Skip to main content
Log in

Composite convergence bounds based on Chebyshev polynomials and finite precision conjugate gradient computations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The conjugate gradient method (CG) for solving linear systems of algebraic equations represents a highly nonlinear finite process. Since the original paper of Hestenes and Stiefel published in 1952, it has been linked with the Gauss-Christoffel quadrature approximation of Riemann-Stieltjes distribution functions determined by the data, i.e., with a simplified form of the Stieltjes moment problem. This link, developed further by Vorobyev, Brezinski, Golub, Meurant and others, indicates that a general description of the CG rate of convergence using an asymptotic convergence factor has principal limitations. Moreover, CG is computationally based on short recurrences. In finite precision arithmetic its behaviour is therefore affected by a possible loss of orthogonality among the computed direction vectors. Consequently, any consideration concerning the CG rate of convergence relevant to practical computations must include analysis of effects of rounding errors. Through the example of composite convergence bounds based on Chebyshev polynomials, this paper argues that the facts mentioned above should become a part of common considerations on the CG rate of convergence. It also explains that the spectrum composed of small number of well separated tight clusters of eigenvalues does not necessarily imply a fast convergence of CG or other Krylov subspace methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arioli, M., Liesen, J., Miedlar, A., Strakoš, Z.: Interplay between discretization and algebraic computation in adaptive numerical solution of elliptic PDE problems. GAMM Mitt. Ges. Angew. Math. Mech. (2013)

  2. Axelsson, O.: A class of iterative methods for finite element equations. Comput. Methods Appl. Mech. Engrg. 9, 123–127 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  3. Axelsson, O.: Iterative solution methods. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  4. Axelsson, O.: A generalized conjugate gradient minimum residual method with variable preconditioners In: Advanced mathematics: computations and applications (Novosibirsk, 1995), pp. 14–25. NCC Publ.

  5. Axelsson, O.: Optimal preconditioners based on rate of convergence estimates for the conjugate gradient method. Numer. Funct. Anal. Optim. 22, 277–302 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Axelsson, O., Kaporin, I.: On the sublinear and superlinear rate of convergence of conjugate gradient methods. Numer. Algorithms 25, 1–22 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Axelsson, O., Karátson, J.: Equivalent operator preconditioning for elliptic problems. Numer. Algorithms 50, 297–380 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Axelsson, O., Lindskog, G.: On the eigenvalue distribution of a class of preconditioning methods. Numer. Math. 48, 479–498 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  9. Beckermann, B., Kuijlaars, A.B.J.: On the sharpness of an asymptotic error estimate for conjugate gradients. BIT 41, 856–867 (2001)

    Article  MathSciNet  Google Scholar 

  10. Beckermann, B., Kuijlaars, A.B.J.: Superlinear convergence of conjugate gradients. SIAM J. Numer. Anal. 39, 300–329 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Beckermann, B., Kuijlaars, A.B.J.: Superlinear CG convergence for special right-hand sides. Electron. Trans. Numer. Anal. 14, 1–19 (2002)

    MATH  MathSciNet  Google Scholar 

  12. Brezinski, C.: Projection Methods for Systems of Equations. Vol. 7 of Studies in Computational Mathematics. North-Holland, Amsterdam (1997)

    Google Scholar 

  13. Brezinski, C.: Error estimates for the solution of linear systems. SIAM J. Sci. Comput. 21, 764–781 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Calvetti, D., Morigi, S., Reichel, L., Sgallari, F.: Computable error bounds and estimates for the conjugate gradient method. Numer. Algorithms 25, 75–88 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Calvetti, D., Morigi, S., Reichel, L., Sgallari, F.: An iterative method with error estimators. J. Comput. Appl. Math. 127, 93–119 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dahlquist, G., Björck, Å.: Numerical Methods in Scientific Computing, vol. 1. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  17. Dahlquist, G., Eisenstat, S.C., Golub, G.H.: Bounds for the error of linear systems of equations using the theory of moments. J. Math. Anal. Appl. 37, 151–166 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dahlquist, G., Golub, G.H., Nash, S.G.: Bounds for the error in linear systems. In: Semi-infinite programming (Proc. Workshop, Bad Honnef, 1978). Lecture Notes in Control and Information Sci., vol. 15, pp. 154–172. Springer, Berlin (1979)

