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Abstract We discuss semi-convergence of the modified Hermitian and skew-
Hermitian splitting (MHSS) iteration method for solving a broad class of complex
symmetric singular linear systems. The semi-convergence theory of the MHSS iter-
ation method is established. In addition, numerical examples show the effectiveness
of the MHSS iteration method when it is used as a solver or as a preconditioner (for
the restarted GMRES method).
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1 Introduction

Consider an iterative solution of the system of linear equations
Ax = b, AeC™ and x,beC", (1)
where A € C"*" is a complex symmetric matrix of the form

A=W+iT,
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W, T e R" " are real symmetric matrices, and i = +/—1 is the imaginary unit.
Moreover, we assume 7 % 0, which makes the matrix A be a non-Hermitian
matrix.

A complex symmetric matrix A has the real and imaginary part splitting

A=W+iT,
and the Hermitian and skew-Hermitian splitting (HSS)
A=H+ S,
where
H:2(A+A )=W and SZZ(A_A )y=iT.

Bai, Golub and Ng established the Hermitian and skew-Hermitian splitting itera-
tion method in [7]. Then this class of iteration methods has got in deep research on
itself and its applications [3, 6, 8, 9, 12, 13, 16]. Complex symmetric linear system
is a difficult problem but arises in a number of applications such as wave propaga-
tion, diffuse optical tomography, quantum mechanics, electromagnetism, molecular
scattering, and structural dynamics. In recent years, there have been some other
approaches applied to realistic problems [2, 4, 5, 10]. The complex system of linear
equations never leave our sight [1, 2, 10, 12, 17]. Based on the HSS iteration method,
and the real and imaginary part splitting of the complex symmetric matrix A €
C™*", Bai, Benzi and Chen established the modified Hermitian and skew-Hermitian
splitting  (MHSS) iteration method [4]. The MHSS iteration method is as
follows.

The modified HSS iteration method Let x(© € C" be an arbitrary initial guess. For
k = 0,1,2,... until the sequence of iterates {x*)} converges, compute the next
iterate x * 1 according to the following procedure:

(@I + W)x®+D) = (@I —i T)x® +p, o
@I + T)x® D = (@l +iw)x®+) _ip,

where « is a given positive constant and I € R"*" represents the identity matrix.

When W € R™" and T € R™*" are symmetric positive semidefinite, at least
one of them is symmetric positive definite (or nul/l(W) N null(T) = {0}), and o €
R is positive, the MHSS iteration method converges unconditionally to the exact
solution of the system of linear equations (1). Furthermore, Bai, Benzi and Chen
proposed a preconditioned MHSS (PMHSS) iteration method for a class of complex
symmetric system of linear equations [5]. The numerical experiments in [5] showed
that the PMHSS iteration method is meshsize-independent and parameter-insensitive
for the tested numerical examples. The authors also obtained upper bounds for the
contraction factors of the MHSS and the PMHSS iteration methods, but they could
not give the optimal parameters.

@ Springer



Numer Algor (2013) 64:507-518 509

In this paper, we prove that the MHSS iteration method is semi-convergent for
singular systems of linear equations (1). We also derive an upper bound for the semi-
convergence factor of the MHSS iteration method, which depends on the largest
and the smallest nonzero eigenvalues of the matrices W and T'. At last, we use two
examples to show the effectiveness of the MHSS iteration method.

2 The semi-convergence of the MHSS iteration method

Firstly, we give the standard form of the MHSS iteration method. According to the
MHSS iteration method (2), the coefficient matrix A has the splitting

A = B(a) — C(a),

where
1+i
B(a) = (al + W)l +T)
2a
and
141 ) .
Ca) = ’ (al +iW)(axl —iT).
o

Based on this splitting, we easily have the following standard form of the MHSS
iteration method:

x %D = M@@)x® + G()b, k=0,1,2,...,
where
M(a) = B(a)"'C(a) = (@l + T) Yol +iW)(al + W) Nl —iT) (3)

and
G@) =B '=al —i)al +T) Yol + W)™\

We call M () the iteration matrix of the MHSS iteration method and B(«) the MHSS
preconditioner.

Next, we introduce some elementary concepts about the semi-convergence of an
iteration method. Note that the convergence and semi-convergence of an iteration
method can be found in [11, 14].

