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Abstract In constraining iterative processes, the algorithmic operator of the
iterative process is pre-multiplied by a constraining operator at each itera-
tive step. This enables the constrained algorithm, besides solving the original
problem, also to find a solution that incorporates some prior knowledge about
the solution. This approach has been useful in image restoration and other
image processing situations when a single constraining operator was used. In
the field of image reconstruction from projections a priori information about
the original image, such as smoothness or that it belongs to a certain closed
convex set, may be used to improve the reconstruction quality. We study here
constraining of iterative processes by a family of operators rather than by a
single operator.

Keywords constraining strategy · strictly nonexpansive operators · fixed
points set · least squares problems · image reconstruction from projections

Mathematics Subject Classification (2010) 65F10 · 65F20

Y. Censor
Department of Mathematics, University of Haifa, Mt. Carmel, Haifa 3190501, Israel
E-mail: yair@math.haifa.ac.il

I. Pantelimon
Faculty of Mathematics and Computer Science, Ovidius University, Blvd. Mamaia 124, Con-
stanta 900527, Romania
E-mail: ipomparau@univ-ovidius.ro

C. Popa
Faculty of Mathematics and Computer Science, Ovidius University, Blvd. Mamaia 124, Con-
stanta 900527, Romania
“Gheorghe Mihoc - Caius Iacob” Institute of Statistical Mathematics and Applied Mathe-
matics, Calea 13 Septembrie, Nr. 13, Bucharest 050711, Romania
E-mail: cpopa@univ-ovidius.ro

http://arxiv.org/abs/1306.6145v2


2 Yair Censor et al.

1 Introduction

This paper is about constraining of iterative processes which has the follow-
ing meaning. When dealing with a real-world problem it is sometimes the
case that we have some prior knowledge about features of the solution that
is being sought after. If possible, such prior knowledge may be formulated as
an additional constraint and added to the original problem formulation. But
sometimes, when we have already at our disposal a “good” algorithm for solv-
ing the original problem without such an additional constraint, it is beneficial
to modify the algorithm, rather than the problem, so that it will, in some way,
“take care” of the additional constraint (or constraints) without loosing its
ability to generate (finitely or asymptotically) a solution to the original prob-
lem. This is called constraining of the original iterative algorithm. Given an
(algorithmic) operator Q : Rn → Rn between Euclidean spaces, the original
iterative process may have the form

xk+1 = Q(xk), for all k ≥ 0, (1)

under various assumptions on Q. Constraining such an algorithm with a family
of operators means that we desire to use instead of (1) the iterative process

xk+1 = SkQ(xk), for all k ≥ 0, (2)

where {Sk}∞k=0 is a family of operators Sk : Rn → Rn, henceforth called the
constraining operators.

Our purpose is to study the possibility to constrain an algorithm with a
family of operators and to analyze the asymptotic behavior of such family-
constrained algorithms. We extend earlier results on this topic that were lim-
ited to a single constraining operator, i.e., Sk = S for all k ≥ 0, see, e.g., [7,9,
12,18,19,20,22,30,33], introducing a family of strictly nonexpansive operators
{Sk}∞k=0 and proving the convergence of the family-constrained algorithms in
a more general setting.

The paper is organized as follows. In Section 2, for a family of strictly
nonexpansive operators with nonempty common fixed points set and a sup-
plementary image reconstruction condition we adapt some results from [11] for
our purpose and prove our main convergence result. We present the family-
constrained algorithm (FCA) in Section 3 and we prove that the series ex-
pansion methods and the smoothing matrices used in [11] obey all our hy-
potheses. In Section 4 we show that the general iterative method introduced
in [24], which includes the algorithms of Kaczmarz, Cimmino and Diagonal
Weighting (see, e.g., [32], [24] and [29], respectively) as special cases, is itself
an algorithmic operator of the form required here and we give an example of
a family of nonlinear constraining operators which satisfy our assumptions.

