Skip to main content
Log in

Two families of approximations for the gamma function

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we establish two families of approximations for the gamma function:

$$ \begin{array}{lll} {\varGamma}(x+1)&=\sqrt{2\pi x}{\left({\frac{x+a}{{\mathrm{e}}}}\right)}^x {\left({\frac{x+a}{x-a}}\right)}^{-\frac{x}{2}+\frac{1}{4}} {\left({\frac{x+b}{x-b}}\right)}^{\sum\limits_{k=0}^m\frac{{\beta}_k}{x^{2k}}+O{{\left(\frac{1}{x^{2m+2}}\right)}}},\\ {\varGamma}(x+1)&=\sqrt{2\pi x}\cdot(x+a)^{\frac{x}{2}+\frac{1}{4}}(x-a)^{\frac{x}{2}-\frac{1}{4}} {\left({\frac{x-1}{x+1}}\right)}^{\frac{x^2}{2}}\\ &\quad\times {\left({\frac{x-c}{x+c}}\right)}^{\sum\limits_{k=0}^m\frac{{\gamma}_k}{x^{2k}}+O{\left({\frac{1}{x^{2m+2}}}\right)}}, \end{array}$$

where the constants \({\beta }_k\) and \({\gamma }_k\) can be determined by recurrences, and \(a\), \(b\), \(c\) are parameters. Numerical comparison shows that our results are more accurate than Stieltjes, Luschny and Nemes’ formulae, which, to our knowledge, are better than other approximations in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, reprint of the 1972 edition. Dover, New York (1992)

    Google Scholar 

  2. Batir, N.: Improving Stirling’s formula. Math. Commun. 16(1), 105–114 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Batir, N.: Very accurate approximations for the factorial function. J. Math. Inequal. 4(3), 335–344 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burnside, W.: A rapidly convergent series for \(\log N!\). Messenger Math. 46, 157–159 (1917)

    Google Scholar 

  5. Char, B.W.: On Stieltjes’ continued fraction for the gamma function. Math. Comput. 34(150), 547–551 (1980)

    MathSciNet  MATH  Google Scholar 

  6. Jones, W.B., Van Assche, W.: Asymptotic behavior of the continued fraction coefficients of a class of Stieltjes transforms including the Binet function. In: Jones, W.B., Sri Ranga, A. (eds.) Orthogonal Functions, Moment Theory and Continued Fractions: Theory and Applications. Lecture Notes in Pure and Appl. Math., vol. 199, pp. 257–274. Dekker, New York (1998)

    Google Scholar 

  7. Karatsuba, E.A.: On the asymptotic representation of the Euler gamma function by Ramanujan. J. Comput. Appl. Math. 135(2), 225–240 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Luschny, P.: Approximation Formulas for the Factorial Function, Web. Available at http://www.luschny.de/math/factorial/approx/SimpleCases.html. Accessed 3 June 2011

  9. Mortici, C.: A class of integral approximations for the factorial function. Comput. Math. Appl. 59(6), 2053–2058 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mortici, C.: A new Stirling series as continued fraction. Numer. Algorithms 56(1), 17–26 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mortici, C.: An ultimate extremely accurate formula for approximation of the factorial function. Arch. Math. (Basel) 93(1), 37–45 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mortici, C.: Improved asymptotic formulas for the gamma function. Comput. Math. Appl. 61(11), 3364–3369 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mortici, C.: New approximation formulas for evaluating the ratio of gamma functions. Math. Comput. Modell. 52(1–2), 425–433 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mortici, C.: Sharp inequalities related to Gosper’s formula. C. R. Math. Acad. Sci. Paris 348(3–4), 137–140 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mortici, C.: The asymptotic series of the generalized Stirling formula. Comput. Math. Appl. 60(3), 786–791 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nemes, G.: More accurate approximations for the gamma function. Thai J. Math. 9(1), 21–28 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Nemes, G.: New asymptotic expansion for the Gamma function. Arch. Math. (Basel) 95(2), 161–169 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Paris, R.B.: Asymptotic approximations for \(n!\). Appl. Math. Sci. (Ruse) 5(37–40), 1801–1807 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Spouge, J.L.: Computation of the gamma, digamma, and trigamma functions. SIAM J. Numer. Anal. 31(3), 931–944 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiping Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, L., Wang, W. Two families of approximations for the gamma function. Numer Algor 64, 403–416 (2013). https://doi.org/10.1007/s11075-012-9671-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9671-x

Keywords

Mathematics Subject Classifications (2010)

Navigation