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Abstract Kernel-based approximation methods—often in the form of radial basis
functions—have been used for many years now and usually involve setting up a
kernel matrix which may be ill-conditioned when the shape parameter of the kernel
takes on extreme values, i.e., makes the kernel “flat”. In this paper we present an
algorithm we refer to as the Hilbert-Schmidt SVD and use it to emphasize two
important points which—while not entirely new—present a paradigm shift under
way in the practical application of kernel-based approximation methods: (i) it is
not necessary to form the kernel matrix (in fact, it might even be a bad idea to
do so), and (ii) it is not necessary to know the kernel in closed form. While the
Hilbert-Schmidt SVD and its two implications apply to general positive definite
kernels, we introduce in this paper a class of so-called iterated Brownian bridge
kernels which allow us to keep the discussion as simple and accessible as possible.
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1 Introduction

Kernel-based methods are popular tools for problems of interpolation and differ-
ential equations [8[I2], statistics [40], machine learning [30,4T], and other fields.
Their popularity stems from their inherently meshfree nature, providing an avenue
to potentially avoid the “curse of dimensionality” [I3}27]. Many different kernels
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exist, and several factors may be considered when choosing the appropriate kernel
for a given application, including the numerical stability of computations involving
that kernel.

The presence of free parameters influencing the shape and smoothness of ker-
nels allows for high levels of accuracy, but may also introduce ill-conditioning into
the standard problem formulation. For many very smooth kernels, or kernels with
an increasingly flat parametrization, the computational error may prevent real-
ization of the theoretically optimal accuracy. This problem was analyzed in, e.g.,
[BUITL231B339] and techniques to circumvent this in certain circumstances were
discussed in, e.g., [I5I6l17].

In [I4], a technique was developed using Hilbert-Schmidt theory [35] to create
a new basis for the Gaussian interpolant derived from the eigenfunction expansion
of the Gaussian in R%; the new basis is devoid of the standard ill-conditioning.
This change of basis approach was first used in the pioneering work [16]. Once
increasingly flat Gaussian interpolants could be stably computed, the polynomial
limit, as predicted in [T1122}23[33], could be numerically confirmed in arbitrary
dimensions. Therefore, Gaussians can always produce at least the same accuracy
as polynomials because the polynomial result can be obtained in the limit.

Since the eigenfunction expansion associated with the Gaussian kernel is rather
complex and its implementation (which can be found in the MATLAB library http:
//math.iit.edu/~mccomic/gaussqr/)) is non-trivial we have decided to present in
this paper a completely transparent implementation of the Hilbert-Schmidt SVD
which uses so-called iterated Brownian bridge kernels. The advantage of introducing
this new class of kernels, defined on the interval [0, 1] with very specific boundary
conditions, lies in the fact that the resulting MATLAB code is almost trivial and
can be included in this paper (see Appendix). Moreover, iterated Brownian bridge
kernels generalize the Brownian bridge kernel which plays an important role in
many applications in statistics or finance (see, e.g., [4, Sec. 2.2.1], [18, Sect. 3.1],
[32) Sect. 3.7], [38, Sec. 4.7.4], and our explanation in Remark [I)).

The two main messages we would like to communicate with this paper are

1. The kernel-based solution of interpolation, approximation or differential equa-
tions problems can—and perhaps frequently should—be achieved without ever
forming the so-called kernel matriz K (sometimes also referred to as Gram or
collocation matrix). This, in particular, implies that the Hilbert-Schmidt SVD
(see ) is not obtained by factoring the kernel matrix. However, the Hilbert-
Schmidt SVD does represent a factorization of the kernel matrix. In other
words, we can—if needed—obtain K from the Hilbert-Schmidt SVD, but not
vice versa (as is done with the traditional SVD in linear algebra).

2. Kernel-based methods can proceed accurately and efficiently without knowing a
closed form of the kernel K. A series representation of the kernel suffices, and
may sometimes represent the extent of our understanding of a given kernel.
In this paper we introduce the family of univariate iterated Brownian bridge
kernels which are in some sense analogous to the well-known family of Matérn
kernels on RY, i.e., both families are defined using two parameters with one
denoting the smoothness of the kernel and the other its flatness or scale. Both
the smoothness and scale of the iterated Brownian bridge kernels are encoded
in their Hilbert-Schmidt eigenvalues, while the eigenfunctions are invariant for
the entire family (see (2.8))).
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It should be noted that neither of these messages is entirely new. The idea to
not work with the kernel matrix was the motivation of the research of Fornberg and
co-workers on the Contour-Padé method or the RBF-QR method (see, e.g., [15]
16l[17]. Another change of basis technique was proposed for conditionally positive
definite functions in [3]. Kernels given primarily (or solely) in series form were the
topic of, e.g., the papers [20441/45].

It is our hope that the present paper, with its simple family of kernels and
straightforward MATLAB implementation of the Hilbert-Schmidt SVD, provides a
more transparent introduction to the issues associated with modern computational
techniques for kernel-based approximation methods and therefore makes this topic
accessible to a wider range of practitioners.

Another topic that will be mentioned in this paper is the fact that the “flat”
limit of our iterated Brownian bridge kernels corresponds to a certain class of
piecewise polynomial splines that were already featured in the literature on L-
splines of the 1960s and 70s [36L[42]. In Sectionwe will provide a modern proof of
the convergence orders of this subfamily of piecewise polynomial iterated Brownian
bridge kernels using the framework of sampling inequalities in reproducing kernel
Hilbert spaces. Unfortunately, even the modern proof techniques do not seem to
enable us to generalize the results for the piecewise polynomial case from [42]
Sect. 8] to our larger family of iterated Brownian bridge kernels, i.e., from the
piecewise polynomial ¢ = 0 case to the more general case with £ > 0. Among other
numerical experiments, we will verify these convergence orders in Section [6} and
end the paper with a set of closing remarks.

