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Abstract

We investigate the use of orthonormal polynomials over the unit disk

B2 in R
2 and the unit ball B3 in R

3. An efficient evaluation of an or-

thonormal polynomial basis is given, and it is used in evaluating general

polynomials over B2 and B3. The least squares approximation of a func-

tion f on the unit disk by polynomials of a given degree is investigated,

including how to write a polynomial using the orthonormal basis. Matlab

codes are given.

1 Introduction

A standard way to write a multivariate polynomial of degree n over R2 is

p (x, y) =

n∑

j=0

j∑

k=0

aj,kx
jyj−k.

The space of all such polynomials is denoted by Πn. We consider here the
alternative formulation

p (x, y) =

n∑

j=0

j∑

k=0

bj,kϕj,k (x, y) (1)

with {ϕj,k | 0 ≤ k ≤ j, 0 ≤ j ≤ n} an orthonormal basis of the set of Πn over
the closed unit disk B2, for each n ≥ 0. There is a large literature on such or-
thonormal polynomials; and in contrast to the univariate case, there are many
possible choices for this basis. See Dunkl and Xu [8] and Xu [14] for an investi-
gation of such multivariate orthonormal polynomials and a number of particular
examples.

To use (1), it is important to be able to evaluate the orthonormal polynomials
{ϕj,k} efficiently, just as is true with univariate polynomials. We consider a
particularly good set of such polynomials in Section 2, one that seems much
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superior to other choices. In the univariate case, the best choices are based
on using the triple recursion relation of the particular family {ϕn} being used.
This extends to the multivariate case. We investigate a particular choice of an
orthonormal basis for Πn that leads to an efficient way to evaluate the expression
(1) by making use of the triple recursion relation it satisfies. Following that, in
Section 3, we also consider the calculation of the least squares approximation
over Πn of a given function f (x, y). In Section 4, these results are extended to
polynomials over the unit ball. Finally, in Section 5, Matlab codes are given
for all of the problems being discussed.

2 Evaluating an orthonormal polynomial basis

We review some notation and results from Dunkl and Xu [8] and Xu [14]. For
convenience, we initially denote a point in the unit disk by x = (x1, x2), and
later we revert to the more standard use of (x, y). We consider only the standard
L2 inner product

(p, q) =

∫

B2

p (x) q (x) dx. (2)

Define
Vn = {p ∈ Πn | (p, q) = 0, ∀q ∈ Πn−1} , n ≥ 1,

and let V0 denote the one dimensional space of constant functions. Thus

Πn = V0 ⊕ · · · ⊕ Vn

is an orthogonal decomposition of Πn. It is standard to give an orthonormal
basis for each space Vn as the way to give an orthonormal basis of Πn. The
dimension of Vn equals n+ 1, and the dimension of Πn equals

Nn =
1

2
(n+ 1) (n+ 2) . (3)

Introduce
Pn=

[
Q0

n, Q
1
n, . . . , Q

n
n

]T
, n ≥ 0,

with
{
Q0

n, Q
1
n, . . . , Q

n
n

}
an orthonormal basis of Vm. The triple recursion rela-

tion for {Pm} is given by

xiPn (x) = An,iPn+1 (x) +Bn,iPn (x) +AT
n−1,iPn−1 (x) , i = 1, 2, n ≥ 1

(4)
The matrices An,i and Bn,i are (n+ 1)× (n+ 2) and (n+ 1)× (n+ 1), respec-
tively, and they are defined as follows:

An,i =

∫

B2

xiPn (x)P
T
n+1 (x) dx

Bn,i =

∫

B2

xiPn (x)P
T
n (x) dx
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For additional details, see Xu [14, Thm. 2.1]. One wants to use the relation
(4) to solve for Pn+1 (x). This amounts to solving an overdetermined system
of 2 (n+ 1) equations for the n + 2 components of Pn+1 (x). The expense of
this will depend on the structure of the matrices An,i and Bn,i. There is a
well-known choice that leads, fortunately, to the matrices Bn,i being zero and
the matrices An,i being very sparse.

To define this choice, begin by recalling the Gegenbauer polynomials
{
Cλ

n (t)
}
.

They can be obtained using the following generating function:

(
1− 2rt+ r2

)−λ
=

∞∑

n=0

Cλ
n (t) rn, |r| < 1, |t| ≤ 1

For particular cases,

Cλ
0 (t) ≡ 1, Cλ

1 (t) = 2λt, Cλ
2 (t) = λ

(
2 (λ+ 1) t2 − 1

)
,

Cλ
3 (t) =

2

3
λ (λ+ 1) t

(
(2λ+ 4) t2 − 3

)
.