1.1 Relation with previous work

Some earlier works on this topic were limited to a single constraining opera-
tor, i.e., Sk = S for all k ≥ 0, see, e.g., [7,9,12,18,19,20,22,30,33]. As seen
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in these works, the algorithm constraining approach is successfully applied
to problems of image restoration, to smoothing in image reconstruction from
projections (see also [14, Subsection 12.3]), and to constraining of linear it-
erative processes in general. In [14, Section 11.4] there is a discussion of all
kinds of, so called, “tricks” that give rise to what we call here “constraining
operators.” This includes the trick of selective smoothing, that is illustrated
in detail in [14, Section 5.3]. Historical references can be found in [14, p. 216].
The paper [15] is the original source of tricks in the field of image reconstruc-
tion from projections. A constraining strategy which applies a single strictly
nonexpansive idempotent operator at every iteration of the classical Kaczmarz
algorithm has been presented in [22]. Recently [24], the third author proposed
a generalization of this result by replacing Kaczmarz’s algorithm by a more
general iterative process. Under the assumption that a family of strictly non-
expansive operators {Tk}

∞
k=0 has a nonempty common fixed points set and an

additional condition, reasonable in image reconstruction problems, we proved
that the sequence generated by the iterative scheme

x0 ∈ Rn and xk+1 = Tk+1(x
k), for all k ≥ 0, (3)

converges to a common fixed point of the operators {Tk}∞k=0.
The particular problem of finding a common fixed point of nonlinear map-

pings is an important topic in fixed point theory, see, e.g., the excellent re-
cent monograph [8]. We will denote by F the set of common fixed points. For
finitely many paracontracting operators T1, T2, . . . , Tp the following algorithm,
proposed in [13],

x0 ∈ Rn and xk+1 = Tjk+1
(xk), for all k ≥ 0, with {jk}

∞
k=0 admissible, (4)

converges if and only if F is nonempty. Moreover, in this case the limit point of
the sequence is an element of F . The authors introduced also a generalization
of their result for a family {Tk}∞k=0 consisting of finitely many subsequences
convergent to paracontracting operators. Our result in Theorem 1 is similar
in spirit to, but not identical with, [13, Theorem 3].

Under suitable assumptions, the convergence of the following algorithm,
proposed in [2],

a, x0 ∈ Rn and xk+1 = αk+1a+ (1− αk+1)Tk+1(x
k), for all k ≥ 0, (5)

was investigated for a finite number of nonexpansive operators T1, T2, . . . , Tp

activated cyclically, when F 6= ∅ and the sequence {αk}∞k=0 satisfies αk → 0,
∑

k |αk − αk+n| < +∞ and
∑

k αk = +∞. Bauschke [2] showed that the limit
point of any orbit generated by this algorithm is the projection PF (a) of a
onto F . The question of finding PF (a) for a given a is known as the best
approximation problem with respect to F .

Another approach in determining a common fixed point for a finite pool
of nonexpansive mappings was studied in [21]. The authors examined the con-
vergence of an acceleration technique under various hypotheses. Their method
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employs the construction of halfspaces at every iteration. The next approxi-
mation is calculated by projecting the current one on a surrogate halfspace.

The following general algorithm was analyzed in [10] for a family {Tk}∞k=0

of firmly nonexpansive operators

x0 ∈ Rn and xk+1 = xk + αk+1(Tk+1(x
k)− xk), for all k ≥ 0. (6)

Weak and corresponding strong convergence was established under various
assumptions on the sequence {αk}∞k=0.

Hirstoaga [16] extended the results of [2] and showed under suitable hy-
potheses the convergence of the algorithm

xk+1 = αkQ(Skx
k) + (1− αk)Tkx

k, for all k ≥ 0, (7)

where {Tk}∞k=0 and {Sk}∞k=0 are quasi-nonexpansive, Q is a strict contraction
and {αk}∞k=0 satisfies αk → 0 and

∑

k αk = +∞.
When solving the best approximation problem with respect to F for a

uniformly asymptotically regular semigroup of nonexpansive operators, [1]
introduced an algorithm similar to (5). Assuming that C is a convex sub-
set of a real Hilbert space H, that G is an unbounded subset of R+, that
{Tt | t ∈ G and Tt : H → H} is a uniformly asymptotically regular semigroup
of nonexpansive operators with F 6= ∅, that {αk}∞k=0 is a steering sequence,
i.e., αk → 0,

∑

k |αk − αk+1| < +∞ and
∑

k αk = +∞, and that {rk}∞k=0 is
an increasing unbounded sequence such that

∑

k

supx∈C

∥

∥TsTrk+1
(x) − Trk+1

(x)
∥

∥ < +∞ (8)

holds for all s ∈ G, it is proved in [1] that the algorithm

x0 ∈ H and xk+1 = αk+1a+ (1− αk+1)Trk+1
(xk), for all k ≥ 0, (9)

yields, for a given a ∈ C, an approximation of PF (a), where ‖ · ‖ is the induced
norm.

