
Numer Algor (2013) 63:317–337
DOI 10.1007/s11075-012-9624-4

ORIGINAL PAPER

Multiple point evaluation on combined
tensor product supports

R. Hiptmair · G. Phillips · G. Sinha

Received: 20 November 2011 / Accepted: 9 July 2012 / Published online: 26 July 2012
© Springer Science+Business Media, LLC 2012

Abstract We consider the multiple point evaluation problem for an n-
dimensional space of functions [−1, 1[d �→ R spanned by d-variate basis func-
tions that are the restrictions of simple (say linear) functions to tensor product
domains. For arbitrary evaluation points this task is faced in the context of
(semi-)Lagrangian schemes using adaptive sparse tensor approximation spaces
for boundary value problems in moderately high dimensions. We devise a
fast algorithm for performing m ≥ n point evaluations of a function in this
space with computational cost O(m logd n). We resort to nested segment tree
data structures built in a preprocessing stage with an asymptotic effort of
O(n logd−1 n).

Keywords (Multilevel) segment tree · Adaptive sparse tensor product
approximation

1 Introduction

We fix the dimension d ∈ N and denote by V a vector space of real valued
functions [−1, 1[d �→ R on the d-dimensional hypercube. The main specimens

R. Hiptmair (B)
SAM, ETH Zürich, 8092 Zürich, Switzerland
e-mail: hiptmair@sam.math.ethz.ch

G. Phillips
Neue Kantonsschule Aarau, 5000 Aarau, Switzerland
e-mail: gisela.phillips@nksa.ch

G. Sinha
Department of Mathematics, California Institute of Technology,
Pasadena, CA 91125, USA
e-mail: gauravsinha420@gmail.com

318 Numer Algor (2013) 63:317–337

are provided by spaces of multivariate polynomials. We make the fundamental
assumption that for any ϕ ∈ V and x ∈ [−1, 1[d the point evaluation ϕ(x) can
be accomplished with less than Wx ∈ N work units, where Wx may strongly
depend on d, however. As a work unit we regard a single comparison, branch-
ing, or arithmetic operation. Counting work units will be our main gauge for
computational effort. Yet, on modern computer architectures this may not be
directly related to computing time.

For some (large) n ∈ N we are given arbitrary sequences of points ak, bk ∈
[−1, 1[d, k = 1, . . . , n, with ak < bk, where “<” is understood in a component-
wise sense. The characteristic function of a non-degenerate tensor product box
with corners a, b ∈ R

d, a < b, is defined according to

χa,b(x) :=
{

1 , if ai ≤ xi < bi , i = 1, . . . , d ,

0 elsewhere,
x ∈ [−1, 1[d .

Based on another sequence (ϕ1, . . . ϕn) ∈ Vn we introduce the linear combina-
tion of basis functions with tensor product supports

�(x) :=
n∑

k=1

ϕk(x) · χak,bk(x) , x ∈ [−1, 1[d . (1)

The summands will be called box (supported) functions in the sequel.
The following computational task addresses the multiple evaluation of � in

many points.

Task 1 Given m ≥ n points xk ∈ [−1, 1[d, k = 1 . . . , m, compute the m values
�(xk).

A naive implementation that relies on the straightforward summation of (1)
requires an asymptotic computational effort of O(Wxmn).1

In this article we propose data structures and an algorithm that allow to
perform the evaluations of Task 1 with computational cost O(m logd n) for
m, n → ∞, which means a considerable acceleration for large n, m. This can
be achieved through a preprocessing step involving an effort of O(n logd−1 n),
see Proposition 4.3. This reduces the cost of a single point evaluation to
O(Wx logd n), see Proposition 5.2. We acknowledge that the constants in the
estimates may depend on d and will usually do so in an exponential fashion.
This is acceptable, because storing a single function ϕ ∈ V will usually take pd

bits for some p > 1. For example, if V is the space of multi-linear functions, we
need 2d coefficients to characterize any ϕ ∈ V.

A special case of functions represented as sums like (1) occurs in the context
of sparse adaptive tensor discretizations also known as adaptive sparse grids.

1As usual O(Wxmn) means a bound of the form CWxmn with the constant C > 0 independent of
Wx, m, and n for all admissible values of Wx, m, and n.

Numer Algor (2013) 63:317–337 319

There, V will be the d + 1-dimensional space of multi-linear functions R
d �→ R,

and the corner points are taken from a special set of nodes of hierarchical
tensor product meshes. More precisely, we have for some maximal “level”
L ∈ N

ak, bk ∈
{(

i j2−l j
)d

j=1 : l j = 0, . . . , L, i j ∈ {−2l j, . . . , 2l j
}
, i j odd

}
.

For more information about (adaptive) sparse tensor product spaces and their
use to break the so-called “curse of dimensionality” in the approximation of
solutions of moderately high-dimensional boundary value problems we refer
to [1] and [8].

Usually, sparse grid functions need not be evaluated at arbitrary points.
The exception are transport problems tackled by means of so-called semi-
Lagrangian schemes, see, e.g., [6]. These methods follow the trajectories of
a flow field over a short time to determine interpolation points. These can be
located anywhere, if general flow fields are admitted. The semi-Lagrangian
approach in combination with adaptive sparse grid spaces offers a promising
numerical technique for moderately high-dimensional boundary value prob-
lems arising in areas as diverse as optimal control [4] and kinetic equations [2].
This has motivated the present article.