Their triple recursion relation is given by

Cλ
n+1 (t) =

2 (n+ λ)

n+ 1
tCλ

n (t)− n+ 2λ− 1

n+ 1
Cλ

n−1 (t) , n ≥ 1.

These polynomials are orthogonal over (−1, 1) with respect to the inner product

(f, g) =

∫ 1

−1

(
1− t2

)λ− 1

2 f (t) g (t) dt,

and for λ = 1
2 they are the Legendre polynomials. For additional information

on the Gegenbauer polynomials, see [11, Chap. 18].
Return to the use of (x, y) in place of (x1, x2). Using the Gegenbauer poly-

nomials, introduce

Qk
n (x, y) =

1

hk,n
Ck+1

n−k (x)
(
1− x2

) k

2 C
1

2

k

(
y√

1− x2

)
, (x, y) ∈ B2, (5)

for n = 0, 1. . . . and k = 0, 1, . . . , n. See Dunkl and Xu [8, p. 88]. Note that

x2 + y2 < 1 =⇒ |y|√
1− x2

< 1

The lead constant hk,n is given by

h2
k,n =

π

4k
(n+ k + 1)!

(n+ 1) (2k + 1) (k!)
2
(n− k)!
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and h2
0,0 = π. The set

{
Qk

m | 0 ≤ k ≤ m
}
is an orthonormal basis of Vm, and{

Qk
m | 0 ≤ k ≤ m, 0 ≤ m ≤ n

}
is an orthonormal basis of Πn, using the inner

product of (2). Here are the Qk
m of degrees 0,1,2,3.

Q0
0 (x, y) =

1√
π
, Q0

1 (x, y) =
2x√
π
, Q1

1 (x, y) =
2y√
π

(6)

Q0
2 (x, y) =

1√
π

(
4x2 − 1

)
, Q1

2 (x, y) =

√
24

π
xy, Q2

2 (x, y) =

√
2

π

(
3y2 + x2 − 1

)

(7)

Q0
3 (x, y) =

4√
π
x
(
2x2 − 1

)
Q1

3 (x, y) =
4√
5π

y
(
6x2 − 1

)
,

Q2
3 (x, y) =

4√
π
x
(
3y2 + x2 − 1

)
Q3

3 (x, y) =
4√
5π

y
(
5y2 − 3 + 3x2

)
.

(8)
Because the formula (5) is not well-defined at x = ±1, we use

lim
(x,y)→(±1,0)

(
1− x2

) k

2 C
1

2

k

(
y√

1− x2

)
=

{
0, k > 0
1, k = 0

when evaluating (5).
Applying (4) to this choice of orthonormal polynomials leads to

xiPn (x1, x2) = An,iPn+1 (x1, x2) +AT
n−1,iPn−1 (x1, x2) , i = 1, 2, n ≥ 1.

(9)
The coefficient matrices are given by

An,1 =




a0,n 0 · · · 0 0
0 a1,n 0 0
...

. . .
...

...
0 0 · · · an,n 0




An,2 =




0 d0,n 0 · · · 0 0

c1,n 0 d1,n
. . . 0 0

...
. . .

. . .
. . .

...
...

0 · · · cn−1,n 0 dn−1,n 0
0 · · · 0 cn,n 0 dn,n




ak,n =
1

2

√
(n− k + 1) (n+ k + 2)

(n+ 1) (n+ 2)
,

dk,n =
k + 1

2

√
(n+ k + 3) (n+ k + 2)

(2k + 1) (2k + 3) (n+ 1) (n+ 2)
,

ck,n = −k

2

√
(n− k + 1) (n− k + 2)

(n+ 1) (n+ 2) (2k − 1) (2k + 1)
.
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These results are taken from Dunkl and Xu [8, p. 88] (in the formula for ck,n,
change n+ k + 1 to n− k + 1).

From the first triple recursion relation in (9),

x1




Q0
n

Q1
n
...

Qn
n


 =




a0,n 0 · · · 0 0
0 a1,n 0 0
...

. . .
...

...
0 0 · · · an,n 0







Q0
n+1

Q1
n+1
...

Qn
n+1

Qn+1
n+1




+




a0,n−1 0 · · · 0
0 a1,n−1 0
...

. . .
...

0 an−1,n−1

0 0 · · · 0







Q0
n−1

Q1
n−1
...

Qn−1
n−1




x1Q
i
n = ai,nQ

i
n+1 + ai,n−1Q

i
n−1, i = 0, 1, . . . , n− 1

x1Q
n
n = an,nQ

n
n+1

This allows us to solve for
{
Q0

n+1, . . . , Q
n
n+1

}
. The second triple recursion rela-

tion in (9) yields

x2




Q0
n

Q1
n
...

Qn
n


 =




0 d0,n 0 · · · 0 0

c1,n 0 d1,n
. . . 0 0

...
. . .