Lemma 2.1 [3, 11] Assume that A is a singular matrix, and has the splitting A =
B — C, where B is a nonsingular matrix. We can define an iteration method x *+1 =
B~ lcx® 4+ B~ f(k =0,1,2,...) for the systems of linear equations Ax = f. The
necessary and sufficient conditions for guaranteeing the semi-convergence of this
iteration method are as follows:

(i)  the elementary divisors of the iteration matrix M = B~'C associated with its
eigenvalue ). = 1 are linear;
(i) ifreoM)and|r] =1, then . =1, ie., v(M) < 1, where

v(IM) =max{|A] | A e o (M), A\ #1}.
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We know that when A is a singular matrix, the matrix M must have an eigen-
value 1. In this case, the spectral radius of the iteration matrix is equal to 1, i.e.,
p(M) = 1. Therefore, when the iteration method is semi-convergent, v(M) is called
its semi-convergence factor.

According to the characteristic of the complex symmetric matrix A, from [3] we
have the following lemma and theorem.

Lemma 2.2 [3] Ler A € C"*" be a singular matrix, and W and T be its real and
imaginary parts, respectively. Let W and T be symmetric positive semidefinite. Then

null(A) = null(W) N null(T).

Theorem 2.1 Let A € C"*" be a singular matrix, and W and T be its real and imag-
inary parts, respectively. Let W and T be symmetric positive semidefinite. Denote
by M (@) the iteration matrix of the MHSS iteration method defined by (3). Then the
index of the matrix I — M () is 1.

Theorem 2.1 shows that the elementary divisors of the matrix M («) associated
with its eigenvalue 1 are linear. So the MHSS iteration method satisfies the condition
(i) about the semi-convergence. Now we give the following theorem.

Theorem 2.2 Let A € C"*" be a singular matrix, and W and T be its real and
imaginary parts, respectively. Let W and T be symmetric positive semidefinite. Then,
for any initial vector x© € C", the MHSS iteration method is semi-convergent to a
solution of the singular system of linear equations (1) or, say, v(M(x)) < 1, for any
positive constant a.

Proof We only need to prove that the condition (ii) of the semi-convergence is
satisfied.
Let

M) = (@l —iT)M(a)(al —iT)"!
= (al —iT)(al + T) "al +1W)(al + W)~ L.
Then M («) is similar to M (@) and we only need to prove v(M(a)) < 1.
Let Mx = Ax. We proceed the proof by discussing all cases.

(@) x € null(A), or equivalently, Wx = Tx = 0.
In this case we easily get M(a)x = x. So A = 1. On the other hand, when
M (x)x = x we have

(@l +iW)(al + W) 'x = (@l —iT) "l + T)x. )

Because W is symmetric positive semidefinite, we assume that rank(W) = r.
Then there is an orthogonal matrix P such that

_ Aw O T
W—P( 0 0>P .
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It follows that

(@l +i W)l + W) 'x P<°‘”+‘AW 0 )

0 oal,_,
—1
al, + Aw 0 T
><< 0 Oéln—r) P x
_p (@l +iAw) (@l + Aw)~" 0 PT,
0 Li—r

where I, € C"™" and I,_, € C—"*x(=r) represent the identity matrices.
Furthermore, we obtain

@l +iW)al + W)~ xll2 < [IPTxll2 = [|x]]2.
Similar to the analysis of the above process, we can obtain
@l =iT)~ ol + T)xll2 = [1x]l2-

The above inequalities must be equalities because of (4). It then follows that
Wx = Tx = 0, or equivalently,

Ax = 0.

So the necessary and sufficient conditions for Mx = x is x € null(A).
(b) x ¢ null(A), or equivalently, x ¢ null(W) Nnull(T). In this case, it must hold
X #£ 1. There are three situations stated as follows:

(b)) x € null(W) but x ¢ null(T). From Mx = Ax, we get
A+DTx =1 —Nax.

Because A # 1 and x # 0, itholds that A # —i. Let A = a + bi. Then
we know that

1—x al—a)—b(+b)—1—a+b

i a2+ (b + 1) '
According to the property of T', we have

(a—>b)—(@*+b* >0, l—a+b=0.