2 Convergence for a Family of Strictly Nonexpansive Operators

We will prove in this section that, under two special hypotheses, an iterative
scheme which employs a family of strictly nonexpansive (SNE) operators , i.e.,
operators that obey the next definition, converges to a common fixed point.

In the rest of the paper 〈·, ·〉 and ‖ · ‖ denote the Euclidean scalar product
and norm, respectively, in the n-dimensional Euclidean space Rn.

Definition 1 We say that an operator T : Rn → Rn is strictly nonexpansive
if, for all x, y ∈ Rn,

‖T (x)− T (y)‖ ≤ ‖x− y‖ , (10)

and
if ‖T (x)− T (y)‖ = ‖x− y‖ , then T (x)− T (y) = x− y. (11)
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For a family {Tk}∞k=0 of strictly nonexpansive operators we define the fixed
points sets and their intersection by

Fix(Tk) = Fk := {x ∈ Rn | Tk(x) = x} and F := ∩∞
k=0Fk, (12)

respectively, and assume that
F 6= ∅. (13)

Consider the following algorithm.

Algorithm 1
Initialization: x0 ∈ Rn is arbitrary.
Iterative step: For every k ≥ 0, given the current iterate xk calculate the

next iterate xk+1 by
xk+1 = Tk+1(x

k). (14)

Remark 1 Any sequence {xk}∞k=0, generated by Algorithm 1, is Fejér mono-
tone with respect to F (see, e.g., [10]).

The following two well-known results (see, e.g., [4,10]) will lead us to the
proof of convergence of Algorithm 1.

Proposition 1 Let {Tk}∞k=0 be a family of strictly nonexpansive operators
for which (13) holds and z ∈ F , then for any sequence {xk}∞k=0, generated by
Algorithm 1, the sequence {

∥

∥xk − z
∥

∥}∞k=0 is decreasing.

Corollary 1 Under the assumptions of Proposition 1, any sequence {xk}∞k=0,

generated by Algorithm 1, is bounded.

We will make use of the following additional condition.

Condition 1 Under the assumptions of Proposition 1, if {xk}∞k=0 is any se-
quence, generated by Algorithm 1, then for every ℓ ≥ 0, there exists an index
k(ℓ) ≥ 0 such that

∥

∥Tk+1(x
k)− z

∥

∥ ≤
∥

∥Tℓ(x
k)− z

∥

∥ , (15)

for all z ∈ F and all k ≥ k(ℓ).

Remark 2 Condition 1 induces a kind of “monotonicity” concerning the se-
quence {xk}∞k=0 generated by Algorithm 1. This becomes clearer in Lemma 3
in Section 4 below, where the assumption (83) is invoked. It differs from the
strong attractivity with respect to F of a nonexpansive operator T which is
defined in [3, page 372] by

k ‖Tx− x‖2 ≤ ‖x− f‖2 − ‖Tx− f‖2 , (16)

where k is a positive constant.

Proposition 2 Under the assumptions of Proposition 1 and the assumption
that Condition 1 holds, if x is an accumulation point of a sequence {xk}∞k=0,

generated by Algorithm 1, then x ∈ F .
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Proof The boundedness of {xk}∞k=0 that follows from Corollary 1, guarantees
the existence of x. Let {xks}∞s=0 ⊆ {xk}∞k=0 such that lims→∞ xks = x. Take
any ℓ ≥ 0 and let k(ℓ) be as in Condition 1. There exists an s(ℓ) ≥ 0 such that
ks ≥ k(ℓ), for all s ≥ s(ℓ). As {xks}∞s=0 is a subsequence of {xk}∞k=0, we have
for every s ≥ 0

ks+1 ≥ ks + 1 ≥ ks. (17)

From (13) there exists z ∈ F . Then, for s ≥ s(ℓ), we have from (17), Proposi-
tion 1, (14), Condition 1 and (10),

∥

∥xks+1 − z
∥

∥ ≤
∥

∥xks+1 − z
∥

∥ =
∥

∥Tks+1(x
ks)− z

∥

∥ ≤
∥

∥Tℓ(x
ks)− z

∥

∥

=
∥

∥Tℓ(x
ks)− Tℓ(z)

∥

∥ ≤
∥

∥xks − z
∥

∥ . (18)

By taking limits in the last inequality, as s → ∞, we get

‖x− z‖ ≤ ‖Tℓ(x)− z‖ ≤ ‖x− z‖ , (19)

therefore ‖Tℓ(x)− z‖ = ‖x− z‖ and, using (11), it follows that Tℓ(x) = x

implying x ∈ Fl. Since ℓ was arbitrarily chosen we obtain

x ∈ F, (20)

which completes the proof.