. . .
. . .

...
...

0 · · · cn−1,n 0 dn−1,n 0
0 · · · 0 cn,n 0 dn,n







Q0
n+1

Q1
n+1
...

Qn
n+1

Qn+1
n+1




+




0 c1,n−1 0 · · · 0
d0,n−1 0 c2,n−1 0 · · · 0

0 d1,n−1 0 c3,n−1 0

0 0 d2,n−1
. . .

. . .
...

. . .
. . . cn−1,n−1

0 dn−2,n−1 0
0 0 0 · · · 0 dn−1,n−1







Q0
n−1

Q1
n−1
...

Qn−1
n−1




Its last equation is

x2Q
n
n = cn,nQ

n−1
n+1 + dn,nQ

n+1
n+1 + dn−1,n−1Q

n−1
n−1
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and from it we can calculate Qn+1
n+1. Thus,

Qi
n+1 =

x1Q
i
n − ai,n−1Q

i
n−1

ai,n
, i = 0, 1, . . . , n− 1 (10)

Qn
n+1 =

x1Q
n
n

an,n
(11)

Qn+1
n+1 =

x2Q
n
n − cn,nQ

n−1
n+1 − dn−1,n−1Q

n−1
n−1

dn,n
(12)

2.1 Computational cost

What is the cost of using this to evaluate the orthonormal basis

Bn ≡
{
Qk

m | 0 ≤ k ≤ m, 0 ≤ m ≤ n
}
?

Assume the coefficients {ai,n, ci,n, di,n} have been computed. Apply (10)-(12) to
the computation of

{
Qk

m | 0 ≤ k ≤ m
}
, assuming the lower degree polynomials

of degrees m−1 and m−2 are known. This requires 4 (m+ 1) arithmetic opera-
tions. The evaluation of {Q0

0, Q
0
1, Q

1
1} from (6) requires 2 arithmetic operations

for each choice of (x, y) = (x1, x2). Thus the calculation of Bn requires

2 + 4(3 + 4 + · · ·+ (n+ 1)) = 2
(
n2 + 3n− 3

)
(13)

arithmetic operations. Recall (3) that the dimension of Πn is approximately
1
2n

2, and thus the cost of evaluating Bn is only approximately 4 times the
dimension of Πn. Qualitatively this is the same as in the univariate case. To
evaluate a polynomial

p (x, y) =

n∑

j=0

j∑

k=0

bj,kQ
k
j (x, y) (14)

for which {bj,k} are given, we use

2
(
n2 + 3n− 3

)
+ (n+ 1) (n+ 2) ≈ 3n2

arithmetic operations, approximately 6 times the dimension Nn of Πn.
There are other known choices of an orthonormal basis for Πn; see Dunkl

and Xu [8, §2.3.2] and Xu [14, §1.2]. In a number of previous papers (see [2],
[4], [6], [7]) we have used the ‘ridge polynomials’ of [10], in large part because
of their simple analytic form that is based on Chebyshev polynomials of the
second kind. However, we have calculated experimentally the matrices Ai,n and
have found them to be dense for low order cases, leading us to believe the same is
true for larger values of n. For that reason, solving the triple recursion relation
(4) would be much more costly than O (n) operations, making the choice (5)
preferable in computational cost. As a particular example of the lack of sparsity
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in the coefficient matrices {An,i} for the ridge polynomials,

A2,1 =




1
2 0 0 0

0
√
2
8 +

√
6

12 −
√
3

12 −
√
2
8 +

√
6

12

0
√
2
8 −

√
6

12

√
3

12 −
√
2
8 −

√
6

12




A2,2 =




0
√
2
6 − 1

6

√
2
6

−
√
3

12

√
2

24 +
√
6

12
1
3

√
2

24 −
√
6

12√
3

12

√
2

24 −
√
6

12
1
3

√
2

24 +
√
6
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2.2 Evaluating derivatives

First derivatives of the orthonormal polynomials are required when implement-
ing the spectral methods of [2], [4], [6], [7]). From (6), (7),

∂Q0
0

∂x1
= 0,

∂Q0
0

∂x2
= 0,

∂Q0
1

∂x1
=

2√
π
,

∂Q0
1

∂x2
= 0

∂Q1
1

∂x1
= 0,

∂Q1
1

∂x2
=

2√
π

To obtain the first derivatives of the higher degree polynomials, we differentiate
the triple recursion relations of (10)-(12). In particular,