2 Definition of Iterated Brownian Bridge Kernels

Our definition of iterated Brownian bridge kernels is motivated by several factors.
On the one hand we wanted to create a two-parameter family similar to the Matérn
kernels on Rd, which are popular in many applications—especially in statistics,
where techniques such as maximum likelihood estimation are used to obtain the
“best” kernel for a given set of data. On the other hand, we wanted our kernel
to give rise to a very simple Hilbert-Schmidt series. As we will now demonstrate,
iterated Brownian bridge kernels address both of these concerns.

2.1 Review of Hilbert-Schmidt and Sturm-Liouville Eigenvalue Theory

Given a domain 2, a weight function p : 2 — RT and a continuous square inte-
grable positive definite kernel K : 2 x 2 — R, a Hilbert-Schmidt integral operator
K is defined as

k1= [ KC2 0 (2.1)

This operator maps functions in La(£2,p) to Hg, the reproducing kernel Hilbert
space induced by K. From Hilbert-Schmidt theory [35] (or, equivalently, Mercer’s
theorem [26]) we know that K has a representation of the form

K(z,z) = Z Anpn(z)pn(2), z,z € 2. (2.2)

n=1
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The eigenvalues \,, and eigenfunctions ¢, are defined by
Ke = Xp, (2.3)

and we know A, > 0 because K is positive definite, and the eigenfunctions are
orthonormal with respect to the L2(2, p) inner product. They are also orthogonal
in Hg, but that is not relevant to our discussion.

In [9, Chap. V] the argument is made that the Hilbert-Schmidt integral eigen-
value problem is “inverse” to the self-adjoint regular Sturm-Liouville eigenvalue
problem

1
Ly = S, (2.4)

where the differential operator £ is defined so that K is its Green’s kernel, i.e.,
LK(z,z) = 6(z — 2z). Suitable boundary conditions (in the integral formulation
reflected in the definition of H, the range of K) must also be imposed to uniquely
define K through £, but in doing so, the eigenvalues and eigenfunctions of
can be used in to define K. This approach is used in Section to find the
eigenexpansion of the iterated Brownian bridge kernels.

2.2 Iterated Brownian Bridge Kernels as Green’s Kernels of an Iterated
Helmholtz BVP

The connection between the Hilbert-Schmidt and Sturm-Liouville eigenvalue prob-
lems reviewed in the previous subsection allows us to view the Mercer series
as a generalized Fourier series. We now consider the following iterated modified
Helmholtz differential operator of order 23

Lpe= (-0 +1),  BeN\(0}, <20, (25)

where D denotes the usual univariate derivative %, 7 is the identity operator
(i.e., Ty = @), and ¢ acts as a shape parameter (or tension parameter). In this paper
we will focus on the domain 2 = [0, 1], although more general domains can be
addressed with an appropriate transformation.

We define the Sturm-Liouville eigenvalue problem

Lgep(x)=A""p(z), wel01],
with boundary conditions conveniently chosen to be of the form
p(0) = (1) =0, j=0,....8-1L (2.6)

Note that the weight function, which appeared in the definition of K, is p =1 for
our purposes. For this ODE boundary value problem one can easily check that the
corresponding eigenvalues and (normalized) eigenfunctions are given by

-8B
An = (n27r2 + 52) , on(x) = V2sin(nrz), n=12..., (2.7)
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so that the generalized Fourier series of the iterated Brownian bridge kernels Kg .
is
> -8
Kg (x,2) = Z Anon (z)pn( Z (n T4 ) 2sin(nwz) sin(nwz). (2.8)
n=1

As expected, the eigenfunctions are La({2) orthonormal, and because all the eigen-
values are positive, we know that the iterated Brownian bridge kernels are positive
definite.

By using a tensor product form of our kernels, it is possible to work with them
in higher dimensions, but no discussion of that setting is presented here.

Since the iterated Brownian bridge kernels are Green’s functions of the iterated
modified Helmholtz operator it follows that the free parameter 5 € N\ {0} present
in generates a family of kernels of increasing smoothness, i.e., the kernel
functions Kg (-, z) of order 8 have 28 —2 smooth derivatives at their center z. The
additional free parameter £ > 0 determines the shape of the kernels by providing
a certain amount of tension that tends to localize the kernel around its center z as
¢ increases. This is illustrated in Figures [T and

Remark 1 We chose the name “iterated Brownian bridge” for our family of kernels
since one could also derive the kernels by repeatedly applying the integral operator
K to the basic kernel Ki . One should note, however, that the Brownian bridge
kernel used widely in the literature refers only to the specific choice of e = 0, i.e.,
the kernel K1, and therefore it would be more precise to refer to our kernels as
iterated generalized Brownian bridge kernels, but that seems a bit unwieldy. The con-
struction itself is very general and proceeds as follows. Using the integral operator
and the absolutely converging Hilbert-Schmidt series of a symmetric
positive definite kernel K defined on 2 ¢ R? we can see that for a fixed y € £2 one
has

KK(9) = [ KoK ppea:
— [ K@) 3 dngnl)on(:lol)d:
2 n=1

= 3 dwen) [ Ko 2)on(a)ole)d

Now, since the ¢, are the eigenfunctions of K corresponding to A, (see (2.3])) we
can further conclude that

K(z,y) = Z/\mpn Jen(y),

which is a new kernel with the same eigenfunctions as K, but whose eigenvalues
are the squares of those of K. It should be noted that for a translation-invariant
kernel—and therefore of course also for a radial kernel—the operation described
above is a convolution. It is clear that the iterated kernel is smoother than the
original one. The idea of constructing smoother kernels via iteration is a clas-
sical one and already described in [9, Sect. IIL.5.3]. For our purposes we prefer
the derivation in terms of the iterated Helmholtz operator since the effect of the
boundary conditions is explicit.
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Remark 2 If, in particular, 2 = R? and ﬁ(ﬁdi = (—A—I—eQI)B, B > %, with d-
dimensional Laplacian A, then

. —d d
K e(@,2) = Kp_aza (elle = 2l) (el — =)™, 5> 5,

are the so-called Matérn kernels on RY. Here K 3—d/2 are modified Bessel functions
of the second kin(ﬂ and = denotes equality up to a constant factor.