We can now state our main convergence result, which follows directly from
Proposition 2.

Theorem 1 Under the assumptions of Proposition 1 and the assumption that
Condition 1 holds, any sequence {xk}∞k=0, generated by Algorithm 1, converges
to an element of F .

Remark 3 Replacing the strict nonexpansivity of the operators {Tk}∞k=0 with
the assumption that they belong to the wider class of paracontracting opera-
tors (see [13, Definition 1]), the results stated in Proposition 1, Proposition 2
and, consequently, Theorem 1 still hold.

We present in the next section the case when every Tk, with k ≥ 0, is the
composition of a constraining operator Sk with an algorithmic operator Q.

3 The Family-Constrained Algorithm (FCA)

Many iterative algorithms are of, or can be cast into, the form of one-step sta-
tionary iterations (see, e.g., [25, Chapter 10]). Given an algorithmic operator
Q : Rn → Rn, the original iterative process may have the form

xk+1 = Q(xk), for all k ≥ 0, (21)

under various assumptions on Q. Constraining such an algorithm with a family
of operators means that we desire to use instead of (21) the iterative process

xk+1 = SkQ(xk), for all k ≥ 0, (22)
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where {Sk}∞k=0 is a family of operators Sk : Rn → Rn, henceforth called
constraining operators.

If Q : Rn → Rn and Sk : Rn → Rn, with k ≥ 0, are strictly nonexpansive,
we define the operators Tk : Rn → Rn by

Tk(x) := SkQ(x), for all k ≥ 0, (23)

and prove that they are also strictly nonexpansive. The following result extends
[11, Proposition 4].

Proposition 3 For any k ≥ 0, an operator Tk as in (23), in which Q and Sk

are strictly nonexpansive, has the following properties:

‖Tk(x) − Tk(y)‖ ≤ ‖x− y‖ , for all x, y ∈ Rn, (24)

and

if ‖Tk(x) − Tk(y)‖ = ‖x− y‖ , then Tk(x)− Tk(y) = Q(x)−Q(y) = x− y.

(25)

Proof To prove (24) we use (10) to obtain

‖Tk(x) − Tk(y)‖ = ‖Sk(Q(x)) − Sk(Q(y))‖ ≤ ‖Q(x)−Q(y)‖ ≤ ‖x− y‖ .
(26)

To prove (25) suppose that we have equalities in (26). Using (11) we obtain

Tk(x) − Tk(y) = Q(x)−Q(y) = x− y, (27)

which completes the proof.

For {Tk}∞k=0 defined according to (23), with {Sk}∞k=0 and Q strictly non-
expansive, Algorithm 1 may be written as a constrained algorithm.

Algorithm 2 The Family-Constrained Algorithm (FCA)

Initialization: x0 ∈ Rn is arbitrary.

Iterative step: For every k ≥ 0, given the current iterate xk calculate the
next iterate xk+1 by

xk+1 = Sk+1Q(xk). (28)

Proposition 3 and Theorem 1 yield that if assumptions (13) and Condition 1
hold, then any sequence generated by the Algorithm 2 converges to an element
of F .

We prove next that if Q ∈ F2 (see Definition 3 below) and Sk = S, for all
k ≥ 0, is a smoothing matrix, such as the one used in [11], then the family
defined by (23) satisfies all our hypotheses. We use the following definitions.
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Definition 2 [11, Definition 1] Let F1 be the set of continuous operators
Q : Rn → Rn that satisfy

‖Q(x)−Q(y)‖ ≤ ‖x− y‖ , for all x, y ∈ Rn. (29)

and

If ‖Q(x)−Q(y)‖ = ‖x− y‖ , then

Q(x)−Q(y) = x− y and 〈x− y,Q(y)− y〉 = 0. (30)

Definition 3 [11, Definition 2] Let F2 be the set of operators Q ∈ F1 with
the property that for all S ∈ Rn×n the function g : Rn → R defined by

g(x) := ‖x− SQ(x)‖2 (31)

attains its unconstrained global minimum.