We point out that it is the very setting of adaptive sparse grids for which
we developed the new algorithm. Then we may encounter the situation that
the supports of all n basis functions may have an non-empty overlap. Then
straightforward point evaluation inside this overlap region will incur O(Ln)

computational cost. Conversely, for a regular sparse grid, only O(logd n)

basis functions contribute to �(x) and naive summation of (1) becomes a
competitive option.

Remark 1.1 In order to demonstrate the gist of the algorithms, we resort to
pseudo-codes with a syntax borrowed from C++ and the standard template
library (STL) [7]. Yet, we emphasize, that the code snippets enclosed in this
article are “pseudo-code”. They are bare bones and for the sake of lucidity
were neither intended to be syntactically correct nor to comply with best
practices of proper object oriented implementation.

2 Basic data structures

We rely on the class Interval that supports the usual operations (on
one-dimensional bounded, half-open intervals ⊂ R) like a point en-
closure query method bool contains(double), an intersection test bool
intersect (const Interval &I1,const Interval &I2) and an inclusion test bool
contains(const Interval &subI). The function Interval merge(const Interval
&I1,const Interval &I2) creates a new Interval object that combines two

adjacent intervals into one.

320 Numer Algor (2013) 63:317–337

A d-dimensional bounded tensor product domain, a “box”, can be encoded
by a sequence of d intervals, which suggests the data type

typedef vector<Interval> Box .

Thus a single term in (1) corresponds to an object of type BoxFunction,
whose definition is given in Listing 1. The operator member function operator
[](int), given an argument i ∈ {0, . . . , d − 1} serves to access [ai+1, bi+1[,

when the box data field stores [a1, b 1[× · · · × [ad, b d[. The phi data field of
BoxFunction provides the ϕk component of a term in (1). It contains an object
of type VFunction that stores a function ∈ V. It is supposed to provide the
usual (real) vector space operations through overloaded arithmetic operators
+,−,∗,/,+ =,− =,∗ =,/ =. In the sequel, we write Ws for an upper bound
on the computational cost of a binary operation of any two objects of type
VFunction.

Listing 1 Class definition for a function with tensor product support

1 c l a s s BoxFunction {
2 p u b l i c :
3 Box box ;
4 VFunction ph i ;
5

6 BoxFunction (cons t Box &b , cons t VFunction &f) ;
7 i n t dim (void) cons t { r e t u r n box . s ize () ; }
8 cons t I n t e r v a l &operator [] (i n t) cons t ;
9 } ;

A sum of the form (1) can be represented as an object of type

typedef list <BoxFunction> BoxFnSeq; .

Our algorithm expects an input of this type, but it could as well operate on
suitable read-only iterator ranges.

3 Segment trees

A one-dimensional segment tree is a balanced binary search tree that can
be used to answer the point enclosure query for a collection of intervals
efficiently, see [3, Ch. 10] and [5, Section 2.2]. Here, we briefly review data
structures, algorithms, and complexity issues connected with this fundamental
concept from computational geometry.

The one-dimensional point enclosure problem reads as follows: given a
collection of intervals

{[ak, b k[: −1 ≤ ak < b k≤1, k = 1, . . . , n} , n ∈ N ,

Numer Algor (2013) 63:317–337 321

and a point ξ ∈ [−1, 1[, find those intervals that contain ξ . A straightforward
implementation will take O(n) comparisons to arrive at an answer. However,
once the corresponding segment tree has been constructed with O(n log n)

cost, the point query can be answered with computational effort O(log n + K),
where K is the number of intervals reported, see [3, Ch. 10].

The nodes of a segment tree possess a so-called comparison interval as key
data field, see the class definition of SegTreeNode in Listing 2.

Listing 2 Data type for node of a segment tree

1 c l a s s SegTreeNode {
2 p u b l i c :
3 SegTreeNode ∗ l e f t s o n ,∗ r i gh t son ; / / tree structure fields
4 cons t I n t e r v a l compintv ; / / comparison interval
5 l i s t <cons t BoxFunction &> l o c l i s t ; / / list of box functions
6 / / Data fields discussed in Section 4
7 SegTreeNode ∗ sub t ree roo t ;
8 WFunction loc fun ;
9

10 SegTreeNode (cons t I n t e r v a l &I , SegTreeNode
∗ l s =NULL, SegTreeNode ∗ rs=NULL) ;

11 } ;

Another important data field of SegTreeNode is the local list loclist of box
functions. Its actual significance will be explained in the next section. For the
time being we remark that, for a fixed coordinate direction 1 ≤ i ≤ d, the i-th
interval of the tensor product support of every function stored in loclist will
contain the comparison interval of the node, cf. the discussion of the function
registerInterval from Listing 4.

The first pass of the construction of segment trees for Task 1 is executed by
the function buildSegTree of Listing 3, cf. [5, Algorithm 2.3].