Remark 3 While accurately defines the kernel for any fixed ¢ and 3, this
infinite series representation may not seem as satisfying in comparison to the clean
(closed) form representation available for the full space Matérn kernels. Among
other things, we will show below that a iterated Brownian bridge kernel, given
only by its series expansion, can be used just as effectively as a closed form kernel
provided we combine it with the Hilbert-Schmidt SVD. Moreover, a time existed
when modified Bessel functions of the second kind were considered only in series
form, so defining our new kernels in series form is similarly appropriate.

Having said this, we will discuss those special cases for which closed forms of the
kernel are known in Section [4l

3 Derivation of the Hilbert-Schmidt SVD

The discussion in Section [2:2]focused on the definition of iterated Brownian bridge
kernels in terms of eigenvalues and eigenfunctions of a Sturm-Liouville eigenvalue
problem with specific boundary conditions. These eigenvalues and eigenfunctions
provide a representation of the kernel as a Hilbert-Schmidt series

Kﬂ,e(x7 Z) = Z An‘Pn(x)SOn(Z)

n=1

3.1 An Infinite Matrix Decomposition of K based on Hilbert-Schmidt Series

Our Hilbert-Schmidt SVD (defined in below) can be applied to any positive
definite kernel K once it is written as a Hilbert-Schmidt series. Therefore, the
discussion in this subsection involves arbitrary positive definite kernels and applies
in full generality, in particular on arbitrary domains in arbitrary space dimensions
d. As mentioned in the introduction, the standard or direct approach to the solution
of most kernel-based approximation problems is to generate the kernel matrix
K= (K(z, a:j))f.\,]jzl, where N is the number of given data as well as the number
of kernel centers. However, as is well-known to practitioners, the matrix K is prone
to ill-conditioning—especially if K contains a shape parameter related to “flatness”
(potentially resulting in nearly identical rows or columns of K).

The main goal of the Hilbert-Schmidt SVD (and similar techniques such as
RBF-QR) is to find a decomposition of the matrix K without ever forming K, and

1 We apologize for overloading the letter K. However, the modified Bessel functions appear
only in this remark. All other uses of K denote kernel functions, while K is used for the
associated integral operator and K denotes the associated kernel matrices.
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to use this decomposition to overcome the ill-conditioning associated with K. This
is a transformation from the standard basis {K (-, x1),..., K(-, )} to a new, and
better conditioned, basis which we will denote as {¢1,...,¥xn} below. For us, the
starting point of this change of basis process is the Hilbert-Schmidt series of the
kernel.

In matrix terminology, a single kernel value (and thus a generic entry in the
kernel matrix K) can be written as a weighted inner product involving a diagonal
matrix containing all the eigenvalues

K(@,2) = Y Anen(@)on(z) = d(@)" Ap(2), 3.1)

n=1
where we have used the notation

e1(x) A1

é(x) = A=

on(@)

Since the kernel matrix K is given by

K(z1,2z1) -+ K(z1,2N)

K(CDN,:IJ1) K(CDN,:IJN)
a generic row of K can be written using the eigenfunction expansion (3.1]) as
k(x)T = (K(z,z1) - K(z,zN))
= (@) Np(@1) -+ ¢(a) Ap(xn))

= ¢(x)"A(p(z1) - p(zN))
= ¢(m)TA¢T, (3.2)

where we have defined the matrix 7 = (¢(x1) ... d(xn)). The row vector k()T
collects the data-dependent basis functions K(-,x1),...,K(-,zx), and can be
interpreted as an identity relating the N-dimensional data-dependent basis in k(-)”
to the infinite-dimensional data-independent eigenfunction basis in ¢(-)7. The
transformation relating these two bases (spaces) is given by the matrix product
A®T and, of course, depends on the data locations z1,...,zy, that appear in
(®)ij = pj(@i)-

With this additional notation we can now form the entire matrix K by stacking

such rows of k:()T evaluated at the different points x1,...,zy, i.e.,
k(z1)" d(x1)"
K= : = : AT = one” (3.3)
k(zy)" d(zn)"

The eigen-decomposition of K given in (3.3 does not yet represent the Hilbert-
Schmidt SVD. It has served to introduce our matrix-vector notation, but has not
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done anything to alleviate the potential ill-conditioning in K associated with the
eigenvalues in A. One could envision simply truncating the matrix A (and therefore
the Hilbert-Schmidt series expansion) by zeroing out eigenvalues with an index n
greater than some truncation index M, but then we would no longer be working
in the standard kernel space span{K(-,z1),...,K(-,zx)}. The Hilbert-Schmidt
SVD derived in the next subsection maintains the standard kernel space without
encountering the standard ill-conditioning.

3.2 Obtaining a New Basis via the Hilbert-Schmidt SVD

At this point, all we have done is to rewrite the kernel matrix as the product of
three larger matrices. Although this helps us evaluate the kernel function using
only the series expansion, the result of this process is no different than simply
finding each kernel element individually via a weighted inner product, i.e.,

¢(z1) Ap(z1) - p(x1) Ap(z )

) A1) - blan) Ab(zy)

From a performance standpoint this already provides an improvement since com-
puting the matrix via is likely more efficient because it involves “level 3”
BLAS operations (matrix-matrix products) rather than “level 17 BLAS opera-
tions (vector inner products ¢(z)TA¢(z)). See [19] for a review of this idea.
However, we have not yet addressed the potential ill-conditioning of K. We can
improve on the matrix structure by considering blocks of ® and A. Define

o= (&) ), /\:("1 )
N2

where ®1,A; € RVXN ¢y € RVX® Ay € R®X Starting with (3.2)), we can write
A of
k(a) T — Tl — T (M 1
@7 = o)™ = o (M, ) (5

T In T
= Ao
o(z) <A2¢2T¢1—TA1_1> 141,

where Iy € RV is the N x N identity matrix. To clean this up further, we define
a new vector function

|
v = 0@ (\ qreloy 1) (3.4
so that
k()" = (@) Mo 55

It may be helpful to emphasize that we do not obtain the new basis functions in
()T from those in k(-)7 as (3.5) might suggest. Instead, we rely entirely on the
eigenvalues and eigenfunctions and use (3.4]). The reader may confirm this in the
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MATLAB code in the Appendix, e.g., Psi_interp = Phi_interp*[I_N;Correction]
along with the definition of Correction.
Replacing the rows of K with (3.5]) yields

k(z1)" P(a1)”
K= : = ; Ao = WA ] (3.6)

k(zy)” Y(zy)T

where W is defined analogously to K. We call this factorization the Hilbert-Schmidt
SVD of K because the diagonal matrix in the middle is filled with the first N
Hilbert-Schmidt eigenvalues. The matrices W and ¢; are not orthogonal, as in a
standard SVD, but they are generated by the La(£2, p) orthogonal eigenfunctions.