It is clear that if Q ∈ F2, then Q is strictly nonexpansive. We show next
that the family {Sk}∞k=0 with Sk = S, for all k ≥ 0, where S is a symmet-
ric, stochastic, with positive diagonal matrix, is strictly nonexpansive. Such a
matrix S satisfies the two following properties

‖Sx‖ ≤ ‖x‖ , for all x ∈ Rn, (32)

and

‖Sx‖ = ‖x‖ implies that Sx = x, (33)

(see [11, Corollary 1]). From (32) it follows that

‖Sx− Sy‖ = ‖S(x− y)‖ ≤ ‖x− y‖ , for all x, y ∈ Rn. (34)

Consequently, for x, y ∈ Rn, if

‖Sx− Sy‖ = ‖x− y‖ , (35)

then, from (33),

‖S(x− y)‖ = ‖x− y‖ implies that S(x− y) = Sx− Sy = x− y. (36)

If Q ∈ F2 and S is a symmetric, stochastic, with positive diagonal matrix,
then the set of fixed points of the operator T := SQ is not empty (see [11,
Lemma 1]). Finally, Condition 1 is trivial in the context of a single operator
used at every iteration of the Algorithm 2.
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4 Solving The Linear Least Squares Problem

We show in this section that a commonly used, in the field of image recon-
struction, algorithmic operator Q obeys the conditions set forth in Section 3.
Consider the linear least squares (LLS) problem of seeking a vector x ∈ Rn

such that

‖Ax− b‖ = min{‖Az − b‖ | z ∈ Rn}, (37)

where the matrix A is m × n and b ∈ Rm. We use the notations AT , R(A),
N (A), for the transpose, range and null space of A, respectively, and LSS(A; b)
and xLS , for the set of all least squares solutions and the minimal norm solution
of (37), respectively.

We present in the sequel a general iterative method, introduced recently
in [24], and prove that its algorithmic operator is strictly nonexpansive and,
moreover, belongs to F2. Let T and R be matrices of dimensions n × n and
n × m, respectively, having the following three properties with respect to a
given m× n matrix A:

T +RA = I, (38)

where I is the identity matrix;

for every y ∈ Rm we have Ry ∈ R(AT ); (39)

defining T̃ := TPR(AT ) we have
∥

∥

∥
T̃
∥

∥

∥
< 1, (40)

where PV and ‖T̃‖ denote the orthogonal projection onto a linear subspace V
and the induced norm of T̃ , respectively.

The following result is known, see, e.g., [24].

Proposition 4 When A and b are as in (37) and the matrices T , R and A

have the properties (38)–(40), then the matrix T has the properties

if x ∈ N (A) then Tx = x, (41)

if x ∈ R(AT ) then Tx ∈ R(AT ), (42)

‖Tx‖ = ‖x‖ if and only if x ∈ N (A) (43)

and

‖T ‖ ≤ 1. (44)

Proposition 5 When A and b are as in (37) and the matrices T , R and A

have the properties (38)–(40), then the affine operator Q : Rn → Rn defined
by

Q(·) := T (·) + Rb (45)

belongs to F2.
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Proof We first show that Q ∈ F1. To prove (29) let x, y ∈ Rn, then, from (44)

‖(Tx+Rb)− (Ty +Rb)‖ = ‖T (x− y)‖ ≤ ‖T ‖ ‖x− y‖ ≤ ‖x− y‖ . (46)

Now for the case that ‖(Tx+Rb)− (Ty +Rb)‖ = ‖x− y‖ we obtain from
(43) that

x− y ∈ N (A). (47)

Using (41) we get

T (x− y) = x− y if and only if (Tx+Rb)− (Ty +Rb) = x− y. (48)

Representing y as y = PN (A)(y) + PR(AT )(y) and using (41) we obtain

(Ty +Rb)− y = TPR(AT )(y) +Rb− PR(AT )(y), (49)

which, from (42) and (39), gives us

(Ty +Rb)− y ∈ R(AT ). (50)

Therefore, from (47) and (50) it follows that

〈x− y, (Ty +Rb)− y〉 = 0. (51)

The second derivative of g(·), defined by (31), is the constant function
g′′(·) = 2(I−SQ)T (I−SQ). Since, for any S ∈ Rn×n, the matrix (I−SQ)T (I−
SQ) is symmetric and positive-semidefinite, it follows that g is convex and
attains its global minimum.