From the above relationships, we know that |A| = 1 ifand only if L = 1
or A = —i, which is impossible. So in this case |A| < 1 holds true.
(b2) x € null(T) but x ¢ null(W). We can easily get |A| < 1 according to
the proof of (by).
(b3) x ¢ null(W) and x ¢ null(T). Let Mx = Ax. Then we have

X*xA = x*Mx = x*(al —iT)(al + T) " (al +i1W)(al + W) 'x.
By direct computations, we obtain

Ixl31A] < [Ix*(@l — iT) (@l + T) " all@l + iW)(al + W) x|,
< lxll2 - Ix ]2

So |A| < 1.
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Now, we have demonstrated v(M (@)) < 1, or in other words, the MHSS iteration
method is semi-convergent to a solution of the singular system of linear equations (1).

Similar to Theorem 3.4 and Corollary 3.7 in [3], we can easily get the following
theorem and corollary.

Theorem 2.3 Ler A € C"*" be a singular matrix, and W and T be its real and
imaginary parts, respectively. Let W and T be symmetric positive semidefinite and
rank(A) = rank(W). Denote by M (a) the iteration matrix of the MHSS iteration
method defined by (3). Then A is orthogonally similar to A @ 0 such that the real
part W and the imaginary part T of A are symmetric positive definite and symmetric
positive semidefinite, respectively, which is equivalent to that A is the compression
of A on the range space of W.

Corollary 2.1 Let A € C"" be a singular matrix, W and T be its real and
imaginary parts, respectively. Let W and T be symmetric positive semidefinite matri-
ces. Then the semi-convergence factor v(M(«)) of the MHSS iteration method is
bounded by

* . 1 . 4
o(M(@) =  sup @l —iT) (el + )~ @l +iW)el + W)™ 'x|

*
xenull(A)L x7X

According to the above results, we can obtain another upper bound of the semi-
convergence factor.

Corollary 2.2 Let A € C**" be a singular matrix, and W and T be its real and
imaginary parts, respectively. Let W and T be symmetric positive semidefinite matri-
ces, and Tyin and Tmax be the minimum and the maximum nonzero eigenvalues among
all eigenvalues of the matrices W and T. Then

V(M(@) = (M () < ¢(),

where
Va2 + 12
¢(0) = max .
Tmin <7 = Tmax o+T

Moreover,

. Va2 + 72

o, = argmin max = \/ Tmin Tmax

o Tmin =T =Tmax a+T

and

Tmax
\/fmin +1

Tmax ’
\/fmin +1

¢(Ol*) =
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Proof We immediately have

Ix*(al —iT)(al +T) Yol +iW)(al + W) x|

p(M(a)) = sup .
xenull(A)+ X*X
< sup llx*(al —iT)(al +T)7 2|l +iW)(al + W) x|
- xenull(A)L ”x”%
B I +T) Yol +iT)x|l2 ||l +iW)(al + W) x]||>
xenull(A)- [1xl2 [1x1]2
{ loo + 1 pul ch+iy|}
< max X R X
pea (M0} o+ p|  yea(M\(0} |a + |
Vo + 2 Ve +y?
= max max R max
nea(DV0} o+ u  yeos(W\0} a+y
Va2 + 12
< max
Tmin =T =Tmax a+T
= ¢(a)
< 1.

By direct computations, we know

Oy = «/Tminfmax-

3 Numerical experiments

In this section we use two examples to show the feasibility and effectiveness of the
MHSS iteration method. In our implementations, the initial vector x©@ is chosen to
be the zero vector and the iteration is terminated once the current iterate x ) satisfies

16— Ax®]|;
<
b — Ax O]y =

In addition, all codes were run in MATLAB in double precision and the experi-
ments were performed on a personal computer with 3.20 GHz central processing unit
(Intel(R) Core(TM) i5 CPU), 3.42 G memory and windows operating system. For
all examples, we implemented the MHSS and the HSS iteration methods as linear
solvers, and also as preconditioners for the GMRES(5) method. We use the experi-
mentally found optimal iteration parameters aexp of the MHSS and the HSS iteration
methods, as well as the MHSS- and the HSS-preconditioned GMRES(5) iteration
methods, which minimize the numbers of iteration steps; see Tables 1, 2 and 5. If the
optimal iteration parameters form intervals, we further optimize it according to the
lest computing times; see Tables 3, 4 and 6.