∂Qi
n+1

∂x1
=

1

ai,n

{
Qi

n + x1
∂Qi

n

∂x1
− ai,n−1

∂Qi
n−1

∂x1

}
, i = 0, 1, . . . , n− 1

∂Qn
n+1

∂x1
=

1

ai,n

{
Qn

n + x1
∂Qn

n

∂x1

}

∂Qn+1
n+1

∂x1
=

1

dn,n

{
x2

∂Qn
n

∂x1
− cn,n

∂Qn−1
n+1

∂x1
− dn−1,n−1

∂Qn−1
n−1

∂x1

}

(15)
∂Qi

n+1

∂x2
=

1

ai,n

{
x1

∂Qi
n

∂x2
− ai,n−1

∂Qi
n−1

∂x2

}
, i = 0, 1, . . . , n− 1

∂Qn
n+1

∂x2
=

x1

ai,n

∂Qn
n

∂x2

∂Qn+1
n+1

∂x2
=

1

dn,n

{
Qn

n + x2
∂Qn

n

∂x2
− cn,n

∂Qn−1
n+1

∂x2
− dn−1,n−1

∂Qn−1
n−1

∂x2

}
(16)
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3 Least squares approximation

When given a function f ∈ C (B2), we are interested in obtaining the least
squares approximation to f from the polynomial subspace Πn. When given the
basis Bn, this approximation is given by the truncated Fourier expansion

Qnf (x, y) ≡ Pn (x, y) =

n∑

j=0

j∑

k=0

(
f,Qk

m

)
Qk

m (x, y) . (17)

The linear operator Qn is the orthogonal projection of L2 (B2) onto Πn. As an
operator on L2 (B2), it has norm 1. As an operator on C (B2) with the uniform
norm ‖·‖∞, Qn has norm O (n); see [13].

The Fourier coefficients
(
f,Qk

m

)
must be evaluated numerically, and we re-

view a standard quadrature scheme to do so. Use the formula

∫

B2

g(x, y) dx dy ≈
q∑

l=0

2q∑

m=0

g

(
rl,

2πm

2q + 1

)
ωl

2π

2q + 1
rl (18)

Here the numbers rl and ωl are the nodes and weights, respectively, of the
(q + 1)-point Gauss-Legendre quadrature formula on [0, 1]. Note that

∫ 1

0

p(x)dx =

q∑

l=0

p(rl)ωl,

for all single-variable polynomials p(x) with deg (p) ≤ 2q+1. The formula (18)
uses the trapezoidal rule with 2q+1 subdivisions for the integration over B2 in
the azimuthal variable. This quadrature is exact for all polynomials g ∈ Π2q.
For functions f, g ∈ C (B2), let (f, g)q denote the approximation of (f, g) by the
scheme (18).

Our discrete approximation to (17) is

P̃n,q (x, y) =

n∑

j=0

j∑

k=0

(
f,Qk

m

)
q
Qk

m (x, y) (19)

When q = n, this approximation is known as the ‘discrete orthogonal projection
of f onto Πn’, ‘hyperinterpolation of f by Πn’, or the ‘discrete least squares
approximation’. We denote it by

Q̃nf (x, y) ≡ P̃n,n (x, y) ≡ P̃n (x, y)

In applying this numerical integration to the coefficients
(
f,Qk

m

)
, we always

require q ≥ n in order to force the formula (17) to reproduce all polynomials
f ∈ Πn. With this requirement,

f ∈ Πn ⇒ P̃n,q = f.

The operator Q̃n is a discrete orthogonal projection of C (B2) onto Πn. For this
specific case of approximation over B2, see the discussion in [9]. In particular,

∥∥∥Q̃n

∥∥∥
C→C

= O (n logn) .

8



3.1 Cost of the discrete least squares approximation

The main computational cost in (19) is the evaluation of the coefficients
{(

f,Qk
m

)
q

}
.

We begin with the evaluation of the basis Bn at the points used in (18), of which
there are

(q + 1) (2q + 1) .

The cost to evaluate Bn will be

2
(
n2 + 3n− 3

)
× (q + 1) (2q + 1) ≈ 4n2q2 (20)

arithmetic operations. For comparison, recall that the dimension of Πn is ap-
proximately 1

2n
2. The evaluation of the function f at these same nodes is

(q + 1) (2q + 1)Nf , (21)

with Nf the cost of an individual evaluation of the function f . The subsequent

evaluations of the coefficients
{(

f,Qk
m

)
q

}
involves an additional

1

2
(n+ 1) (n+ 2)× (q + 1) (2q + 1) (22)

arithmetic operations. Having the coefficients
{(

f,Qk
m

)
q

}
, the polynomial (19)

then requires
4
(
n2 + 3n− 3

)
(23)

arithmetic operations for each evaluation point (x, y).

In the case q = n, the evaluation of Q̃nf is dominated by (20) and (22),

approximately 5n4 arithmetic operations. If we then evaluate Q̃nf (x, y) at the
points used in the quadrature formula (18), then the cost is an additional 8n4

operations, approximately.