Remark 4 The FCA Algorithm 2, with Tk as in (23), Sk = I, Q as in (45)
with T,R as in (38)-(40) includes the Kaczmarz (see, e.g., [32]), Cimmino (see,
e.g., [24]) and Diagonal Weighting (see, e.g., [29]) algorithms (for details and
proofs of this statement see [28]). We will prove in the following result that
another such example is the Landweber method (see, e.g., [23,28]).

Proposition 6 Let {ωk}
∞
k=0 ⊂ Rn have the property that there exists a real ǫ

such that

0 < ǫ ≤ ωk ≤
2

ρ(A)2
− ǫ, (52)

where ρ(A) denotes the spectral norm of A. For any x0 ∈ Rn and k ≥ 0 the
Landweber iteration is defined by

xk+1 = (I − ωkA
TA)xk + ωkA

T b. (53)

If we denote I − ωkA
TA by Tk and ωkA

T by Rk, then, for every k ≥ 0, the
properties (38)-(40) hold.
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Proof Let k ≥ 0 be arbitrarily fixed. From the definitions of Tk and Rk it
follows that (38) and (39) are satisfied. If we denote by A† the (unique) Moore-
Penrose pseudoinverse of A, then we have the relation AA†A = A (see, e.g.,
[6]) and we may write PR(AT ) = A†A (see, e.g., [5]). Consequently, according
to (40), we obtain

T̃k = (I − ωkA
TA)A†A = A†A− ωkA

TAA†A = A†A− ωkA
TA. (54)

Consider the SVD decomposition A = UΣV T , where the matrices U , Σ and
V are of dimensions m×m, m× n and n× n, respectively. We have that

Σ =

(

Σ1 0
0 0

)

, with Σ1 = diag (σ1, σ2, . . . , σr) , (55)

where r is the rank of A and σ1 ≥ σ2 ≥ · · · ≥ σr > 0. Then, the pseudoinverse
has the form (for details and proofs see [6])

A† = V

(

Σ−1
1 0
0 0

)

UT . (56)

After a simple computation, (54), (55) and (56) yield

T̃k = V EV T , (57)

where

E =

(

E1 0
0 0

)

, with E1 = diag
(

1− ωkσ
2
1 , 1− ωkσ

2
2 , . . . , 1− ωkσ

2
r

)

. (58)

Therefore, since T̃k is normal, we obtain

∥

∥

∥
T̃k

∥

∥

∥
= ρ(V EV T ) = ρ(V TV E) = ρ(E) = max

i∈{1,2,...,r}
|1− ωkσ

2
i |, (59)

which together with (52) gives

∥

∥

∥
T̃k

∥

∥

∥
< 1, (60)

and the proof is complete.

Lemma 1 Let Fix(Q) be the fixed points set of the operator Q defined by (45),
with T and R matrices of dimensions n × n and n × m, respectively, having
the properties (38)–(40). The following property then holds

Fix(Q) = {x+∆ | x ∈ LSS(A; b)}, (61)

where

∆ = (I − T̃ )−1RPN (AT )(b). (62)
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Proof For x ∈ LSS(A; b) we know that

Ax = PR(A)(b), (63)

thus, by using (38) we get

(I − T )(x+∆) = RA(x+∆) = RPR(A)(b) +RA∆. (64)

‖T̃‖ is the spectral norm of T̃ , thus a matrix norm. Since, by (40), ‖T̃‖ < 1,
it follows from [17, Corollary 5.6.16 on page 301] that I − T̃ is invertible and

(I − T̃ )−1 =
∞
∑

k=0

T̃ k. (65)

Using (63), (40), (39), (42) and (65) we obtain

RA∆ = (I − T )∆ = (I − T̃ − TPN (A))(I − T̃ )−1RPN (AT )(b)

= RPN (AT )(b)− TPN (A)

∞
∑

k=0

T̃ kRPN (AT )(b) = RPN (AT )(b). (66)

In view of (64) we then obtain

x+∆ = T (x+∆) +Rb, (67)

which implies that {x+∆ | x ∈ LSS(A; b)} ⊆ Fix(Q).
For the reverse inclusion we consider x ∈ Fix(Q), i.e., x = Tx+Rb, which

allows us to write

PR(AT )(x) + PN (A)(x) = TPR(AT )(x) + TPN (A)(x) +Rb. (68)