107°.
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Table 1 The experimentally found optimal iteration parameters aexp for MHSS and HSS iteration
methods for Example 3.1

ylm MHSS HSS

64 80 96 64 80 96
10! 0.09 [0.06, 0.07] 0.05 0.23 0.19 0.16
10? [0.33, 0.35] 0.24 [0.18, 0.19] 0.22 0.18 0.15
103 [1.24, 1.39] [0.90, 0.98] [0.70, 0.73] [0.21, 0.22] 0.18 0.15
10* [0.51, 1.12] [0.62, 0.67] [0.66, 0.85] [0.21, 0.22] 0.18 0.15

Example 3.1 [3] We consider the singular linear system Ax = b, with the coefficient
matrix A = W +iT € C"*" being given by

W=I1@V.+V.®@I cR™ T= 2’” I ®Ue+Ue® ) € R™N,
m
with
V.=V — (ele; + eme]T) e R,

U-=U — (ele;_l +em,1elT +eae;l +emeg> e R™m
and

V =tridiag(—1,2, —1) ¢ R™*",
U = pentadiag(—1, —1,4, -1, —1) € R"™*"™,
e1 =(1,0,....0) e R",

em—1=1(0,...,0,1,0) € R™,
em=(0,....0,1) € R",
ea=(1,1,0,...,0) € R".

The right-hand side vector b is defined as b = Ax,, withx, = (1,2, ..., n)T e R™.

This example is a constructed system of linear equations, but it has special features
[3, 15]. In Tables 1 and 2, we list the experimentally found optimal iteration param-
eters oexp of the MHSS and the HSS iteration methods, as well as the MHSS- and

Table 2 The experimentally found optimal iteration parameters aexp for MHSS- and HSS-preconditioned
GMRES(5) methods for Example 3.1

ylm MHSS-GMRES(5) HSS-GMRES(5)

64 80 96 64 80 96
10! 0.07 [0.05, 0.06] 0.04 0.18 [0.09, 0.11] 0.06
10 [0.35, 0.39] 0.22 [0.14,0.17] [0.57,0.67] [0.10, 0.11] 0.20

10° [1.05, 1.54] [0.77, 0.96] [0.64,0.73] [0.79, 1.26] [2.98, 3.24] [0.37, 0.49]
10* [3.81, 14.94] [3.22,7.80] [3.90, 4.08] [3.61, 8.41] [2.06, 4.56] [2.13, 2.49]
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Table 3 Numerical results for MHSS and HSS iteration methods for Example 3.1

14

m = 64 10!
10?
103
104
m = 80 10!
10?
103
104
m = 96 10!
10?
103
104

MHSS

Oexp

0.09
0.33
1.33
1.08
0.07
0.24
0.98
0.65
0.05
0.18
0.70
0.75

IT

73
83
49
111
86
102
60
98
91
122
72
93

CPU

0.877
0.976
0.599
1.282
1.855
2.187
1.303
2.062
2.864
3.806
2.481
3.116

RES

8.96e-007
9.72e-007
8.18e-007
9.67e-007
9.06e-007
9.98e-007
9.65e-007
9.69e-007
9.17e-007
9.61e-007
9.94e-007
9.32e-007

HSS

exp

0.23
0.22
0.21
0.22
0.19
0.18
0.18
0.18
0.16
0.15
0.15
0.15

IT

117
119
119
119
144
146
146
146
170
174
172
172

CPU

3.635
3.625
3.522
3.603
8.445
8.366
8.383
8.391
16.806
17.025
16.656
17.137

515

RES

9.60e-007
9.49e-007
9.69e-007
9.29e-007
9.45e-007
9.83e-007
9.84e-007
9.84e-007
9.47e-007
9.41e-007
9.80e-007
9.78e-007

the HSS-preconditioned GMRES(S) iteration methods for different y and m, respec-
tively. The results show that all cexp with respect to MHSS are less than 1.39, the
Qexp With respect to HSS are almost not changed for each fixed m, and the aexp with
respect to MHSS- and HSS-preconditioned GMRES(S) are easily form intervals.

In Tables 3 and 4, we list the optimal parameters (oexp), the iteration steps
(IT), the CPU times in seconds (CPU) and the relative residual errors (RES) for

Table 4 Numerical results for MHSS- and HSS-preconditioned GMRES(5) methods for Example 3.1

v

m = 64 10!
10?

10*
m = 80 10!
10%
103
10*
m = 96 10!