Listing 3 Building a one-dimensional segment tree

1 SegTreeNode ∗buildSegTree (i n t i , cons t BoxFnSeq &fseq) {
2 vector <double > bd (2) ; bd [0] = −1.0; bd [1] = 1 . 0 ;
3 foreach f in fseq {
4 cons t I n t e r v a l & i n t v (f [i −1]) ;
5 bd . push_back (i n t v . a) ; bd . push_back (i n t v . b) ;
6 }
7 / / Sort vector bd and eliminate duplicate elements
8 s o r t (bd) ; unique (bd) ;
9 l i s t <SegTreeNode ∗> t ;

10 f o r (j =0; j <bd . s ize () −1; j ++)
11 t . push_back (new

SegTreeNode (I n t e r v a l (bd [j] , bd [j +1]))) ;
12 i n t n_sons ;
13 whi le ((n_sons = t . s i ze ()) >1) {

322 Numer Algor (2013) 63:317–337

14 i n t n_parents = n_sons / 2 ;
15 f o r (i n t i =0; i <n_parents , i ++) {
16 SegTreeNode ∗ l s = t . f r o n t () ; t . pop_f ront () ;
17 SegTreeNode ∗ rs = t . f r o n t () ; t . pop_f ron t () ;
18 I n t e r v a l p a r e n t i n t v =

merge (ls −>compintv , rs−>compintv) ;
19 t . push_back (new SegTreeNode (pa ren t i n t v , l s , rs)) ;
20 }
21 i f (n_sons > n_parents ∗2) {
22 / / In case of an odd number of intervals
23 t . push_back (t . f r o n t ()) ; t . pop_f ront () ;
24 }
25 re turn (t . f r o n t ()) ;
26 }

Definition 3.1 A balanced binary tree created by buildSegTree is called a
segment tree.

The notions of root (node) and of depth(N) of a node N are borrowed
from the standard terminology for binary trees. So is the depth depth(T) of
a segment tree T and notions like “parent” and “child” of a node. All nodes
with the same depth form a level of the tree

Ll(T) = {N ∈ T : depth(N) = l} , l = 0, 1,

For an interval sequence of length n the function buildSegTree displayed
in Listing 3 queries the sections of the support boxes in coordinate direction i
and constructs a segment tree T with2

depth(T) ≤
log2(2n + 1)� ≤ �(n) := 1 + log2(n + 1) , (2)

and a bound on the number of nodes according to

�T ≤ 4n + 1 . (3)

Due to the sorting step, the computational effort involved is O(n log n) for
n → ∞. By construction the interval owned by each parent node is the union
of the intervals of its children (see Line 18 of Listing 3),

Nl = *N.leftson

Nr = *N.rightson
⇒ N.compintv=Nl.compintv ∪ Nr.compintv ,

(4)
see Fig. 1 for an example.

2We write
x� for the smallest integer ≥ x.

Numer Algor (2013) 63:317–337 323

+1

− 1
l = 1l = 2l = 3l = 4l = 5

Fig. 1 Segment tree built from a collection of intervals represented by colored vertical bars on the
left: nodes are represented by their comparison intervals, parent–child relationships are indicated
by arrows

Proposition 3.2 The comparison intervals of all nodes of a segment tree T on a
particular level 0 ≤ l ≤ depth(T) form a partition of an interval [−1, ξ [for some
−1 < ξ ≤ 1.

Proof On the leaf level the comparison intervals give a partition of [−1, ξ [
defined by the endpoints of the box cross sections in coordinate direction i.
The whole interval [−1, 1[may not be covered, because, in case the number of
intervals is odd, the last one is moved to the next coarser level of the tree, see
Line 23 of Listing 3.

The while-loop (Lines 13–24) in buildSegTree creates the levels of the
tree. If n_sons is even, pairs of comparison intervals are merged into the
comparison intervals of the next coarser level. If n_sons is odd, the last
interval is promoted to the next coarser level, cf. Fig. 1. ��

A box supported function is added to the loclist data member of a node, if
the cross section of its support box in coordinate direction i

• contains the comparison interval of that node,
• but fails to contain the comparison interval of its parent node.

This rule is implemented in the recursive function registerInterval given in
Listing 4. See also Fig. 2 for an example.

324 Numer Algor (2013) 63:317–337

Listing 4 Registering box supported functions in local lists

1 void r e g i s t e r I n t e r v a l (i n t i , SegTreeNode ∗n , cons t
BoxFunction &f) {

2 cons t I n t e r v a l & i n t v (f [i −1]) ;
3 i f (i n t v . conta ins (n . compintv))
4 n . l o c l i s t . push_back (f) ;
5 e l s e {
6 i f (((SegTreeNode ∗ l s = n−>l e f t s o n) != NULL) &&
7 i n t e r s e c t (l s −>compintv , i n t v))
8 r e g i s t e r I n t e r v a l (i , l s , I) ;
9 i f (((SegTreeNode ∗ rs = n−>r i gh t son) != NULL) &&

10 i n t e r s e c t (rs−>compintv , i n t v))
11 r e g i s t e r I n t e r v a l (i , rs , I) ;
12 } }

Proposition 3.3 Assume that registerInterval (i, root, f) is invoked with root a
pointer to the root of a segment tree T built from a list of n box functions with f
being one of them. Then

(i) at most 4 · depth(T) recursive calls to registerInterval will be made,
(ii) f will be inserted into at most 2
log2(2n + 1)� nodal lists,

+1

−1
l = 1l = 2l = 3l = 4l = 5

Fig. 2 Intervals (left) added to the loclist fields of nodes of the segment tree from Fig. 1 are
represented by squares in the color of the interval

Numer Algor (2013) 63:317–337 325

Proof Denote by N (f) the set of nodes of the segment tree, for which a
recursive function call registerInterval(i , ... , f) is made, see Lines 8, 11 in
Listing 4. We first show

�(N (f) ∩ Ll(T)) ≤ 4 ∀l = 0, . . . , depth(T) . (5)

We adapt an argument from [5, Proof of Lemma 2.4]. Assume that there
was a level l, for which (5) was not true. Note that registerInterval(i ,n, f)
is invoked, if the cross section I in coordinate direction i of the support box of
f intersects the comparison interval of the node ∗n. Since, by Proposition 3.2
the comparison intervals of the nodes on level l are contiguous, there would
be at least five nodes on level l with contiguous comparison intervals that have
an overlap with I. Hence, the adjacent comparison intervals of three of them
must be contained in I. As a consequence there is a parent node on level l − 1,
whose comparison interval is contained in I. In this case registerInterval is
not invoked for any son node and interval I. This contradiction confirms (5).

