1)Sβ,m−2j(x)

= cm,j |x|m−2j p
(0,m−2j+ 1

2
)

j (2|x|2 − 1)Sβ,m−2j

(
x

|x|

)
(39)

j = 0, . . . , ⌊m/2⌋, β = 0, 1, . . . , 2(m− 2j), m = 0, . . . , n

The constants cm,j = 2
5
4
+m

2
−j normalize the functions to length one. The

functions p(0,m−2j+ 1
2
) are the normalized Jacobi polynomials on the interval

[−1, 1] with respect to the inner product

(v, w) =

∫ 1

−1

(1 + t)m−2j+ 1
2 v(t)w(t) dt

Finally the functions Sβ,m−2j are spherical harmonic functions given by

Sβ,k(φ, θ) = c̃β,k





cos
(

β
2φ
)
T

β

2

k (cos θ), β even,

sin
(

β+1
2 φ

)
T

β+1

2

k (cos θ), β odd

Here the constant c̃β,k is chosen in such a way that the functions are orthonormal
on the unit sphere S2 in R

3,
∫

S2

Sβ,k(x)Sβ̃,k̃
(x) dx = δ

β,β̃
δ
k,k̃
.

The functions T l
k are the associated Legendre polynomials; see [18]. In [15], [27],

one can also find recurrence formulas for the numerical evaluation of Jacobi and
Legendre polynomials and their derivatives.

The bases for the spaces X̃n and Xn defined in (9) and (10) are again, see
(9) and (10), defined by

ψ̃m,j,k(x) =
(
1− |x|2

)
ϕ̃m,j,k(x) (40)

ψm,j,k(s) = ψ̃m,j,k(x), s = Φ(x) (41)

For the numerical implementation we can also order the bases in lexicographical
order (still using the notation ψ̃ and ψ), so in the following we can assume that

12
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Figure 1: The region Ω associated with (46) and the mapping Φ

we have bases {ψ̃l | l = 1, . . . , Nn} and {ψl | l = 1, . . . , Nn} of X̃n and Xn.
All integrals which arise in the formulas (27)–(30) for the approximate solution
of (13) are transformed to B3 as has been done in (33)–(35). To evaluate the
resulting integrals over the unit ball in R

3 we use spherical coordinates, and a
quadrature formula Qq

∫

B3

g(x) dx =

∫ 1

0

∫ 2π

0

∫ π

0

g̃(r, θ, φ)r2 sin(φ)dφ dθ dr

≈ Qq[g̃], where

Qq[g̃] ≡
2q∑

i=1

q∑

j=1

q∑

k=1

π

q
ωjνkg̃

(
ζk + 1

2
,
π

2q
i, arccos(ξj)

)

Here g̃ is the representation of g in spherical coordinates. The quadrature
formula Qq uses a trapezoidal rule in the θ direction and weighted Gauss–
Legendre quadrature formulas in the φ (weights ωj and nodes arccos(ξj)) and r
direction (weights νk and nodes (ξk + 1)/2), as described in [5]. With the help
of this quadrature formula we can also define the numerical approximation of
u0, see (14) and (15), by formula (38).
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4 Numerical examples

We begin with planar examples, followed by some problems on regions Ω in R
3.

The examples will all be for the equation

∂u (s, t)

∂t
= ∆u (s, t) + f (s, t, u (s, t)) , s ∈ Ω, t ≥ 0. (42)

To help in constructing our examples, we use

f (s, t, z) = f1 (s, t, z) + f2 (s, t) . (43)

We choose various f1 to explore the effects of changes in the type of nonlinearity;
and f2 is then defined to make the equation (42) valid for any given u,

f2 (s, t) =
∂u (s, t)

∂t
− {∆u (s, t) + f1 (s, t, u (s, t))} , s ∈ Ω, t ≥ 0. (44)

In the reformulation (35), A = I and thus

Ã (x, t, z) = J (x)
−1
J (x)

−T
. (45)

4.1 Planar examples

Begin with the region Ω whose boundary is a limacon. In particular, consider
the boundary

ϕ (θ) = ρ (θ) (cos θ, sin θ) ,
ρ (θ) = 3 + cos θ + 2 sin θ, 0 ≤ θ ≤ 2π.

(46)

Using the methods of [6], we obtain a mapping Φ : B2 → Ω. Each component
of Φ is a polynomial of degree 3. To illustrate the mapping we show the images
in Ω of uniformly spaced circles and radial lines in B2; see Figure 1 and note
that Ω is almost convex.

As a particular example for solving (42), let

f1 (s, t, z) = e−z cos (πt) , (47)

u (s, t) =
(
1− x21 − x22

)
cos (t+ 0.05πs1s2) (48)

with s = Φ(x). For the numerical integration in (37), q = 2n was chosen,
where n+ 2 is the degree of the approximation ũn. This choice of q has always
been more than adequate, and a smaller choice would often have sufficed.