From (41) and (39) we get in the above equality

PR(AT )(x) = T̃PR(AT )(x) +Rb = T̃ (T̃ PR(AT )(x) +Rb) +Rb

= · · · = T̃ kPR(AT )(x) + (

k−1
∑

i=0

T̃ i)Rb. (69)

By taking the limit as k → ∞, from (40) and (65) we arrive at

PR(AT )(x) = (I − T̃ )−1Rb = xLS +∆, (70)

which, in turn, implies

Ax = A(PR(AT )(x) + PN (A)(x)) = AxLS +A∆ = PR(A)(b) +A∆, (71)

thus, x−∆ ∈ LSS(A; b), i.e.,

Fix(Q)−∆ ⊆ LSS(A; b), (72)

which is equivalent to

Fix(Q) ⊆ LSS(A; b) +∆. (73)

Since we have also proved that ∆+ LSS(A; b) ⊆ Fix(Q), the equality

Fix(Q) = LSS(A; b) +∆ (74)

follows and the proof is complete.
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For Q chosen as in Proposition 5, we present in the following an example
of a family of strictly nonexpansive constraining operators {Sk}∞k=0 such that
{Tk}∞k=0, defined according to (23), satisfies (13) and Condition 1, making it
applicable for the convergence theory of the FCA (Algorithm 2).

The family consists of metric projection operators onto closed and convex
sets in Rn with an additional “image inclusion assumption”. The metric pro-
jection operator C onto the box [a, b] = [a1, b1]× · · · × [an, bn] ⊂ Rn is defined
by its i-th component, i = 1, 2, . . . , n, as

(Cx)i :=







xi, if xi ∈ [ai, bi],
ai, if xi < ai,

bi, if xi > bi.

(75)

It is known that such an operator is strictly nonexpansive (see, e.g., [11,
28]).

Lemma 2 Let C and C be two metric projection operators onto the boxes
[a, b] = [a1, b1]× · · · × [an, bn] ⊂ Rn and [a, b] = [a1, b1]× · · · × [an, bn] ⊂ Rn,

respectively, defined as in (75). If the image sets [a, b] ⊂ [a, b], then for any
y ∈ [a, b] the following inequality holds

∥

∥Cz − y
∥

∥ ≤ ‖Cz − y‖ , for all z ∈ Rn. (76)

Proof From the inclusion [a, b] ⊂ [a, b] we get that

[ai, bi] ⊂ [ai, bi] for all i = 1, 2, . . . , n. (77)

If z ∈ Rn is arbitrarily fixed, from (77) it results P[ai,bi]
P[ai,bi]zi = P[ai,bi]

zi,
for all i = 1, 2, . . . , n. Therefore,

CCz = P[a,b]P[a,b]z = P[a,b]z = Cz. (78)

For any y ∈ [a, b], we have
y = Cy. (79)

Since the linear mappings C and C are strictly nonexpansive, (78) and (79)
yield

∥

∥Cz − y
∥

∥ =
∥

∥CCz − Cy
∥

∥ ≤ ‖Cz − y‖ , for all z ∈ Rn (80)

and the proof is complete.

Consider now a family {Ck}∞k=0 of operators, where for each k ≥ 0, Ck is a
metric projection operator onto the k-th box [ak, bk] ⊆ Rn, as defined in (75).
For this family we define the sets

V∗
k := {z ∈ Im(Ck) | z −∆ ∈ LSS(A; b)}, (81)

and assume that for all k ≥ 0,
V∗
k 6= ∅. (82)

We develop next a sufficient condition for this family {Ck}∞k=0 to guarantee
that the sequence {CkQ}∞k=0 satisfies (13) and Condition 1, where Q is defined
according to Proposition 5.
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Lemma 3 Let {Ck}∞k=0 be a family of metric projection operators onto the k-
th box [ak, bk] ⊂ Rn, as defined in (75) and assume that V∗

k 6= ∅ for all k ≥ 0.
If for every ℓ ≥ 0 there exists a k(ℓ) ≥ ℓ such that

Im(Ck+1) ⊆ Im(Cℓ), for all k ≥ k(ℓ), (83)

then the infinite intersection set

V∗
∞ := ∩∞

k=0V
∗
k , (84)

is nonempty.