3.2 Convergence of least squares approximation

Because the polynomials are dense in L2 (B2), we have

‖f − Pn‖L2 → 0 as n → ∞.

For convergence in C (B2), we refer to the presentation in [3, §4.3.3, §5.7.1]. In
particular,

‖f −Qnf‖∞ ≤ (1 + ‖Qn‖)En,∞ (f) (24)
∥∥∥f − Q̃nf

∥∥∥
∞

≤
(
1 +

∥∥∥Q̃n

∥∥∥
)
En,∞ (f) (25)

where
En,∞ (f) = min

f∈Πn

‖f − p‖∞ ,

9



the minimax error in the approximation of f by polynomials from Πn.
Let f ∈ Ck,α (B2), functions that are k−times continuously differentiable

and whose kth derivatives are Hölder continuous with exponent α ∈ (0, 1] Then

En,∞ (f) ≤ ck,α (f)

nk+α
, n ≥ 1. (26)

Combining these results with (24)-(25) gives uniform convergence of both Qnf

and Q̃nf to f for all f ∈ Ck,α (B2) with k ≥ 1.

4 Triple recursion relation over the unit ball

In this section we repeat for the three dimensional case some of the results from
the two dimensional case of Sections 2 and 3. The orthonormal polynomials in
this case are again taken from [8, Proposition 2.3.2]. Here we first derive the
coefficients of the three term recursion relation in (9).

4.1 The recursion coefficients and the three term recur-

rence

The orthonormal polynomials for the three dimensional unit ball are given by

Qj,k
n (x, y, z) =

1

hj,k
C

j+k+3/2
n−j−k (x)(1 − x2)j/2

· Ck+1
j (

y√
1− x2

)(1 − x2 − y2)k/2C
1/2
k (

z√
1− x2 − y2

) (27)

where j + k ≤ n, and n ∈ N is the degree of the polynomial Qj,k
n . The normal-

ization constant hj,k will be derived further below. We introduce the vector of
all orthonormal polynomials Pn of degree n:

Pn = [Q0,0
n , . . . , Q0,n

n , Q1,0
n , . . . , Q1,n−1

n , Q2,0
n , . . . , Q2,n−2

n , . . . , Qn,0
n ]T , n ≥ 0.

(28)
Here we have

(
n+2
2

)
polynomials of degree n and the space Πn has dimension(

n+3
3

)
, see [8]. In formula (9) we have matrices An,i, i = 1, 2, 3, of dimension(

n+2
2

)
×
(
n+3
2

)
. First we derive the normalization constant hj,k with a calculation

which is typical for calculations involved in the calculation of the coefficients of
the matrices An,i. By definition we have

h2
j,k =

∫ 1

−1

(C
j+k+3/2
n−j−k (x))2(1 − x2)j

∫ √
1−x2

−
√
1−x2

(Ck+1
j (

y√
1− x2

))2(1 − x2 − y2)k

·
∫ √

1−x2−y2

−
√

1−x2−y2

(C
1/2
k (

z√
1− x2 − y2

))2dz dy dx (29)
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Using the substitution

u :=
z√

1− x2 − y2

dz =
√
1− x2 − y2 du

we get

h2
j,k =

∫ 1

−1

(C
j+k+3/2
n−j−k (x))2(1 − x2)j

∫ √
1−x2

−
√
1−x2

(Ck+1
j (

y√
1− x2

))2(1 − x2 − y2)k+1/2

·
∫ 1

−1

(C
1/2
k (u))2du dy dx

= N
[1/2]
k

∫ 1

−1

(C
j+k+3/2
n−j−k (x))2(1− x2)j

·
∫ √

1−x2

−
√
1−x2

(Ck+1
j (

y√
1− x2

))2(1 − x2 − y2)k+1/2 dy dx

where we defined

(N
[µ]
k )2 :=

∫ 1

−1

(Cµ
k (x))

2(1− x2)µ−1/2dx

=
πΓ(2µ+ k)

22µ−1k!(µ+ k)Γ2(µ)
(30)

see [1]. Now we use the substitution

u :=
y√

1− x2

dz =
√
1− x2 du

(1− x2 − y2) = (1− x2 − (1− x2)u2)