To shed a little more light on the nature of the new basis functions we look
more carefully at the definition of ¥ (z) in , i.e., we expand out ¢(x)? to
obtain

(@) = (p1(2) - on(@)) + (pys1(®) ) Ad3 b TAT

Here we can see that the j*® element of our new basis collected in ()7 is the
4§ eigenfunction, plus a correction in the form of a linear combination of all the
eigenfunctions with index greater than N. This infinite length correction (recall
both Az and ®2 have infinite dimension) is guaranteed to make a finite contribution
because the original Mercer series was uniformly convergent.

In Section [3:3] below we will address the practical question of determining at
what point we can stop considering higher-order eigenfunctions in ¢(-)7, i.e., how
to choose a truncation length M for the infinite Hilbert-Schmidt series and the
resulting infinite matrices A2 and ®3. Note that such a truncation will—within
the tolerance demanded for the truncation length M—Ilead to an alternate basis
{¢1,...,¥nN} for the standard kernel space span{K (-, x1),...,K(-,zy)}. This new
basis will hopefully be better conditioned than the standard kernel basis since it
is generated from small “corrections” to the orthogonal eigenfunctions ¢1,...,¢onN.

3.3 Truncating the Hilbert-Schmidt Series

Thus far, our discussion of the Hilbert-Schmidt SVD has been completely general
and has resulted in a factorization of K containing a matrix W that is built using
the infinite matrices A2 and ®2. For practical purposes these components need to
be truncated. This can be accomplished by truncating the Hilbert-Schmidt series.

From now on our discussion specializes to iterated Brownian bridge kernels.
Because the eigenvalues of the series decay monotonically, and the eigen-
functions are bounded above by /2, at some point all the remaining terms in the
series contribute a negligible amount to the summation and can be ignored. We
choose our truncation point M by first picking a tolerance o] and requiring that
the ratio of the smallest and largest eigenvalues be less than the tolerance. When
written out explicitly, the ratio of two eigenvalues

Am

)\N <O't01, M>N,
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can be solved for the necessary M:

1 —1
Mo = ;\/Utol/ﬂ(N%? +¢e2) —e2. (3.7)

Table [[] shows truncation values for various parametrizations, when N is set to 1.
For example, the kernel K3 10 can be represented with precision oy, = 10715 if we
use a truncation length M, = 1000. For any desired precision oy, a smoother
kernel (i.e., greater B) can be represented accurately with a shorter series. The
same is true as we decrease ¢ for a kernel of fixed smoothness.

Parameters Precisions

Ié; € 10-5 10—10 10-15
1 1 3x 102 1x10° 3x 107
1 1 3x102 1x10° 3x107
1 10 1x10% 3x10° 1x108
3 10 2x 101 2x102 1x103
5 10 1x100 3x10% 1x 102
7 10 7x109 2x10' 4x10!

Table 1: Value of the truncation length M, | required to reach certain precisions
00 for series generated by various combinations of € and 8. The precision column
is the ratio of the last and first eigenvalues, Aps/A1.

A thorough analysis of truncation lengths for general kernels given in series
form (which covers also much more general multiscale kernels such as those of
[29]) is presented in [20].

In some sense, computing the kernel values with a series rather than closed
form is entirely appropriate. Computing a value of the iterated Brownian bridge
kernel with the series would be no different than evaluating I'(z) or erf(x). Even
evaluating the Gaussian kernel could be done with a series expansion. Since we
show in the next section that iterated Brownian bridge kernels are special kinds
of L-splines, this remark follows naturally from research which has shown that
B-splines tend to Gaussians as the smoothness index § tends to infinity (see, e.g.,
[IL2l[6] and [7, Chapter 8]). However, in using an eigenfunction series directly (as
in ) we ignore the special structure of this series which is not present in a
standard Taylor series. Exploiting this structure allows for interpolation without
directly computing the kernel values. This is accomplished by using the Hilbert-
Schmidt SVD or RBF-QR technique [T41[16].

3.4 Relation to RBF-QR and Other Practical Considerations

The use of the term RBF-QR in designing a new basis for kernel-based methods
comes from the computation of the CDFQFCDIT term in the data-dependent correction
in using an additional QR factorization. Often it is preferable to first perform
a QR factorization on the (presumably now M-length) ® matrix to produce

® = (o1 #2) = Q (R1 R2) = (QR1 QR2),
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which allows for ¢2T¢;T = RQTR;T. This is a more stable computation than LU
factorization, which may be preferable depending on the scale of the various eigen-
functions. The iterated Brownian bridge eigenfunctions are all on the same scale
(because they are all sines), but other kernels which have employed the QR fac-
torization have found the extra stability useful [16].

In the above derivation we have assumed that ®; and A; are invertible, which
should be obvious for A; since it is a diagonal matrix with positive eigenvalues on
the diagonal. The inverse of ®; exists because the eigenfunctions ¢;, 1 < j < N,
are linearly independent, and ®; would be the interpolation matrix associated with
interpolation at the N distinct data locations. Because that interpolant must be
unique, the matrix ®; must be invertible. Note that while this is straightforward
for this set of eigenfunctions on this domain, other kernels may require more care—
especially in higher dimensions.