The same arguments bear out that3

�{N ∈ Ll(T) : N.compintv ⊂ I ∧ parent(N).compintv �⊂ I} ≤ 2 , l ≥ 1 .

Only for these nodes the box function f is appended to loclist , cf. Lines 3, 4
of Listing 4. In light of the bound (2) the assertion follows. ��

Corollary 3.4 The accumulated length of all local lists stored in the loclist data
f ields of the nodes of a segment tree T built from a list of n box supported
functions by buildFullSegTree (Listing 5) is bounded by∑

N∈T
N.loclist.size() ≤ �(n) := 2n(2 + log2(n + 1)) .

Corollary 3.5 The computational ef fort for buildFullSegTree, see Listing 5,
when invoked for a sequence of n box supported functions is less than W f �(n)

work units for some W f > 0 independent of n.

Listing 5 Building a one-dimensional segment tree complete with interval lists

1 SegTreeNode ∗buildFullSegTree (i n t i , BoxFnSeq &fseq) {
2 SegTreeNode ∗ r oo t = buildSegTree (i , fseq) ;
3 foreach f in fseq { r e g i s t e r I n t e r v a l (i , root , f) ; }
4 re turn r oo t ; }

3The operator � tells the cardinality of a set.

326 Numer Algor (2013) 63:317–337

Lemma 3.6 Let the segment tree T be built by buildFullSegTree (i, fseq)
and f be a box supported function contained in the list fseq with support
[a1, b 1[× · · · × [ad, b d[. Then

[ai, bi[=
⋃

{N.compintv : N ∈ T , f ∈ N.loclist} .

provides a partition of [ai, bi[.

Proof The assertion of the lemma is an immediate consequence of the fact
that all support intervals are the union of comparison intervals, because both
buildSegTree and registerInterval operate on the same list of functions.
In addition the partition property stated in the lemma is a consequence of
Proposition 3.2. ��

4 Box function tree

Now we discuss how to handle multidimensional tensor product supports in
order to facilitate the fast point evaluation sought in Task 1. This will be done
by means of nested segment trees, each of which belongs to a particular ccoor-
dinate direction i, 1 ≤ i ≤ d. In short, we refer to this number i ∈ {1, . . . , d} as
the direction of the tree and its nodes.

In computational geometry nested segment trees are known as multilevel
segment trees, see [5, Section 2.3]. They are used for efficient point enclosure
queries for d-dimensional boxes; more precisely, the data structure allows to
access all boxes containing a given point with effort O(K + logd

2 n) after a
preprocessing stage that costs O(n logd

2 n). Here, K is the number of enclosing
boxes found. This is not a useful estimate for our purpose, because all the
supports of the terms in (1) may have non-empty intersection. In case the point
x lies in this intersection, we encounter K = n and, consequently, O(n) cost for
evaluating �(x). On the other hand, we do not care about which boxes contain
x. This suggests that we modify the standard algorithms and augment it by
an extra accumulation step in the preprocessing stage. This section gives the
details.

In a nested segment tree, each node of direction i > 1 may hold an-
other segment tree of direction i − 1; through the subtreeroot data field of
SegTreeNode the node can access the root of this segment tree (subtree),
which may be empty. The subtrees are built recursively as segment trees
spawned by the local box function lists (loclist field, see Line 5 of the class
definition of SegTreeNode in Listing 2) attached to the nodes of the current
tree, see the routine buildSubTrees given in Listing 6 and [5, Algorithm 2.7].
We start from the d-th coordinate direction in the function initBoxTree, see
Listing 7, and work our way down to coordinate direction 1. Thus, the level of
the recursion in buildSubTrees will determine the direction of a subtree and
its nodes.

Numer Algor (2013) 63:317–337 327

Listing 6 Recursive construction of multidimensional segment tree (box tree)

1 void buildSubTrees (i n t i , SegTreeNode ∗ r oo t) {
2 i f (r oo t != NULL) {
3 l i s t <cons t BoxFunction &> & l o c l s t = root −> l o c l i s t ;
4 i f (! l o c l s t . empty ()) {
5 i f (i >1) {
6 root −>sub t ree roo t =

buildFullSegTree (i −1, l o c l s t) ;
7 buildSubTrees (i −1, root −>sub t ree roo t) ;
8 }
9 e l s e { sumLocFn (l o c l s t , root −>loc fun) ; }

10 (root −> l o c l i s t) . c l ea r () ; / / Clear local lists, optional
11 }
12 buildSubTrees (i , root −>l e f t s o n) ;
13 buildSubTrees (i , root −>r i gh t son) ;
14 } }

Listing 7 Initialization of a box tree

1 SegTreeNode ∗ initBoxTree (i n t d , BoxFnSeq fseq) {
2 SegTreeNode ∗ r oo t = buildFullSegTree (d , fseq) ;
3 buildSubTrees (d , roo t) ;
4 r e t u r n r oo t ; }

Definition 4.1 We dub multilevel segment trees created by initBoxTree from
Listing 7 box function trees.