Proof We construct a decreasing nested sequence of nonempty closed and
bounded sets in order to apply Cantor’s Intersection Theorem (see, e.g., [31]).
Defining for every ℓ ∈ N the set Bℓ := ∩ℓ

i=0V
∗
i , it is clear that for every ℓ ≥ 0,

Bℓ+1 ⊆ Bℓ. Moreover, since B0 ⊆ [a0, b0], it is bounded.
Since LSS(A; b) is closed and, for each ℓ ≥ 0, Im(Cℓ) is closed, Bℓ is also

closed. Next we show that Bℓ is nonempty for every ℓ ≥ 0. Take an arbitrarily
fixed ℓ ∈ N , and k(i) ≥ i for all i ∈ {0, 1, 2, . . . , ℓ}, as in (83), and define

k := max{k(0), k(1), k(2), . . . , k(ℓ)}. (85)

Using the definition (81) we obtain

V∗
k+1 ⊆ V∗

i , for all k ≥ k and i ∈ {0, 1, 2, . . . ℓ}, (86)

which implies that
∩ℓ
i=0 V

∗
i 6= ∅. (87)

Since ∩∞
k=0V

∗
k = ∩∞

ℓ=0Bℓ, applying Cantor’s Intersection Theorem yields
V∗
∞ 6= ∅.

Remark 5 The condition (83) from the previous lemma is equivalent to the
following component-wise inequality on the sequences {ak}∞k=0, {bk}

∞
k=0 ⊂ Rn:

for all ℓ ≥ 0 there exists a k(ℓ) ≥ ℓ such that

aℓ ≤ ak+1 ≤ bk+1 ≤ bℓ, for all k ≥ k(ℓ). (88)

The metric projection operators, like those in (75), are frequently used for
constraining purposes in image reconstruction problems that are formulated
according to (37). As mentioned at the beginning of this paper, the idea of
using iteration independent constraints was previously examined, see Subsec-
tion 1.1. Our purpose is to explore a procedure of adapting the constraining
function at each step of the algorithm to obtain a better approximation of the
scanned image. The meaning of (83) in practice is that the image of every con-
straining function should be built from a priori knowledge to contain the exact
solution (the original image), however, {Im(Ck)}∞k=0 should not necessarily be
a decreasing nested sequence.

In [26] such a family of constraining operators is used to solve a Tomo-
graphic Particle Image Velocimetry (TomoPIV) problem (see [27] for more
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details), which reduces to reconstructing a binary vector. The difficulty of this
problem is to find the number and the approximate location of the particles,
corresponding to values of one in the solution. When applying a constant [0, 1]n

constraining interval, the obtained approximation usually contains “ghost”
particles. The authors observed in the aforementioned paper that, if as the
iterations progress, the intervals are focused on zero or one values by using an
iteration-adaptive constraining process, these “ghosts” are eliminated and the
correct number of particles is found.

Proposition 7 For a family {Ck}∞k=0 of box constraining operators like those
in (75) with the properties (82) and (83), and an operator Q defined by (45),
with T and R matrices having the properties (38)–(40), the assumption (13)
and Condition 1 are satisfied.

Proof For the first part we use Lemma 3. Let z ∈ V∗
∞. From the definition

(84) of V∗
∞ we get that for all k ≥ 0

Ck(z) = z (89)

and that
z −∆ ∈ LSS(A; b)), (90)

which is equivalent to
z ∈ ∆+ LSS(A; b)), (91)

which, from (61), implies that

z ∈ Fix(Q), (92)

thus z ∈ F . It follows that V∗
∞ ⊆ F and, since V∗

∞ is nonempty, that also
F 6= ∅.

To prove Condition 1 we use Lemma 2. For an arbitrarily fixed ℓ ≥ 1 and
k(ℓ) from (83) we choose y ∈ F , k ≥ k(ℓ) and z = Q(xk), from (28). Using
(83), the fact that F ⊆ Im(Ck+1) and Lemma 2 we get

‖Ck+1(Q(xk))− y‖ ≤ ‖Cℓ(Q(xk))− y‖, (93)

which completes the proof.

In conclusion, according to Proposition 5, Lemma 1, Proposition 7 and
Theorem 1, we may solve the linear least squares problem (37) using Algorithm
2 with Q defined by (45), when T and R matrices have the properties (38)–
(40) and a family {Ck}∞k=0 of box constraining operators like those in (75)
satisfying the properties (82) and (83).
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