= (1− x2)(1 − u2)

to obtain

h2
j,k = N

[1/2]
k

∫ 1

−1

(C
j+k+3/2
n−j−k (x))2(1 − x2)j+k+1

·
∫ 1

−1

(Ck+1
j (u))2(1 − u2)k+1/2du dx

= N
[1/2]
k N

[k+1]
j N

[j+k+3/2]
n−j−k

11



If we denote the coefficients of the matrices An,i by a
[n,i]
j,k;j′,k′ j + k ≤ n and

j′ + k′ ≤ n+ 1 we get

a
[n,1]
j,k;j′,k′ =

∫

B3

xQj,k
n (x, y, z)Qj′,k′

n+1 (x, y, z) d(x, y, z)

a
[n,2]
j,k;j′,k′ =

∫

B3

yQj,k
n (x, y, z)Qj′,k′

n+1 (x, y, z) d(x, y, z)

a
[n,3]
j,k;j′,k′ =

∫

B3

zQj,k
n (x, y, z)Qj′,k′

n+1 (x, y, z) d(x, y, z)

Each of the integrals can be written in the same way as the integral in (29)
and then the two above substitutions together with the orthonormal property
of the Gegenbauer polynomials allows us to calculate the coefficients of An,i,
i = 1, 2, 3. Again we obtain very sparsely populated matrices. Equation (9)
takes on the following form:

xQj,k
n = a

[n,1]
j,k;j,kQ

j,k
n+1 + a

[n−1,1]
j,k;j,k Qj,k

n−1, : j + k ≤ n (31)

where

a
[n,1]
j,k;j,k =

1

2

( (j + k + n+ 3)(n+ 1− j − k)

(n+ 5/2)(n+ 3/2)

)1/2

(32)

and the term a
[n−1,1]
j,k;j,k has to be replaced by 0 if j + k = n. Furthermore we get

yQj,k
n = a

[n,2]
j,k;j+1,kQ

j+1,k
n+1 + a

[n,2]
j,k;j−1,kQ

j−1,k
n+1

+ a
[n+1,2]
j+1,k;j,kQ

j+1,k
n−1 + a

[n−1,2]
j−1,k;j,kQ

j−1,k
n−1 , : j + k ≤ n (33)

where the terms of the matrix An−1,2 and An,2 have to substituted by zero if
j − 1 + k < 0 or j + 1 + k > n− 1 in the case of An−1,2. Here

a
[n,2]
j,k;j+1,k =

1

4

((j + 2k + 2)(j + 1)(j + k + n+ 4)(j + k + n+ 3)

(j + k + 1)(j + k + 2)(n+ 5/2)(n+ 3/2)

)1/2

(34)

a
[n,2]
j,k;j−1,k = −1

4

( j(j + 2k + 1)(n+ 2− j − k)(n+ 1− j − k)

(j + k + 1)(j + k)(n+ 3/2)(n+ 5/2)

)1/2

(35)

Finally we get

zQj,k
n = a

[n,3]
j,k;j,k−1Q

j,k−1
n+1 + a

[n,3]
j,k;j+2,k−1Q

j+2,k−1
n+1 + a

[n,3]
j,k;j,k+1Q

j,k+1
n+1

+ a
[n,3]
j,k;j−2,k+1Q

j−2,k+1
n+1 + a

[n−1,3]
j+2,k−1;j,kQ

j+2,k−1
n−1 + a

[n−1,3]
j,k−1;j,kQ

j,k−1
n−1

+ a
[n−1,3]
j−2,k+1;j,kQ

j−2,k+1
n−1 + a

[n−1,3]
j,k+1;j,kQ

j,k+1
n−1 , : j + k ≤ n (36)

12



where again the terms have to be replaced by zero if the indices are out of the
range of the corresponding matrix. Here

a
[n,3]
j,k;j,k−1

= −k

8

( (j + 2k + 1)(j + 2k)(n+ 2− j − k)(n+ 1− j − k)

(k + 1/2)(k − 1/2)(j + k + 1)(j + k)(n+ 3/2)(n+ 5/2)

)1/2

(37)

a
[n,3]
j,k;j+2,k−1

= −k

8

( (j + 2)(j + 1)(j + k + n+ 4)(j + k + n+ 3)

(k + 1/2)(k − 1/2)(j + k + 1)(j + k + 2)(n+ 3/2)(n+ 5/2)

)1/2

(38)

a
[n,3]
j,k;j,k+1

=
k + 1

8

( (j + 2k + 3)(j + 2k + 2)(j + k + n+ 4)(j + k + n+ 3)

(k + 1/2)(k + 3/2)(j + k + 1)(j + k + 2)(n+ 3/2)(n+ 5/2)

)1/2

(39)

a
[n,3]
j,k;j−2,k+1

=
k + 1

8

( (n+ 2− j − k)(n+ 1− j − k)j(j − 1)

(k + 1/2)(k + 3/2)(j + k)(j + k + 1)(n+ 3/2)(n+ 5/2)

)1/2

(40)

The equations (31), (33), and (36) allow the calculation of all Qj,k
n+1 in the

following way. For j + k ≤ n we can use (31) and solve for Qj,k
n+1:

Qj,k
n+1 =

xQj,k
n − a

[n−1,1]
j,k;j,k Qj,k

n−1

a
[n,1]
j,k;j,k

(41)

Then we use (33) for the calculation of Qj+1,n−j
n+1 , j = 0, . . . , n:

Qj+1,n−j
n+1 =

(
yQj,n−j

n − a
[n,2]
j,n−j;j−1,n−jQ

j−1,n−j
n+1

− a
[n−1,2]
j−1,n−j;j,n−jQ

j−1,n−j
n−1

)/
a
[n,2]
j,n−j;j+1,n−j (42)

Finally (36) allows us to calculate Q0,n+1
n+1

Q0,n+1
n+1 =

(
zQ0,n

n − a
[n,3]
0,n;0,n−1Q

0,n−1
n+1 − a

[n,3]
0,n;2,n−1Q

2,n−1
n+1

− a
[n−1,3]
0,n−1;0,nQ

0,n−1
n−1

)/
a
[n,3]
0,n;0,n+1 (43)

By taking partial derivatives in equation (41)–(43) we are able to derive recur-
sion formulas for the partial derivatives of the orthonormal polynomials as in
(15)–(16).

13



4.2 Least square approximation

Similar to Section 3, the least square approximation in L2(B3) for a function
f ∈ L2(B3) is given by

Qnf(x, y, z) = Pn(x, y, z) =

n∑

m=0

∑

j+k≤m

(f,Qj,k
m )Qj,k

m (x, y, z) (44)

where the inner product is given by

(f,Qj,k
m ) =

∫

B3

f(x, y, z)Qj,k
m (x, y, z) d(x, y, z) (45)

For practical calculations we have to replace the integral in (45) by a quadrature
rule for f ∈ C(B3). One choice is to use a quadrature rule which will integrate
polynomials of degree smaller or equal to 2n exactly, so we have

Qnp(x, y, z) = p(x, y, z), ∀p ∈ Πn (46)

We will use

∫

B3

g(x, y, z) d(x, y, z) =

∫ 1

0

∫ 2π

0

∫ π

0

g̃(r, θ, φ) r2 sin(φ) dφ dθ dr ≈ Qq[g]

Qq[g] :=

2q∑

i=1

q∑

j=1

q∑

k=1

π

q
ωj νkg̃

(
ζk + 1

2
,
π i

2q
, arccos(ξj)

)
(47)

q > n. Here g̃(r, θ, φ) = g(x, y, z) is the representation of g in spherical coordi-
nates. For the θ integration we use the trapezoidal rule, because the function is
2π−periodic in θ. For the r direction we use the transformation

∫ 1

0

r2v(r) dr =

∫ 1

−1

(
t+ 1

2

)2

v

(
t+ 1

2

)
dt

2

=
1

8

∫ 1

−1

(t+ 1)2v

(
t+ 1

2

)
dt

≈
q∑

k=1

1

8
ν′k

︸︷︷︸
=:ν

k

v

(
ζk + 1

2

)

where the ν′k and ζk are the weights and the nodes of the Gauss quadrature
with q nodes on [−1, 1] with respect to the inner product

(v, w) =

∫ 1

−1

(1 + t)2v(t)w(t) dt

14



The weights and nodes also depend on q but we omit this index. For the φ
direction we use the transformation

∫ π

0

sin(φ)v(φ) dφ =

∫ 1

−1

v(arccos(φ)) dφ

≈
q∑

j=1

ωjv(arccos(ξj))

where the ωj and ξj are the nodes and weights for the Gauss–Legendre quadra-
ture on [−1, 1]. This quadrature rule has been used in our earlier articles, see
[2]. For more information on this quadrature rule on the unit ball in R

3, see [12].
For the complexity estimation in the next section we will assume that we use
the smallest possible q to satisfy (46) which is q = n+ 1. Although a little bit
larger values of q might improve the approximation property of (44) in practice.

With this value of q the quadrature formula (47) uses 2 (n+ 1)
3
= 2n3+O

(
n2

)

points in the unit ball B3.
The discrete L2 projection is now given by

Q̃nf(x, y, z) = P̃n(x, y, z) =

n∑

m=0

∑

j+k≤m

Qn[f ·Qj,k
m ]Qj,k

m (x, y, z) (48)

Regarding the convergence of the convergence of Qnf towards f in L2(B3)
and L∞(B3) we have similar results to Section 3.2. Because the polynomials are
dense we have convergence in L2(B3) and formulas (24) and (25) hold as before,
and the same is true for the estimate for En,∞(f) in (26). But the Lebesgue
constant for the projection Qn in L∞(B3) is larger,

‖Qn‖C 7→C = On→∞(n3/2) (49)

see [13]. Together with (26) we obtain the convergence in C(B3) for functions
which are in C1,α(B3), α > 1/2.

