Skip to main content
Log in

An ADMM algorithm for second-order TV-based MR image reconstruction

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we propose a new model for MR image reconstruction based on second order total variation (\(\text {TV}^{2}\)) regularization and wavelet, which can be considered as requiring the image to be sparse in both the spatial finite differences and wavelet transforms. Furthermore, by applying the variable splitting technique twice, augmented Lagrangian method and the Barzilai-Borwein step size selection scheme, an ADMM algorithm is designed to solve the proposed model. It reduces the reconstruction problem to several unconstrained minimization subproblems, which can be solved by shrinking operators and alternating minimization algorithms. The proposed algorithm needs not to solve a fourth-order PDE but to solve several second-order PDEs so as to improve calculation efficiency. Numerical results demonstrate the effectiveness of the presented algorithm and illustrate that the proposed model outperforms some reconstruction models in the quality of reconstructed images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bredies, K., Lorenz, D.: Linear convergence of iterative soft-thresholding. J. Fourier Anal. Appl. 14(5-6), 813–837 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cai, J., Osher, S., Shen, Z.: Split Bregman methods and frame based image restoration. Multiscale Model. Simul. 8(2), 337–369 (2009)

    Article  MathSciNet  Google Scholar 

  5. Candes, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chamblle, A.: An algorithm for total variation minimization and application. J. Math. Imaging Vis. 20(1-2), 89–97 (2004)

    Google Scholar 

  7. Chan, R., Yang, J., Yuan, X.: Alternating direction method for image inpainting in wavelet domanis. SIAM J. Imaging Sci. 4(3), 807–826 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, H., Song, J., Tai, X.: A dual algorithm for minimization of the LLT model. Adv. Comput. Math. 31(1-3), 115–130 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, Y., Hager, W., Huang, F., Phan, D., Ye, X.: A fast algorithm for image reconstruction with application to partially parallel MR imaging. SIAM J. Imaging Sci. 5(1), 90–118 (2012)

    Article  MathSciNet  Google Scholar 

  10. Deng, W., Yin, W.: On the global and linear convergence of the generalized alternating direction method of multipliers. Submitted to SIAM Journal on Optimization. Rice univ. Houston Tx. dept of computational and applied mathematics (2012)

  11. Goldstein, T., Osher, S.: The split Bregman method for l\(_{1}\) regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo, W., Qin, J., Yin, W.: A new detail-preserving regularity scheme. Rice CAAM technical report. 13-01, 2013

  13. Guo, W., Yin, W.: Edge guided reconstruction for compressive imaging. SIAM J. Imaging Sci. 5(3), 809–834 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. He, B., Liao, L., Han, D., Yang, H.: A new inexact alternating directions method for monotone variational inequalities.Mat. Program. 92(1), 103–118 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hong, M., Luo, Z.: On the linear convergence of the alternating direction method of multipliers. arXiv preprint arXiv:1208.3922 (2012)

  16. Knoll, F., Bredies, K., Pock, T., Stollberger, R.: Second order total generalized variation for MRI. Magn. Reson. Med. 65(2), 480–491 (2011)

    Article  Google Scholar 

  17. Lustig, M., Donoho, D., Pauly, J.: Sparse MRI: the application of comressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  18. Lysaker, M., Lundervold, A., Tai, X.: Noise removal using fourth-order partial differential equation with application to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12(12), 1579–1590 (2003)

    Article  MATH  Google Scholar 

  19. Rudin, L., Osher, S., Fatemi, E.: Non-linear total variation noise removal algorithm. Phys. D 60(1), 259–268 (1992)

    Article  MATH  Google Scholar 

  20. Wang, Y., Yin,W., Zhang, Y.: A fast algorithm for image debluring with total variation regularization. CAAM technical reports (2007)

  21. Wright, S., Nowak, R., Figueiredo, M.: Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 57(7), 2479–2493 (2009)

    Article  MathSciNet  Google Scholar 

  22. Wu, C., Tai, X.: Augmented Lagrangian method, dual Methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM J. Imaging Sci. 3(3), 300–339 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang, J., Zhang, Y., Yin, W.: A fast TVl1-l2 minimization algorithm for signal reconstruction from partial Fourier data. CAAM, Rice Univ., Tech. Rep. TR08-29 (2008)

  24. Ye, X., Chen, Y., Huang, F.: Computational acceleration for MR image reconstruction in partially parallel imaging. IEEE Trans. Med. Imaging 30(5), 1055–1063 (2011)

    Article  Google Scholar 

  25. Zhang, J., Yang, Y.: Nonlinear multigrid method for solving the anisotropic image denoising models. Numer. Algorith. 63, 291–315 (2013)

    Article  MATH  Google Scholar 

  26. Zhang, X., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. CAM UCLA, Tech. Rep. 09-03 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Fei Yang.

Additional information

The research has been supported by the NNSF of China (No.60872129) and the Science and Technology Project of Changsha City of China (No.K1207023-31).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, WS., Yang, YF. & Zhou, B. An ADMM algorithm for second-order TV-based MR image reconstruction. Numer Algor 67, 827–843 (2014). https://doi.org/10.1007/s11075-014-9826-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-014-9826-z

Keywords

Mathematics Subject Classifications (2010)

Navigation