Let us single out a node of direction i = 1 of a box function tree. It owns
a comparison interval I1. The corresponding subtree is attached to a node of
direction 2, which holds a comparison interval I2, and so forth. Thus we can
associate a unique d-dimensional box I1 × I2 × . . . Id to each node of direction
1. All these boxes form an overlapping tiling of [−1, 1[d and we refer to them
as comparison boxes.

Listing 8 Summation of basis functions that are uniform on a d-dimensional box

1 void sumLocFn (BoxFnSeq &fseq , VFunction &func) {
2 foreach f in fseq { func += f . ph i ; } }

An explanation for the invocation of the function sumLocFn, see Listing 8,
in Line 9 of buildSubTrees is postponed until Section 5.

The function initBoxTree performs the preprocessing step of our algorithm.
Now we analyze its complexity, starting with auxiliary identities.

328 Numer Algor (2013) 63:317–337

Lemma 4.2 Let f : R
+
0 �→ R

+
0 satisfy f (0) = 0. Then, for any n ∈ N, x > 0,

max

{
n∑

k=1

f (ξk),

n∑
k=1

ξk = x, ξk ≥ 0

}
=

{
f (x) , if f is convex,

nf
(x

n

)
, if f is concave.

Proof A convex f with the stated properties satisfies f (ξ) + f (η) ≤ f (ξ + η)

for all ξ, η ≥ 0, and, therefore, the sum becomes maximal, when only one of the
ξk does not vanish. As f is non-decreasing, that ξk should attain the maximal
value x.

For a concave f we find f (ξ) + f (η) ≥ f (ξ + η) for all ξ, η ≥ 0, which
means that the sum becomes maximal in the case ξ1 = ξ2 = · · · = ξn = x

n . ��

Proposition 4.3 (cf. [5, Theorem 2.7]) The computational ef fort involved in
executing initBoxTree for a list of n ∈ N functions with d-dimensional tensor
product supports is bounded by C max{W f , WS}n logd n, where C > 0 depends
on d only, and Ws, W f were introduced in Section 2 and Corollary 3.5,
respectively.

Proof To begin with, note that for i > 1 buildSubTrees(i,root) involves the
following two passes

(I) For each node of the tree invoke buildFullSegTree for direction i − 1
and on the local list loclist of box functions.

(II) For each node of the tree do a recursive call to buildSubTrees passing
direction i − 1 and the local list.

Write ω(i, n) for a bound for the computational effort (in work units) it takes
to execute buildSubTrees for direction i ∈ {1, . . . , d − 1} and on a subtree
created from a box function list of length n ∈ N0. According to (3) this tree
comprises at most 4n + 1 nodes, which we number consecutively. We denote
by mk the length of the local box function list of node k, k ∈ {1, . . . , 4n + 1}. In
case there are fewer nodes, the excess mk are simply set to zero. Corollary 3.4
gives us the bound

4n+1∑
k=1

mk ≤ �(n) := 2n(2 + log2(n + 1)) . (6)

If i = 1, we merely invoke sumLocFn, see Listing 8, on all the local lists,
with cost proportional to

∑
k mk, which leads to the estimate

ω(1, n) ≤ Ws�(n) , (7)

with Ws > 0 independent of n reflecting the cost of adding two objects of type
VFunction, cf. Section 2.

Numer Algor (2013) 63:317–337 329

If i > 1 we add the effort required by the two passes in buildSubTrees to
obtain the recursion formula

ω(i, n) ≤ max

⎧⎨
⎩

4n+1∑
k=1

W f �(mk)︸ ︷︷ ︸
Pass (I)

+ ω(i − 1, mk)︸ ︷︷ ︸
Pass (II)

,

4n+1∑
l=1

ml ≤ �(n)

⎫⎬
⎭ , (8)

where, thanks to Corollary 3.5, the cost of a call to buildFullSegTree from the
k-th node (Pass (I) above) has been bounded by W f �(mk).

We continue by induction with respect to i, where, according to the assertion
of the theorem, the induction hypothesis is

ω(i, n) ≤ Ci�(n) logi−1
2 (n + 1) , (9)

which, by (7), is clearly satisfied for i = 1 with C1 = Ws. Both t �→ ω(i − 1, t)
and t �→ �(t) are convex, non-negative, and vanish for t = 0. Thus we can apply
Lemma 4.2 to (8), which yields the recursive estimate

ω(i, n) ≤ W f �(�(n)) + ω(i − 1, �(n)) , i ≥ 2 . (10)

The resulting bounds for special values of Ws and W f are plotted in Fig. 3.
Next, plugging (9) for ω(i − 1, n) into (10) yields

ω(i, n) ≤ W f �(�(n)) + Ci−1�(�(n)) logi−2
2 (�(n) + 1) , i ≥ 2 . (11)

Tedious, but elementary computations establish that for n ≥ 2

log2(�(n) + 1) ≤ 5 + log2(n + 1) + log2(log2 n) , (12)

�(�(n)) ≤ 8�(n) log2(n + 1) . (13)

0 1 2 3 4 5 6 7 8 9 10
x 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 n

ω
(i

,n
)

(r
es

ca
le

d
 b

y
ω

(i
,1

06))

i=1

i=2

i=3

i=4

1 2 3 4 5 6 7 8 9 10
100

105

1010

1015

1020

1025

1030

 dimension i

ω
(i

,n
)

n=100
n=1000
n=10000
n=100000
n=1000000

Fig. 3 Bounds ω(i, n) from (10) and (7) for W f = 1 and Ws = 1

330 Numer Algor (2013) 63:317–337

Combining these estimates with (11) we conclude that for n ≥ 4

ω(i, n) ≤ 8W f �(n) log2(n + 1) + 22i−1Ci−1�(n) log2(n + 1) logi−2
2 (n + 1) .