For the bound of ‖Q̃n‖C 7→C we can use the same arguments as in (2.10)–
(2.18) of our previous article [9] together with the results about the reproducing
kernel in [13]. This shows

‖Q̃n‖C 7→C = On→∞(n2)

and proves the convergence of the discrete L2 approximation in the inifinity
norm for functions which are in C2,α(B3), α > 0.

4.3 Computational cost

First we give here a brief analysis of the computational cost to evaluate all
polynomials Qj,k

m in Πn at a given point. We assume again, that all coefficients

in (41)–(43) have been calculated. If we further assume that Qj,k
m and Qj,k

m−1

have been calculated then (41), for j + k ≤ m, constitutes the dominant work

15



for the calculation of Qj,k
m+1, j + k ≤ m + 1. To evaluate (41) for j + k ≤ m

requires 4
(
m+2
2

)
= 2m2 + Om→∞(m) arithmetic operations. The evaluation

of (42) and (43) will not change this asymptotic behavior. Adding these up
for m = 0, 1, . . . n− 1 leads to a total number of arithmetic operations given by
2
3n

3+On→∞(n2). If we further consider the problem to evaluate the polynomial

p(x, y, z) =

n∑

m=0

∑

j+k≤m

bj,km Qj,k
m (x, y, z) (50)

we have to add another 2
∑n

m=0

(
m+2
2

)
= 1

3n
3 + On→∞(n2) operations, which

means that the evaluation of (50) requires a total n3+On→∞(n2) operations, if

the recursion coefficients are known. The set Πn has n3

6 +On→∞(n2) elements,
so about 6 operations are needed in average per basis functions, exactly the
same as in Section 2.

To calculate the discrete L2 projection (48) we first need to evaluate f at
the ∼ 2n3 quadrature points of Qn, this requires an effort of ∼ 2n3Nf , where
Nf again measures the cost of an individual evaluation of f . Then we have
to calculate all basis functions Qj,k

m in Πn for all 2n3 points. This requires
4
3n

6 + On→∞(n5) operations. The calculation of a single Qn[f · Qj,k
m ] requires

6n3 operations and we have to do this for all
(
n+3
3

)
basis functions of Πn which

results in an additional n6 +On→∞(n5) operations. If we assume that the Nf

is less than O(n3) we see that the evaluation of the discrete inner products
Qn[f ·Qj,k

m ] is the dominant term and the complexity of the calculation of (48)
is given by 7

3n
6 +On→∞(n5).

5 Numerical examples and Matlab programs

We present Matlab programs for using orthonormal polynomials over the unit
disk. We compute the coefficients {ai,n, ci,n, di,n}, the basis Bn, and the discrete
least squares approximation (19) with q ≥ n. The program TripleRecurCoeff

is used to produce the needed coefficients {ai,n, ci,n, di,n}, the program EvalOrthoPolys

is used to evaluate the polynomials in the basis Bn, and the program LeastSqCoeff

evaluates the coefficients in (19). The program EvalLstSq is used to evaluate

P̃n,q (x, y) at a selected set of nodes in B2; it also evaluates the error and pro-
duces various graphs of the error as the degree n is increased. The program
Test EvalLstSq is used to test the programs just listed.

Consider the function

f (x, y) =
1 + x

1 + x2 + y2
cos

(
6xy2

)
(51)

This was approximated using Test EvalLstSq for degrees 1 through 30. Figure
1 shows P̃30,40 and Figure 2 shows its error. The error as it varies with the
degree n is shown in Figure 3. This last graph suggests an exponential rate of
convergence for P̃n,q to f .
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Figure 1: The approximation P̃n,q (x, y) for (51), with n = 30 and q = 40

We have found often that the error f (x, y) − P̃n,q (x, y) is slightly smaller

than that of f (x, y)− P̃n,n (x, y) if q is taken a small amount larger than n, say
q = n + 5. However, the qualitative behaviour shown in Figure 3 is still valid
for f − P̃n,n.

5.1 Additional comments

These programs can also be used for constructing approximations over other
planar regions Ω. For example, the mapping

(x, y) 7→ (ξ, η) = (ax, by) , (x, y) ∈ B2,

with a, b > 0, can be used to create polynomial approximations to a function
defined over the ellipse (

ξ

a

)2

+
(η
b

)2

≤ 1.

If polynomials are not required, only an approximating function, then mappings

(x, y) 7→ (ξ, η) = Φ (x, y) , (x, y) ∈ B2

with Φ a 1-1 mapping can be used to convert an approximation problem over
a planar region Ω to one over B2. The construction of such mappings Φ is
explored in [5].
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Figure 2: The error f− P̃n,q for (51), with n = 30 and q = 40
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