To have a time interval of reasonable length, the problem was solved over
0 ≤ t ≤ 20, although something longer could have been chosen as well. The
error was checked at 801 points of Ω, chosen as the images under Φ of 801
points distributed over B2. The graph of u12 (·, 20) is given in Figure 2, and
the associated error is given in Figure 3; in addition, ‖u (·, 20)− u12 (·, 20)‖∞

.
=

1.94E − 4. Figure 4 shows the error norm ‖u (·, t)− u12 (·, t)‖∞ for 200 evenly
spaced values of t in [0, 20]. There is an oscillatory behaviour which is in keeping

14



Figure 2: The approximating solution u12 (s, 20) for the true solution u (s, 20)
of (48) over Ω

with that of the solution u. To illustrate the spectral rate of convergence of the
method, Figure 5 gives the error as the degree n varies from 6 to 20. The linear
behaviour of this semi-log graph implies an exponential rate of convergence of
un to u as a function of n.

An important aspect on which we have not yet commented is the condition-
ing of the matrices in the system (27). In our use of the Matlab program
ode15s, we have written (27) in the form

a

′

N (t) = G−1
n Bn (t, un) aN (t) +G−1

n fN (t, un) , (49)

The matrix G−1
n Bn (t, un) is the Jacobian matrix for this system. Investigating

experimentally,
cond

(
G−1

n Bn

)
= O

(
N2

n

)
(50)

where Nn is the number of equations in (49). As support for this assertion,
Figure 6 shows the graph of log

(
N2

n

)
vs. log

(
cond

(
G−1

n Bn

))
. There is a clear

linear behaviour and the slope is approximately 1, thus supporting (50). When
Ω is the unit disk, and Φ = I, the result (50) is still valid experimentally.

As a second example, one for which Ω is much more nonconvex (although
still star-like), consider the region Ω with the given boundary function

ϕ (θ) = ρ (θ) (cos θ, sin θ) ,
ρ (θ) = 5 + sin θ + sin 3θ − cos 5θ, 0 ≤ θ ≤ 2π.

(51)
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Figure 3: The error in the approximating solution u12 (s, 20) for the true solution
u (s, 20) of (48) over Ω

As before, an extension Φ to B2 is constructed using the methods of [6]. The
mapping Φ is a polynomial of degree 7 in each component; and the images in Ω
of uniformly spaced circles and radial lines in B2 are shown in Figure 7.

Again, use the function f1 of (47) and the solution u of (48). The solution
u20 (·, 20) is shown in Figure 8 over this new region, and ‖u (·, 20)− u20 (·, 20)‖∞.
= 0.00136. Figure 9 shows the error in u20 (·, t) over time, and Figure 10 shows
how the error in un varies with the degree n. The latter again indicates a
spectral order of convergence, although slower than that shown in Figure 5.
The condition numbers still satisfy the empirical estimate of (50).

4.2 A three-dimensional example

Here we will study one domain Ω which we investigated already in a previous
article for the purpose of analyzing the spectral method for Dirichlet problems;
see [2]. The domain has the advantage that the transformation Φ is known
throughout B3 and even the inverse transformation Ψ is known explicitly. The
knowledge of Ψ is not necessary for the use of the spectral method but makes
the construction of an explicit solution easier. The mapping Φ : B3 7→ Ω,
(s1, s2, s3) = Φ(x1, x2, x3) is given by

s1 = x1 − x2 + ax21
s2 = x1 + x2
s3 = 2x3 + bx23

(52)
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Figure 4: The error ‖u (·, t)− u12 (·, t)‖∞ for the true solution u (s, t) of (48)

where 0 < a, b < 1 are two parameters. Figures 11, 12 show an example of the
surface of Ω from two different angles. The inverse Ψ : Ω 7→ B3 is given by

x1 =
1

a

[
−1 +

√
1 + a(s1 + s2)

]

x2 =
1

a

[
as2 + 1−

√
1 + a(s1 + s2)

]

x3 =
1

b

[
−1 +

√
1 + bs3

]

Furthermore the Jacobian for Φ is given by

J(x) =




1 + 2ax1 −1 0
1 1 0
0 0 2 + 2bx3




with determinant
det(J(x)) = 4(1 + ax1)(1 + bx3).

This allows us also to calculate Ã, see (45), directly

Ã(x) =




1

2(1 + ax1)2
ax1

2(1 + ax1)2
0

ax1
2(1 + ax1)2

1 + ax1 + 2a2x21
2(1 + ax1)2

0

0 0
1

4(1 + bx3)2
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Figure 5: n vs. max
0≤t≤20

‖u (·, t)− un (·, t)‖∞

Again we use the spectral method to solve (42) where f is given by (43) and
(44). As a particular example for solving (42), let

f1(s, t, z) = e−z cos(πt),

u(s, t) = (1− x21 − x22 − x23) cos(t+ 0.05πs1s2s3) (53)

where (x1, x2, x3) = Ψ(s1, s2, s3) with a = 0.7 and b = 0.9. Numerical results are
given in Figures 13, 14. Figure 15 seems to indicate that the relation (50) for the
condition number of the Jacobian G−1

n Bn is also valid in the three dimensional
case.
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