(14)
This amounts to the induction hypothesis for i with Ci = W f + 22i−1Ci−1. ��

5 Point evaluation

After the discussion of the preprocessing stage, we now turn to the actual
evaluation requested in Task 1. This is tackled by the function eval, see
Listing 9, invoked for node=initBoxTree(d,fseq) and i=d, where the sequence
fseq encodes the sum (1) as explained in Section 2. The argument x must pass
a vector with d floating point coefficients: typedef vector<double> Point. The
main difference to the usual point query task discussed in [5, Section 2.3] is
that the boxes containing x are not of interest.

Listing 9 Point evaluation function for box function tree

1 double eval (cons t SegTreeNode ∗node , i n t i , cons t
Poin t &x) {

2 double va l = 0 . 0 ;
3 i f (node != NULL) {
4 i f ((node−>compintv) . con ta ins (x [i −1])) {
5 i f (i == 1)
6 va l = node−>loc fun (x) ;
7 e l s e
8 va l = eval (node−>subt reeroot , i −1,x) ;
9 va l += eval (node−>l e f t s o n , i , x) +

eval (node−>r igh tson , i , x) ;
10 } }
11 r e t u r n va l ; }

Listing 10 Building box function tree combined with point evaluation

1 cons t SegTreeNode ∗ r oo t = initBoxTree (d , fseq) ;
2 double ps i = eval (root , d , x) ;

Proposition 5.1 If fseq is an object of type BoxFnSeq encoding the sum (1),
and x ∈ R

d is stored in x, then the code given in Listing 10 stores the value �(x)

in psi.

Proof of Proposition 5.1

(i) We first establish that a specific box supported function will be taken into
account at most once in eval. Examining the function registerInterval we

Numer Algor (2013) 63:317–337 331

note that due to the partition property stated in Lemma 3.6 the nodes to
whose loclist data field a fixed box function is added must have disjoint
comparison intervals.
Thus, the comparison boxes associated with the nodes of direction 1 of
a box function tree that hold a particular box supported function in their
loclist fields have to be disjoint, too. Since at most one of a set of disjoint

comparison boxes is visited during the execution of eval, the same box
function will never be summed twice.

(ii) Secondly, we show that each box supported function, whose support
contains x = (x1, . . . , xd)

T actually contributes to the sum. Pick such a
function f and denote by B = [a1, b 1[× · · · × [ad, b d[its tensor product
support, satisfying x ∈ B.
At direction d, since xd ∈ [ad, b d[, thanks to Lemma 3.6, there is a node
Nd of direction d such that

xd ∈ (Nd).compintv ∧ f ∈ (Nd).loclist .

From Listing 9 we see that eval will be called for the sub-tree attached to
Nd, which has been built from a function list containing f . Hence, there
is a node Nd−1 of direction d − 1 such that

xd−1 ∈ (Nd−1).compintv ∧ f ∈ (Nd−1).loclist .

Applying this argument recursively verifies the existence of a node N1
of direction 1, whose comparison box contains x and whose loclist
includes f . Thus, the locfun field of N1 has been initialized in sumLocFn,
see Listing 8, from a sum comprising the V-part of f . Consequently,
(N1).locfun(x) involves a term f (x). ��

Now we study the computational cost of eval. We make the natural assump-
tion that the evaluation of a function ∈ W stored in an object of type VFunction
at a single point takes a constant amount of work, that may depend on the
dimension d, however.

Proposition 5.2 If, in Listing 9, the box function tree has been created from a
function list of length n, then the evaluation in Line 2 of Listing 10 requires an
asymptotic computational ef fort O(Wx logd n) for large n.

Proof At a particular direction i, 1 < i ≤ d, the recursive execution of eval for
a point x = (x1, . . . , xd)

T ∈ [−1, 1[d boils down to

(I) visiting all nodes of direction i, whose comparison interval contains xi,
and

(II) executing eval for the sub-trees of direction i − 1 of those nodes.

332 Numer Algor (2013) 63:317–337

Denote by ζ(i, n) a bound for the cost of executing eval for a box function
tree of dimension i built from a box function list of length n. For i = 1 exactly
one VFunction object is evaluated at x on each level of the tree, which, by (2),
permits us to set

ζ(1, n) ≤ Wx�(n) , �(n) := log2(n + 1) . (15)

The cost of evaluating a single VFunction is incorporated through the constant
Wx, which may strongly depend on d, however.