    Google Scholar 

  19. Daniel, J.W.: The conjugate gradient method for linear and nonlinear operator equations. SIAM J. Numer. Anal. 4, 10–26 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  20. Deuflhard, P.: Cascadic conjugate gradient methods for elliptic partial differential equations, algorithm and numerical results In: Domain decomposition methods in scientific and engineering computing (University Park, PA , 1993), vol. 180 of Contemp. Math American Mathematical Society, pp 29–42. Providence (1994)

  21. Engeli, M., Ginsburg, T., Rutishauser, H., Stiefel, E.: Refined iterative methods for computation of the solution and the eigenvalues of self-adjoint boundary value problems. Mitt. Inst. Angew. Math. Zürich. 8, 107p. (1959)

    Google Scholar 

  22. Faber, V., Manteuffel, T.A., Parter, S.V.: On the theory of equivalent operators and application to the numerical solution of uniformly elliptic partial differential equations. Adv. Appl. Math. 11, 109–163 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  23. Flanders, D.A., Shortley, G.: Numerical determination of fundamental modes. J. Appl. Phys. 21, 1326–1332 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  24. Golub, G.H., Meurant, G.: Matrices, moments and quadrature with applications. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2010)

    Google Scholar 

  25. Golub, G.H., Strakoš, Z.: Estimates in quadratic formulas. Numer. Algorithms 8, 241–268 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  26. Gratton, S., Titley-Peloquin, D., Toint, P., Tshimanga, J.: Linearizing the method of conjugate gradients. Technical Report naXys-15-2012, Namur Centre for Complex Systems. FUNDP–University of Namur, Belgium (2012)

    Google Scholar 

  27. Greenbaum, A.: Behaviour of slightly perturbed Lanczos and conjugate-gradient recurrences. Linear Algebra Appl. 113, 7–63 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  28. Greenbaum, A.: Iterative Methods for Solving Linear Systems, vol. 17 of Frontiers in Applied Mathematics. SIAM, Philadelphia (1997)

    Book  Google Scholar 

  29. Greenbaum, A., Strakoš, Z.: Predicting the behavior of finite precision Lanczos and conjugate gradient computations. SIAM J. Matrix Anal. Appl. 13, 121–137 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  30. Günnel, A., Herzog, R., Sachs, E.: A note on preconditioners and scalar products for Krylov methods in Hilbert space. Preprint (2013)

  31. Gutknecht, M.H., Strakoš, Z.: Accuracy of two three-term and three two-term recurrences for Krylov space solvers. SIAM J. Matrix Anal. Appl. 22, 213–229 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Hackbusch, W.: Iterative solution of large sparse systems of equations. Vol. 95 of Applied Mathematical Sciences. Translated and Revised from the 1991 German Original. Springer-Verlag, New York (1994)

    Google Scholar 

  33. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Research Nat. Bur. Standards 49, 409–436 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  34. Hiptmair, R.: Operator preconditioning. Comput. Math. Appl. 52, 699–706 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  35. Jennings, A.: Influence of the eigenvalue spectrum on the convergence rate of the conjugate gradient method. J. Inst. Math. Appl. 20, 61–72 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  36. Lanczos, C.: Chebyshev polynomials in the solution of large-scale linear systems In: Proceedings of the Association for Computing Machinery, Toronto, 1952 (1953), pp 124–133. Sauls Lithograph Co. (for the Association for Computing Machinery), Washington, D. C.

  37. Liesen, J., Strakoš, Z.: Krylov subspace methods: principles and analysis. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2012)

    Book  Google Scholar 

  38. Mardal, K.-A., Winther, R.: Preconditioning discretizations of systems of partial differential equations. Numer. Linear Algebra Appl. 18, 1–40 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  39. Markoff, A.: Démonstration de certaines inégalités de M. Tchébychef. Math. Ann. 24, 172–180 (1884)

    Article  MathSciNet  Google Scholar 

  40. Meurant, G.: The Lanczos and conjugate gradient algorithms: from theory to finite precision computations. Vol. 19 of Software, Environments, and Tools. Society for Industrial and Applied Mathematics. SIAM, Philadelphia (2006)