103
10*

MHSS-GMRES(5)

Oexp

0.07
0.35
1.31
6.19
0.06
0.22
0.87
5.30
0.04
0.14
0.69
3.92

IT

14
19
13

8
16
22
15

9
17
25
17

9

CPU

0.213
0.275
0.187
0.113
0.426
0.579
0.373
0.246
0.656
0.953
0.657
0.356

RES

7.16e-007
9.91e-007
3.94e-007
2.31e-007
9.11e-007
9.58e-007
6.37e-007
1.19e-007
4.96e-007
7.55e-007
7.45e-007
9.55e-007

HSS-GMRES(5)

Qexp

0.18
0.67
0.98
4.68
0.11
0.10
2.98
3.93
0.06
0.20
0.40
2.18

IT

37
50
24
11
42
69
34
14
49
89
43
16

CPU

0.731
0.962
0.464
0.222
1.570
2.572
1.242
0.581
3.092
5.776
2.762
1.091

RES

9.98e-007
9.90e-007
7.31e-007
6.88e-007
7.74e-007
9.97e-007
9.78e-007
6.89¢-007
9.25e-007
9.98e-007
8.70e-007
9.85e-007
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the MHSS and the HSS iteration methods, as well as the MHSS- and the HSS-
preconditioned GMRES(5) methods for different y and m. These results show that
the iteration steps of the HSS iteration method are almost the same for each fixed
m. So the HSS iteration method is not sensitive to y. The iteration steps and the
CPU times of the HSS iteration method are always larger than those of the MHSS
iteration method. As preconditioners, the iteration steps and the CPU times of MHSS-
preconditioned GMRES(5) method are less than those of the HSS-preconditioned
GMRES(5) method. Hence, the MHSS iteration method outperforms the HSS iter-
ation method in terms of iteration step and CPU time, and as preconditioners for
GMRES(5) the MHSS performs much better than the HSS in terms of iteration step
and CPU time, too.

Example 3.2 We consider the singular linear system Ax = b, with the coefficient
matrix A = W +iT € C"*" being given by
W =tridiag(ci_1,a;,¢;) e R, T=I1QV,+V.®1I € R"*",
with
Vo=V — (elenT1 + emelT) e R™xm
and
V =tridiag(—1,2, —1) € R™"™,
e1 =(1,0,...,0) e R™,
em =(0,...,0,1) e R",
a=(01,3,57,....,2n—=3,n—1) e R",
ci=(=1,-2,...,—~(n— 1) e R" .

The right-hand side vector b is defined as b = Ax,, withx, = (1,2, ..., n)T e R".

This example is also a constructed system of linear equations satisfying
(,..., DT € null(W) N null(T). In Table 5, we list the experimentally found opti-
mal iteration parameters aexp of the MHSS iteration method, as well as the MHSS-
and the HSS-preconditioned GMRES(5) iteration methods. We can not find the
experimentally found optimal iteration parameters for the HSS iteration method when
we set the interval [0.01,1000] and the maximal iteration step 5000. For the MHSS
iteration method, as well as the MHSS- and the HSS-preconditioned GMRES(5)
iteration methods, the results in Table 5 show that all crexp are less than 0.40 and,
MOTEOVET, texp becomes small with the growing of the m for these three methods.

Table 5 The experimentally

found optimal iteration Method m = 64 m = 80 m =96
parameters dexp for Example 3.2
MHSS 0.32 0.25 0.21
HSS - - -
MHSS-GMRES(5) [0.39, 0.40] 0.30 [0.24, 0.26]
HSS-GMRES(5) 0.26 0.20 0.14
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Table 6 Numerical results for Example 3.2

m MHSS MHSS-GMRES(5) HSS-GMRES(5)

IT CPU RES Qexp 1T CPU RES IT CPU RES

64 385 1461 9.82e-007 040 218 0.863 829007 1199 12.882  9.88e-007
80 489 3.223  9.90e-007 030 266 2.075 9.02¢-007 1572 30.516  9.92e-007
96 595 5.691 9.79¢e-007 024 309 3.594 9.95¢-007 1940 64.777  9.86e-007

In Table 6, we list the iteration steps, the CPU times and the relative residual
errors for MHSS iteration method, as well as the MHSS- and the HSS-preconditioned
GMRES(5) iteration methods. These results show that the iteration steps and the
CPU times of each method become large with the growing of m. As precondition-
ers for GMRES(S) the MHSS-preconditioned GMRES(5) method has less iteration
steps and CPU times than the HSS-preconditioned GMRES(5) method. Hence, the
MHSS iteration method is superior to the HSS iteration method in both iteration step
and CPU time, and as preconditioners for GMRES(5) MHSS outperforms HSS in
iteration step and CPU time, too.
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