For direction i > 1, a recursive call to eval is made for exactly one node on
each level. The local function lists of these nodes do not contain shared box
functions, as explained in the proof of Proposition 5.1. Hence, based on (2), we
find the recursive estimate

ζ(i, n) ≤ max

{
�(n)∑
�=1

1 + ζ(i − 1, nk),

�(n)∑
�=1

n� ≤ n

}
,

where nk is the length of the local box function list attached to the k-th node (of
direction i) for which eval is called. Since t �→ ζ(i, t) is concave with ζ(i, 0) = 0,
from Lemma 4.2 we infer

ζ(i, n) ≤ �(n)

(
1 + ζ

(
i − 1,

n
�(n)

))
. (16)

Then a simple induction confirms that the choice ζ(i, n) := Wx logi
2(n + 1)

complies with (15) and (16) for large n. ��

6 Empirical complexity

The theoretical complexity bounds of Propositions 4.3 and 5.2 hold for worst
case scenarios concerning the arrangement of support boxes. In this section, we
study the actual effort for the preprocessing and evaluation stages for concrete
examples of functions � and sets of evaluation points. Throughout, V is the
space of multi-linear functions R

d �→ R.
To gauge the cost, we measure certain operation counts for the setup

phase and evaluation stage of our algorithm in different typical situations. In
partiular, for setup we tracked

• the execution count Nadd for the operation += for objects of type
VFunction, which is needed in the function sumLocFn, see Listing 8.

• the number Ncontains of enclosure tests for two intervals, as needed in
Line 3 of registerInterval, see Listing 4.

• the number Nintscts of intersection queries for two invervals, as used in
Lines 7, 10 of registerInterval, see Listing 4.

Numer Algor (2013) 63:317–337 333

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8

9 x 104

 No. n of basis functions

 o
p

er
at

io
n

 c
o

u
n

ts
Building of trees, dimension = 2

Nadd
Ncontains
Nintscts
Ntotinsrt
Nnodes
C n log(n)1

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5
x 105

 No. n of basis functions

 o
p

er
at

io
n

 c
o

u
n

ts

Building of trees, dimension = 3

Nadd
Ncontains
Nintscts
Ntotinsrt
Nnodes
C n log(n)2

Fig. 4 Experiment 1: invocation counts during initialization of the multidimensional segment tree
for d = 2 (left), d = 3 (right)

• a counter Ntotinsrt for appending box function objects to local lists, as
done in Line 4 of registerInterval, see Listing 4.

• the total number Nnodes of nodes of segment trees of various direc-
tions created during setup by the new statements in Lines 11, 19 of
buildSegTree, see Listing 3.

For the point evaluation as implemented in the eval function of Listing 9 we
monitored the average number

• Neval of point evaluations of VFunction-objects as done in Line 6 of the
eval function.

• NPcont of queries issued in Line 4 whether an interval contains a point.

0 50 100 150 200 250 300 350 400 450 5000

20

40

60

80

100

120

 No. n of basis functions

 o
p

er
at

io
n

 c
o

u
n

ts
 p

er
 p

o
in

t

Point evaluation, dimension = 2

Neval
Npcont
C log(n)2

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

 No. n of basis functions

 o
p

er
at

io
n

 c
o

u
n

ts
 p

er
 p

o
in

t

Point evaluation, dimension = 2

Neval
Npcont
C log(n)2

Fig. 5 Experiment 1: (average) invocation counts during point evaluation for d = 2: single point
x = 0 (left), randomly chosen points (right)

334 Numer Algor (2013) 63:317–337

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

 No. n of basis functions

 o
p

er
at

io
n

 c
o

u
n

ts
 p

er
 p

o
in

t
Point evaluation, dimension = 3

Neval
Npcont
C log(n)3

0 50 100 150 200 250 300 350 400 450 5000

20

40

60

80

100

120

140

160

 No. n of basis functions

 o
p

er
at

io
n

 c
o

u
n

ts
 p

er
 p

o
in

t

Point evaluation, dimension = 3

Neval
Npcont
C log(n)3

Fig. 6 Experiment 1: (average) invocation counts during point evaluation for d = 3: single point
x = 0 (left), randomly chosen points (right)

6.1 Experiment 1

We pick n ∈ N basis functions ϕ1, . . . , ϕn with nested supports

supp(ϕi) =
[
−1 + i

n + 1
, 1 − i

n + 1

]d

, i = 1, . . . , n , (17)

centered around zero. Their linear combination was evaluated for

1. the central point 0 contained in the intersection of all supports,
2. and 104 points randomly chosen in [−1, 1]d (uniform distribution).

The various operation counts for d = 2, 3 are depicted in the graphs of
Figs. 4, 5, and 6. They very well match the theoretical predictions of asymptotic
complexity given in Propositions 4.3 and 5.2. Small wonder, since the situation
that the evaluation point belongs to all support boxes should really represent
the worst possible arrangement for our algorithm.

0 100 200 300 400 500 600 700 800 900 10000

0.5

1

1.5

2

2.5
x 105

 No. n of basis functions

 o
p

er
at

io
n

 c
o

u
n

ts

Building of trees, dimension = 2

Nadd
Ncontains
Nintscts
Ntotinsrt
Nnodes
C n log(n)1

0 500 1000 15000

0.5

1

1.5

2

2.5
x 106

 No. n of basis functions

 o
p

er
at

io
n

 c
o

u
n

ts

Building of trees, dimension = 3

Nadd
Ncontains
Nintscts
Ntotinsrt
Nnodes
C n log(n)2

Fig. 7 Experiment 2: invocation counts during initialization of the multidimensional segment tree
for d = 2 (left), d = 3 (right)

Numer Algor (2013) 63:317–337 335

0 100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

 No. n of basis functions

 o
p

er
at

io
n

 c
o

u
n

ts
 p

er
 p

o
in

t
Point evaluation, dimension = 2

Neval
Npcont
C log(n)2

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

 No. n of basis functions

 o
p

er
at

io
n

 c
o

u
n

ts
 p

er
 p

o
in

t

Point evaluation, dimension = 2

Neval
Npcont
C log(n)2

Fig. 8 Experiment 2: (average) invocation counts during point evaluation for d = 2: single point
x = 0 (left), randomly chosen points (right)