A significant benefit to this HS-SVD approach is a more stable interpolation
system. Traditionally, inverting K could introduce unacceptable amounts of insta-
bility because of its ill-conditioning. This was discussed in the context of RBF-QR
applied to Gaussians in [I4]. The HS-SVD (with or without the optional QR step)
allows us to isolate the ill-conditioning primarily (although not entirely) in the Aq
factor and resolve the /\2<l>2T<l>1_T/\1_1 term safely. This effect will become apparent
in Section [f] for larger values of 3.

3.5 How the Hilbert-Schmidt SVD Transforms the Interpolation Problem
The scattered data interpolation problem presents N distinct data locations ; and
associated function values y; = f(x;), 1 <j < N, and asks for an approximation

s which is equal to f at the data locations. To solve this with kernels, we assume
that the solution is written as

N
s(x) = Z ¢ K (x, x;).
j=1

Demanding equality to the function values at the data locations produces the
linear system

Ke =y, (3.8)

where ¢ = (¢1,...,en)T and y = (y1,...,yn)T . In this vector notation, values of s
can be evaluated as

s(w) = k(z) e = k(z)TKy. (3.9)

To see the benefit of using the Hilbert-Schmidt SVD of K, we can study the
structure of our interpolant (3.9),
s(z) = k(z)TK 1y
= (z) Aol o TAT vy
=(x) w1y (3.10)
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This remaining expression suggests that we have developed a mechanism for eval-
uating our interpolant s in the basis ¢(-)? rather than its standard basis k(-)%.
Moreover, the cardinal functions associated with interpolation at x1,...,zny—
usually obtained as k() K~'—can be computed more stably via 4 (x)T W= (see
Fig. [3] and our further discussion there).

The system of interest for solving the scattered data interpolation problem now
is

Ub=1y

rather than (3.8)) as it would be in the standard basis.

4 Closed Form Representations of Iterated Brownian Bridge Kernels

In Section we mentioned that an iterated Brownian bridge kernel Kg . has
smoothness order 28 — 2, and that its shape is determined by the parameter .
We will now show that the kernels Kg ( are in fact piecewise polynomial splines,
thereby establishing that the “flat” ¢ — 0 limits of iterated Brownian bridge kernel
interpolants are given as piecewise polynomial spline interpolants. This observation
is in line with the findings of [39], where the “flat” limits of piecewise smooth RBF
interpolants were found to be polyharmonic spline interpolants.

In this section we derive closed form representations for the piecewise polyno-
mial spline kernels, and for the kernels Kz . when 8 =1 or 2.

4.1 Tterated Brownian Bridge Kernels for ¢ = 0: The Piecewise Polynomial Spline
Case

If we restrict the differential operator in (2.5) to the case e = 0, the eigenvalues
and eigenfunctions from (2.7)) become

An = (nm) 27, ¢n(z) = V2sin(nmz), n=12,....

Using these specific eigenvalues and eigenfunctions, a closed form for the Mercer
series expansion of the kernel Kz, can be obtained with the help of the standard
trigonometric identity 2sin Asin B = cos(4 — B) — cos(A + B) with A = nmz and
B = nnz along with two applications of the cosine series expansion of Bernoulli
polynomials (see, e.g., [10, Eq. 24.8.1] and [28])

Bos(t) = (—1)7* (22(72)@; L

cos(2mnt), 0<t<1, p=12,..., (4.1)
n=1
setting t = Z5% and t = 22, respectively.

Since requires 0 < ¢t < 1 we need to treat the cases ¢+ > z and 2z > =z
separately. However, it is possible to combine the two resulting formulas into the
desired symmetric closed form representation

Kpoln,2) = (_1)5—12(2[;;; [325 (@) ~ Bas ("”;LZ)} L (42
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which is valid for any 0 < z,2z < 1.
Bernoulli polynomials of degree n can be expressed as (see, e.g., [10, Eq. 24.6.7]

and [28]) .
Bale) = 3 7 (1) (f) (o +3)", (43)
k=0 =0

so that the first few Bernoulli polynomials are

Bo(z) =1, Bi(z)=z-— %, Ba(z)=a% -z + %, Bs(z) = 2° — ng + %w

Since it is apparent from (4.3)) that the leading-order terms in x cancel, the kernel
Kpg is indeed a piecewise polynomial of odd degree 28 — 1. Knowing (4.3)), we
can easily verify that (4.2]) for 8 = 1,2 leads to piecewise linear polynomials of the

form
. T —xz 0<z<z
K = — = ’ - - ’
1,0(z, z) = min(z, z) — zz {z Cwn z<z<l
(also known as the Brownian bridge kernel) and piecewise cubic polynomials

1 2 2
_ sr(l—2)(z" +2°—22), 0<z<z
K270($7Z) {%(1_.@)2(@24—22—2%), z<z <1

For a fixed z, K3,0(z,2) gives piecewise quintic polynomials in z, and so on.

Thus, (4.2) allows us to compute the piecewise polynomial kernel Kg o satisfying
the boundary conditions (2.6]) in closed form for any 3.

0z 01 06 08 10 02 01 3 [ 10 02 04 3 08 10

Fig. 1: Copies of the piecewise polynomial spline kernel Kgo. Top: 8 = 1 (left),
B = 2 (middle), 8 = 3 (right); bottom: 8 = 7 (left), 8 = 13 (middle), 8 = 20
(right).

In Fig. we provide plots of K o(-, z) for different values of 8 and z € {1%, j=
1,...,9}. Note that the kernels corresponding to z = 0 and z = 1 are identically
equal to zero due to the boundary conditions we have imposed. Since the kernels
get rather small as 8 increases we have normalized all kernel plots by multiplying
the kernels by 1/A; = 727, Clearly, this is a not a good basis for practical imple-
mentations since the set of translates of Kg¢(-,z) for different centers z becomes
very nearly linearly dependent for larger §. In fact, the plots for 8 > 7 are nearly
indistinguishable.
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4.2 Tterated Brownian Bridge Kernels for € > 0

By allowing ¢ to vary beyond 0, the resulting kernels K . are no longer piecewise
polynomials. This can be useful when attempting to approximate certain functions
(as we show in Section@ but it also renders the closed form useless, requiring
the derivation of a new formula. Unfortunately, as of this writing, the authors are
unaware of any such closed form appropriate for all 8 when ¢ > 0.

