Skip to main content
Log in

Cyclic and simultaneous iterative methods to matrix equations of the form A i X B i = F i

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper deals with a general type of linear matrix equation problem. It presents new iterative algorithms to solve the matrix equations of the form A i X B i = F i . These algorithms are based on the incremental subgradient and the parallel subgradient methods. The convergence region of these algorithms are larger than other existing iterative algorithms. Finally, some experimental results are presented to show the efficiency of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Datta, B.N.: Numerical Methods for Linear Control Systems Design and Analysis. Elseiver, Amsterdam (2003)

    Google Scholar 

  2. Ding, F., Chen, T.W.: Gradient based iterative algorithms for solving a class of matrix equations. IEEE Trans. Automat. Control. 50, 1216–1221 (2005)

    Article  MathSciNet  Google Scholar 

  3. Ding, F., Chen, T.W.: On iterative solutions of general coupled matrix equations, SIAM. J. Control Optim. 44, 2269–2284 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ding, F., Chen, T.W.: Iterative least squares solutions of coupled Sylvester matrix equations. Syst. Control Lett. 54, 95–107 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ding, F., Chen, T.W.: Hierarchical gradient-based identification of multivariable discrete-time systems. Automation 41, 95–107 (2005)

    Google Scholar 

  6. Ding, F., Chen, T.W.: Hierarchical least squares identification methods for multivable systems. IEEE Trans. Automat. Control. 50, 397–402 (2005)

    Article  MathSciNet  Google Scholar 

  7. Ding, F., Chen, T.W.: Hierarchical identification of lifted state-space models for general dual-rate systems. IEEE Trans. Circ. Syst. 52, 1179–1187 (2005)

    Article  MathSciNet  Google Scholar 

  8. Ding, F., Liu, P.X., Ding, J.: Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle. Appl. Math. Comput. 197, 41–50 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dehghan, M., Hajarian, M.: On the relexive solutions of the matrix equation A X B + C Y D = E. Bull. Korean Math. Soc. 46(3), 511–519 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Xie, L., Liu, Y.J., Yang, H.: Gradient based and least squares based iterative algorithms for matrix equations A X B + C X T D = F. Appl. Math. Comput. 217, 2191–2199 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hajarian, M., Dehghan, M.: The generalized centro-symmetric and least squares generalized centro-symmetric solutions of the matrix equation AYB + C Y T D = E. Math. Meth. Appl. Sci. 34, 1562–1579 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Liang, K.F., Liu, J.: Iterative algorithms for the minimum-norm solution and the least-squares solution of the linear matrix equations. Appl. Math. Comput. 218, 3166–3175 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. On Hermitian and skew-Hermitian splitting iteration methods for continous Sylvester equations. J. Comput. Math. 2, 185–198 (2011)

  14. Wang, X., Dai, L., Liao, D.: A modified gradient based algorithm for solving Sylvester equations. Appl. Math. Comput. 218, 5620–5628 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hansen, P.C., Nagy, J.M., O’Leary, D.P.: Deblurring Images: Matrices, Spectra, and Filtering. SIAM, Philadelphia (2006)

    Book  Google Scholar 

  16. Ding, J., Liu, Y.J., Ding, F.: Iterative solutions to matrix equations of the form A i X B i = F i . Comput. Math. Appl. 59, 3500–3507 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Bertsekas, D.P.: A new class of incremental gradient methods for least squares problems. SIAM J. Optimiz. 7(4), 913–926 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Nedić, A., Bertsekas, D.P.: Incremental subgradient methods for nondifferentiable optimization. SIAM J. Optimiz. 12, 109–138 (2001)

    MATH  Google Scholar 

  19. Dos Santos, L.T.: A parallel subgradient projections method for the convex feasibility problem. J. Comput. Appl. Math. 18(3), 307–320 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  20. Combettes, P.L., Puh, H.: Iterations of parallel convex projections in Hilbert spaces. Numer. Funct. Anal. Optimiz. 15, 225–243 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. Huang, G.X., Yin, F., Guo, K.: An iterative method for the skew-symmetric solution and the optimal approximate solution of the matrix equation A X B = C. J. Comput. Appl. Math. 212, 231–244 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Liang, M.L., You, C.H., Dai, L.F.: An efficient algorithm for the generalized centro-symmetric solution of matrix equation A X B = C. Numer. Algor. 44, 173–184 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Peng, Z.Y.: New matrix iterative methods for constraint solutions of the matrix equation A X B = C. J. Comput. Appl. Math. 235(3), 726–735 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wang, Q.W.: A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity. Linear Algebra Appl. 384, 43–54 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sheng, X.P., Chen, G.L.: A finite iterative method for solving a pair of linear matrix equations (A X B, C X D) = (E, F). Appl. Math. Comput. 189(2), 1350–1358 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Cai, J., Chen, G.L.: An iterative algorithm for the least squares bisymmetric solutions of the matrix equations \(A_{1} X B_{1} = C_{1}, A_{2} X B_{2} = C_{2}\). Math. Comput. Model. 50, 1237–1244 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Dehghan, M., Hajarian, M.: An iterative algorithm for solving a pair of matrix equations A Y B = E, C Y D = F over generalized centro-symmetric matrices. Comput. Math. Appl. 56, 3246–3260 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ruszxzynski, A.: Nonlinear Optimization. Princeton University Press, New Jersey (2006)

    Google Scholar 

  29. Polyak, B.T.: Introduction to Optimization. Optimization Softwarse, New York (1987)

    Google Scholar 

  30. Su, M., Xu, H.K.: Remarks on the gradient-projection algorithm. J. Nonlinear Anal. Opt. 1(1), 35–43 (2010)

    MathSciNet  Google Scholar 

  31. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert spaces. Springer, New York (2011)

    Book  MATH  Google Scholar 

  32. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Bauschke, H.H., Burachik, R., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer, New York (2009)

    Google Scholar 

  33. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4, 1168–1200 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  34. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Problems 20, 103–120 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchao Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Y., Peng, J. & Yue, S. Cyclic and simultaneous iterative methods to matrix equations of the form A i X B i = F i . Numer Algor 66, 379–397 (2014). https://doi.org/10.1007/s11075-013-9740-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-013-9740-9

Keywords

Navigation