6.2 Experiment 2

We pick n = dk basis functions, k ∈ N, ϕ1, . . . , ϕdm with anisotropic supports

supp(ϕi) =
[
−1 + i

k + 1
, 1 − i

k + 1

]
× [−1, 1]d−1 , i = 1, . . . , k ,

supp(ϕi) = [−1, 1] ×
[
−1 + i − k

k + 1
, 1 − i − k

k + 1

]
× [−1, 1]d−2 ,

i = k + 1, . . . , 2k ,

...

supp(ϕi) = [−1, 1]d−1 ×
[
−1 + i − (d − 1)k

k + 1
, 1 − i − (d − 1)k

k + 1

]
,

i = (d − 1)k + 1, . . . , dk .

0 500 1000 1500
0

20

40

60

80

100

120

140

 No. n of basis functions

 o
p

er
at

io
n

 c
o

u
n

ts
 p

er
 p

o
in

t

Point evaluation, dimension = 3

Neval
Npcont
C log(n)3

0 500 1000 15000

10

20

30

40

50

60

70

80

90

100

 No. n of basis functions

 o
p

er
at

io
n

 c
o

u
n

ts
 p

er
 p

o
in

t

Point evaluation, dimension = 3

Neval
Npcont
C log(n)3

Fig. 9 Experiment 2: (average) invocation counts during point evaluation for d = 3: single point
x = 0 (left), randomly chosen points (right)

336 Numer Algor (2013) 63:317–337

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

2

4

6

8

10

12
x 105

 No. n of basis functions

 o
p

er
at

io
n

 c
o

u
n

ts
Building of trees, dimension = 2

Nadd
Ncontains
Nintscts
Ntotinsrt
Nnodes
C n log(n)1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 50000

0.5

1

1.5

2

2.5

3
x 106

 No. n of basis functions

 o
p

er
at

io
n

 c
o

u
n

ts

Building of trees, dimension = 3

Nadd
Ncontains
Nintscts
Ntotinsrt
Nnodes
C n log(n)2

Fig. 10 Experiment 3: invocation counts during initialization of the multidimensional segment
tree for d = 2 (left), d = 3 (right)

Again their linear combination was evaluated for

1. the central point 0 contained in the intersection of all supports,
2. and 104 randomly chosen in [−1, 1]d.

Refer to Figs. 7, 8, and 9 for the measured number of operations for d = 2, 3.
Apparently eval runs faster than predicted by Proposition 5.2, which is not
surprising, because each evaluation point is contained in only a small number
of support boxes.

6.3 Experiment 3

We choose n basis functions with random supports, that is, the endpoints of the
intervals forming their support boxes were randomly sampled from a uniform
distribution in [−1, 1] and swapped, if necessary. For d = 2, 3 the operations

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

20

40

60

80

100

120

140

160

180

 No. n of basis functions

 o
p

er
at

io
n

 c
o

u
n

ts
 p

er
 p

o
in

t

Point evaluation, dimension = 2

Neval
Npcont
C log(n)2

0 500 1000 1500 2000 2500 3000 3500 4000 4500 50000

50

100

150

200

250

300

350

400

450

 No. n of basis functions

 o
p

er
at

io
n

 c
o

u
n

ts
 p

er
 p

o
in

t

Point evaluation, dimension = 3

Neval
Npcont
C log(n)3

Fig. 11 Experiment 3: average invocation counts during point evaluation at randomly chosen
points, d = 2 (left), d = 3 (right)

Numer Algor (2013) 63:317–337 337

counts are plotted against n in Figs. 10 and 11. It seems that this random
placement of support boxes makes our algorithm operate close to the worst
case complexity bounds (as in Experiment 1).

Acknowledgements The authors would like to thank the two anonymous referees for their
valuable suggestions.

References

1. Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)
2. Campos Pinto, M.: A direct and accurate adaptive semi-Lagrangian scheme for the Vlasov–

Poisson equation. Int. J. Appl. Math. Comput. Sci. 17, 351–359 (2007)
3. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry.

Algorithms and Applications, 2nd edn. Springer, Berlin (2000)
4. Klompmaker, I.: A semi-lagrangian scheme using adaptive sparse grids for front propagation.

In: Slides for Workshop on Advancing Numerical Methods for Viscosity Solutions and Appli-
cations, Banff, 13–18 Feb 2011. http://temple.birs.ca/∼11w5086/Klompmaker.pdf (2011)

5. Langetepe, E., Zachmann, G.: Geometric Data structures for Computer Graphics. A K Peters,
Wellesley, MA (2006)

6. Staniforth, A., Cote, J.: Semi-Lagrangian integration scheme for atmospheric models: a review.
Mon. Weather Rev. 119, 2206–2223 (1991)

7. Stroustrup, B.: The C++ Programming Language, 3rd edn. Addison Wesley Longman,
Reading, MA (1997)

8. Widmer, G., Hiptmair, R., Schwab, C.: Sparse adaptive finite elements for radiative transfer.
J. Comput. Phys. 227, 6071–6105 (2008)

http://temple.birs.ca/~11w5086/Klompmaker.pdf

	Multiple point evaluation on combined tensor product supports
	Abstract
	Introduction
	Basic data structures
	Segment trees
	Box function tree
	Point evaluation
	Empirical complexity
	Experiment 1
	Experiment 2
	Experiment 3

	References