Individual Kg . closed forms can be derived by solving the Green’s function
boundary value problem

LgeKpe(z,2)=0(x—2), z € (0,1),
8%

83023 Kﬁ E(x Z)_O {BE{O,I}, jG{O,...,B*l},

where z € (0,1) is fixed, the operator Lg . is applied to the first argument of K,
and ¢ is the Dirac delta function. This is equivalent to the boundary value problem

L,g EKB75($,Z) = 0, x e (0, 1) \ {Z},
0% )
83623 K e(r,2) =0, z€{0,1}, j €{0,1,....,8 -1},
. o o ,
xlir? B ]Kﬁa(m z) = xhn;r B - K3, e(z,2), j€{0,1,....,28 — 2},
28—1 28—1

0 )
xl—lgl T a1 Kpe(a,2) = 1 lim 5= a7 Kpe(r,2) +1,

which can be solved for any fixed 8 using standard tools from classical differential
equations.
When 8 = 1, the closed form solution is succinct,

sinh (¢ min(z, z)) sinh (e(1 — max(z, 2)))

K1,€(1'7 Z) =

e sinh(e)
h(ez) sinh(e(1-2))
{sm (aa:) 51nh((€f;‘)( z)) 0 <z<z,
inh inh(e(1—
: Ejsfnh(Lfs) . , zsx <,

and this function can obviously be expressed in terms of (Fourier) sine series as
shown in (2.8). A symmetric closed form expression for K> . was found recently
by two summer REU students. It is quite a bit more complicated than g =1,

e—c(z+2)
4e3(e? —1)?
4 g2e(t+a+2) (2c —e(z+2)+1) + o2e(z+2) (e(z+2)—1)
n o2e(2+min(z,2)) (—elz — 2] — 1) + o2 max(z,2) (—elz — 2|+ 1)

+e25(1+min(3¢,z)) (1 — % + E|IL’ _ Zl)

Koe(z,2) = [628(26 e(x42)—1)+e* (e(z 4 2) +1)

4 o2e(1+max(z,2)) (1+2¢—¢lz— z|)} , (4.4)

but is found by similar means.
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For # > 2 and € > 0, closed forms of Kz . should be derivable, but as of right
now they are unknown. If the jump in complexity from K; . to K. is indicative,
writing the closed form for higher 8 values will quickly become impractical, even if
they can be found using the same straightforward techniques. Fortunately, as we
discussed in Section [3| it is actually preferable to work with the Hilbert-Schmidt
SVD which is based on the series form of Kg . from rather than the closed
form.

TN 1B
[\ 22X
i

"0;0;0;9' '
AR

WU

Fig. 2: Copies of the iterated Brownian bridge kernel. Top: Kg 1o for 8 =1 (left),
B =2 (middle), 3 = 3 (right); bottom: Kg . for 3 =7, e =10 (left), 8 =13, =30
(middle), 8 = 20, e = 50 (right).

04 06

D

Fig. [2| shows iterated Brownian bridge kernels using the same values of 3 as in
Fig.[T] The plots in Fig. 2]illustrate how the iterated Brownian bridge kernels using
large values of € become more localized and more and more resemble translated
Gaussian kernels as 3 — co. However, by construction, these Gaussian-like iterated
Brownian bridge kernels obey zero boundary conditions.

To see what the effect of these built-in boundary conditions may be, we plot
the cardinal functions for interpolation by iterated Brownian bridge kernels and
by Gaussians (which are simply translated across the domain of interest). The top
row of Fig. [3] shows some of the cardinal functions for iterated Brownian bridge
interpolation with Kag 50 at 22 equally spaced points in (0,1) on the left, and for
22 Chebyshev points on the right. The bottom row provides the analogous plots
of Gaussian cardinal functions, where the shape parameter of the Gaussian was
chosen to match the shape of K0 50(-,1/2), i.e., egauss = 5.75. Iterated Brownian
bridge cardinal functions are evaluated via (z)? W~! as discussed at the end of
Section while we use k(xz)TK™! for Gaussians. Note that the cardinal func-
tions associated with Kag 50 have to be evaluated using the Hilbert-Schmidt SVD
approach since a closed form is not even known for this kernel. Filling the K matrix
via truncated Hilbert-Schmidt expansions would be possible, but not advisable as
explained earlier. On the other hand, the direct approach is fine for Gaussians
due to the relatively large value of the shape parameter used for this example. If
one wants to look at cardinal functions associated with “flat” Gaussian then the
Hilbert-Schmidt SVD of [14] can be employed.
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1 4000

A
V

-0.5) —2000|

10

-10 -8
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig. 3: Some cardinal functions for interpolation at 22 points in (0, 1). Top: iterated
Brownian bridge cardinal functions for equally spaced points (left), Chebyshev
points (right); bottom: Gaussian cardinal functions for equally spaced points (left),
Chebyshev points (right).

It is interesting to observe that, due to the built-in boundary conditions, the
iterated Brownian bridge cardinal functions indicate that uniformly distributed
data is much preferred over Chebyshev data, even though one might expect some-
thing like a Runge phenomenon to occur when interpolating on a compact interval.
On the other hand, it is known that interpolation with cubic splines also favors
evenly distributed data (see, e.g., [2425]). In the Gaussian case, the preference is
not as clear, but will favor Chebyshev points as the shape parameter tends to zero,
i.e., as one approaches polynomial interpolation. This justifies our use of equally
spaced points for the experiments reported in Section [6]

5 Error Bounds via Sampling Inequalities

The sub-family of iterated Brownian bridge kernels with ¢ = 0 coincides with
the special class of interpolatory L-splines with even-order derivative boundary
conditions mentioned in [42] Sect. 8], provided those derivatives are zero also for
the function f generating the data. We now use the much more recent framework
of sampling inequalities in reproducing kernel Hilbert spaces (see, e.g. [31]) to
obtain the same error bounds as already reported in [42]. The following discussion
closely follows [311[34] and also draws on some ingredients from [42].