    Google Scholar 

  41. Meurant, G., Strakoš, Z.: The Lanczos and conjugate gradient algorithms in finite precision arithmetic. Acta. Numer. 15, 471–542 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  42. Meurant, G., Tichý, P.: On computing quadrature-based bounds for the A-norm of the error in conjugate gradients. Numer. Algorithms 62, 163–191 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  43. Naiman, A.E., Babuška, I.M., Elman, H.C.: A note on conjugate gradient convergence. Numer. Math. 76, 209–230 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  44. Naiman, A.E., Engelberg, S.: A note on conjugate gradient convergence. II, III. Numer. Math. 85, 665–683, 685–696 (2000)

    Article  MathSciNet  Google Scholar 

  45. Nevanlinna, O.: Convergence of iterations for linear equations. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (1993)

    Book  Google Scholar 

  46. Notay, Y.: On the convergence rate of the conjugate gradients in presence of rounding errors. Numer. Math. 65, 301–317 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  47. O’Leary, D.P., Strakoš, Z., Tichý, P.: On sensitivity of Gauss-Christoffel quadrature. Numer. Math. 107, 147–174 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  48. Paige, C.C.: Error analysis of the Lanczos algorithm for tridiagonalizing a symmetric matrix. J. Inst. Math. Appl. 18, 341–349 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  49. Paige, C.C.: Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem. Linear Algebra Appl. 34, 235–258 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  50. Richardson, L.F.: The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Phil. Trans. Roy. Soc. London A 210, 307–357 (1911)

    Article  MATH  Google Scholar 

  51. Rivlin, T.J.: Chebyshev Polynomials, 2nd edn. Pure and Applied Mathematics. Wiley, New York (1990)

    Google Scholar 

  52. Silvester, D.J., Simoncini, V.: An optimal iterative solver for symmetric indefinite systems stemming from mixed approximation. ACM Trans. Math. Softw. 37, Art. 42, 22 (2011)

    Google Scholar 

  53. Spielman, D.A., Woo, J.: A note on preconditioning by low-stretch spanning trees. Computing Research Repository (2009)

  54. Strakoš, Z.: On the real convergence rate of the conjugate gradient method. Linear Algebra Appl. 154–156, 535–549 (1991)

    Article  Google Scholar 

  55. Strakoš, Z., Tichý, P.: On error estimation in the conjugate gradient method and why it works in finite precision computations. Electron. Trans. Numer. Anal. 13, 56–80 (2002)

    MATH  MathSciNet  Google Scholar 

  56. Strakoš, Z., Tichý, P.: Error estimation in preconditioned conjugate gradients. BIT 45, 789–817 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  57. Tyrtyshnikov, E.E.: A Brief Introduction to Numerical Analysis. Birkhäuser, Boston (1997)

    Book  MATH  Google Scholar 

  58. van der Sluis, A., van der Vorst, H.A.: The rate of convergence of conjugate gradients. Numer. Math. 48, 543–560 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  59. van der Vorst, H.A.: Iterative solution methods for certain sparse linear systems with a nonsymmetric matrix arising from PDE-problems. J. Comput. Phys. 44, 1–19 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  60. Varga, R.S.: Matrix iterative analysis, expanded, 2nd edn. Vol. 27 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2000)

    Google Scholar 

  61. Vorobyev, Y.V.: Methods of moments in applied mathematics. Translated from the Russian by Bernard Seckler. Gordon and Breach Science Publishers, New York (1965)

    Google Scholar 

  62. Winther, R.: Some superlinear convergence results for the conjugate gradient method. SIAM J. Numer. Anal. 17, 14–17 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  63. Young, D.: On Richardson’s method for solving linear systems with positive definite matrices. J. Math. Phys. 32, 243–255 (1954)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdeněk Strakoš.

Additional information

The work was supported by the ERC-CZ project LL1202, by the GACR grant 201/09/0917 and by the GAUK grant 695612.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gergelits, T., Strakoš, Z. Composite convergence bounds based on Chebyshev polynomials and finite precision conjugate gradient computations. Numer Algor 65, 759–782 (2014). https://doi.org/10.1007/s11075-013-9713-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-013-9713-z

Keywords

Mathematics Subject Classifications (2010)

Navigation