The goal of a typical sampling inequality is to bound a weak continuous norm
of a function which is either zero or small on a discrete sampling set X by a
sum of two terms: one measuring the sampled data on X, and the other given by
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a stronger continuous norm of the function which is usually multiplied by some
power of the fill distance h of X.

In this paper we are concerned with error bounds for kernel-based interpolation,
and the difference between the function f assumed to have generated the data and
its kernel interpolant s is an ideal candidate for the application of a sampling
inequality since this difference is zero on the set X of data points.

For the case ¢ = 0 we can take the (semi-)inner product and (semi-)norm to

be
1 1
oo = [ 1O@e P @as 1= [ (19@) dn,

the usual semi-norm associated with piecewise polynomial splines of degree 23— 1.

We also introduce the finite set X = {z1,...,zy} C [0, 1] of discrete points with

fill distance h = sup min|z — x;|. Using the Lo-norm (i.e., § = 0) as the weak
z€[0,1] Ti

norm one can then prove the following lemma using elementary estimates along

with the Cauchy-Schwarz inequality.

Lemma 1 [3], Lemma 8.33] Given f € 01[0, 1] and the set X defined as above, we
have

£l 2000, < RIfI+ V2| fla.x,
1o,y < VR + | floo,s

where we define the discrete (semi-)norms |f‘§7x =hd ex 2(x) and |floo,x =
SUPgex |f(x)|

A first—suboptimal—interpolation error bound which does not take into con-
sideration the boundary conditions of the kernel or the data can easily be obtained
by using induction based on Rolle’s theorem and Lemma [I] along with the mini-
mum norm property of the Kz ( iterated Brownian bridge interpolant.

Theorem 1 [3], Theorem 8.85] Let f € CP[0,1] be interpolated by a Kg ¢ iterated
Brownian bridge spline s on the set X defined as above. Then there are constants Cg o
and Cg o depending only on B, but not on f or h, such that

If = sl Laf0,1] < Cp2h®|f — slg < 2C5 20° | flg,
1f = sllzoj0] < Coooh” 2| f — slg < 2C5 oh" 72| f|5.

If we also demand that the even-derivative boundary conditions of our iterated
Brownian bridge kernels (in this ¢ = 0 case) are satisfied, then we can prove

Theorem 2 Let f € c?P [0,1] be interpolated by a Kpg o ilerated Brownian bridge
spline s on the set X defined as above and also assume that f satisfies the same bound-
ary conditions as the kernel Kgq, i.e., F@0) = 1) =0,j=0,...,8-1,
then

If = sllza0,1) < 0572h25|f|25, (5.1)
I1f = sl Lo 0] < CBooh® ™ flap- (5.2)
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Proof The proof follows [34], but since the boundary conditions differ we need a
slightly modified argument. Following [36l[42], we introduce the bilinear concomitant

Ps(f,g) as
B—1
Ps(f.9) = > (-1)'D° 71 f(2) D g(a).

=0

It arises as the boundary contribution in repeated integration by parts, i.e.,

1 1
/0 D° f(2)DPg(a)dx = Po(f,g)|} + (~1)° / £(2)D* g(x)da.

Now, using orthogonality in the reproducing kernel Hilbert space of our kernel
K3 o we have

If=slz=(f—s,.f—ss=(f—sfps

Then, however,
1
s ={f s f)5= /O DA(f - 5)(2)D? f(2)da
1
= Ps(f — 5, )]} + (~1)° / (f - )(2)D¥ f(z)dz.

Inspecting the bilinear concomitant we note that

Pi(f —s,f) = (f — 5)(z)Df(x)
Py(f —s,f) =D(f — 5)(@)D*f(z) — (f — 5)(x)D’ (=)
Ps(f —s,f) = D*(f — s)(x)D° f(z) — D(f — s)(x)D* f(2) + (f — 5)(z)D° ()

so that Pg(f — s, f) is zero on the boundary since each product contains an even

derivative of order up to 28 — 2 which is zero since the corresponding derivative of

f as well as that of s (and therefore their difference) is zero on the boundary.
This leaves us with

1
£ l3 = (1" [ (¢ = 9@D (e
0
<|If = sllLyj0,171fl2s-
Theorem [1| together with the inequality just derived now gives us
If = slia0,1) < CB 2R 1F — o3
< Cg,zhwﬂf — 8ll,00,171 128

or
1f = sllzaj0.1] < C3.2h*?|flap-

The bound in the sup-norm can be proved similarly. ad
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Unfortunately, the case e > 0 seems to be considerably more difficult to analyze
since the inner product of the reproducing kernel Hilbert space of Kg . is related
to the differential operator Lg . as well as our specific boundary conditions. Thus,
bounds analogous to — cannot be established since the corresponding
bilinear concomitant no longer seems to vanish on the boundary. Nevertheless, the
numerical experiments below will demonstrate that the same rate of convergence
as in Theorem [2] can be achieved also in the non-polynomial case when ¢ > 0.

Remark 4 Our choice of boundary conditions for the iterated Brownian bridge
kernels was motivated by the simplicity of the resulting eigenexpansion and there-
fore a particularly transparent implementation of the Hilbert-Schmidt SVD. One
could, of course, work with the same differential operator and impose different
boundary conditions, such as periodic boundary conditions, prescribed successive
derivatives at the boundary, or setting odd derivatives to zero instead of even ones.
All of these choices have been studied in the L-spline literature. In the literature
on reproducing kernels the case of periodic boundary conditions was discussed in
[43, Chapter 2], resulting in a reproducing kernel

oo

Roo2) =S ﬁ cos(2nm(z — 2))

n=1

that can be seen to be piecewise polynomial in nature by expressing it in terms of
Bernoulli polynomials as

Roge )= CV g (e ) mod 1)

S @28)! 7% '

For this specific case, the eigenfunctions are sines and cosines, v/2sin(2n7z) and
V2 cos(2nra), with associated double eigenvalues (2n7) ™22, For this setup it is also
rather straightforward to establish error bounds using either L-spline techniques
or RKHS techniques combined with sampling inequalities as done above since
the associated periodic boundary conditions work out nicely with the bilinear
concomitant. In fact, error bounds for the case ¢ > 0 with periodic boundary
conditions can already be found in the L-spline literature [36].

6 Numerical Experiments

The smoothness of the iterated Brownian bridge kernels is controlled by the free
parameter 5 > 1 such that a iterated Brownian bridge interpolant has 25 — 2
smooth derivatives. As was discussed in Section [} we conjecture that the conver-
gence order of interpolants based on these kernels, with respect to the fill distance

h introduced in Section |5 should be O hm), regardless of the value of . Based
on our observation about the cardinal functions in Section [£:2] we always use N
evenly spaced points in (0,1), meaning that h ~ N~!. The experiments in this
section demonstrate that iterated Brownian bridge interpolants converge at order
O (N—2#) for appropriately smooth and homogeneous input functions f.

In addition to the smoothness parameter 3, we have also discussed a shape pa-
rameter £ which influences the peakedness of the iterated Brownian bridge kernels.
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It is known that interpolation performed with infinitely smooth kernels, equipped
with a shape parameter ¢, will yield polynomial interpolation as they approach
their e — 0 “flat” limit (see, e.g., [I1L23L33]). Because e can take positive values,
these methods have the potential to achieve accuracy superior to polynomials at es-
sentially the same computational cost. A similar situation occurs for the iterated
Brownian bridge functions: the presence of the free parameter ¢ allows iterated
Brownian bridge interpolation to surpass piecewise polynomial interpolation for
some interpolation problems.

This section studies the significance of this ¢ parameter, as well as the smooth-
ness parameter 3, in the setting of some interpolation problems. We demonstrate
when the ¢ and g flexibility is valuable in improving the solution accuracy. For
examples dealing with the order of convergence as a function of 8, we compute
the error of our interpolant s to the function f using the La-norm,

error(s) = ||s — fllz,

where the norm is approximated on 400 evenly spaced points in [0,1]. The Lo
norm is used in Section [6.2.2] only, where we are studying the effect of varying e
for a fixed 3.

6.1 Stable Interpolation with the Hilbert-Schmidt SVD

Let us begin our numerical experiments by demonstrating how the Hilbert-Schmidt
SVD brings numerical stability to kernel computations. Moreover, being able to
stably compute the cardinal functions for all values of the kernel parameters as
discussed at the end of Section (and also Fig. [3) allows us to look at the growth
of Lebesgue constant associated with iterated Brownian bridge kernels.

Section introduced the idea that the basis collected in 4 (-) is more sta-
ble than the standard basis in k(-). Numerical evidence of this for Gaussians was
presented in [I4]. Here we show in an experiment that for small values of ¢, the
interpolation matrix K evaluated using the Mercer series representation (3.3 be-
comes unreasonably ill-conditioned even for small N. The function we choose to
interpolate is

f(z) = sin(27z)

which satisfies all boundary conditions for any § value. This condition problem
would still appear even for functions f which do not satisfy any boundary condi-
tions, but the choice of this function f allows us to eliminate nonhomogeneity as
a potential problem here. We perform interpolation with only N = 10 points, and
compare the use of the 9 and k bases in Fig. [da]

For suitably large values of e, the two interpolation methods overlap, but as
e — 0 the standard basis loses accuracy and stagnates as the condition of the
K matrix overwhelms the solution. With the Hilbert-Schmidt SVD we can com-
pute the interpolant through W~! using (3.10) instead, and we are able to safely
interpolate for all values of e. This new basis provides a stable mechanism to evalu-
ate piecewise polynomial splines, of arbitrary degree, for which a Hilbert-Schmidt
series expansion is available.
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Fig. 4: In Fig. even with only N = 10 points, the g = 8 standard basis is too
ill-conditioned to stably interpolate the data as e — 0. The Hilbert-Schmidt SVD
has no such stability problem for small ¢, allowing it to reach the best accuracy
possible subject to machine precision. In Fig. the Lebesgue constant for inter-
polation with Ksp 50 on N equally spaced points in (0,1) grows logarithmically.
The maximum was computed using 10N equally spaced points in [0, 1].

Although this eigenexpansion is only applicable for the piecewise polynomial
splines presented in Section [£.I] this technique could be used to stably evaluate
splines generated by other differential operators and boundary conditions. In this
context it serves as a useful complement to the theory of B-splines (see, e.g., [37]),
which also allow for stable evaluation.

Stability of interpolation methods is frequently also measured by studying the
growth of the Lebesgue constant

N

A = £
NX x%%ﬁ]é' (@)l

where /; is the 4*" Lagrange or cardinal function used for interpolation on the
set X consisting of N points in (0,1). As pointed out earlier, we can evaluate the
entire vector of these cardinal functions for interpolation with iterated Brownian
bridge kernels using the Hilbert-Schmidt SVD, i.e.,

e(a)" = p(a)Tv

where £(z)T = (¢1(x),...,¢n(x)). In Fig. we demonstrate how the Lebesgue
constant for interpolation on N equally spaced points in (0,1) using the kernel
Ko20,50 seems to grow logarithmically, i.e., at the optimal rate, for values of N
from 10 to 5485 This gives further support to the claim that iterated Brownian
bridge kernels, through the Hilbert-Schmidt SVD, provide a stable interpolation
method.
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6.2 Interpolation for Functions Satisfying Homogeneous Boundary Conditions

In the derivation of the iterated Brownian bridge and piecewise polynomial spline
kernels in Section we imposed boundary conditions to ensure unique
Green’s functions. However, in doing so, we have restricted the set of functions
which can be recovered with arbitrary precision on [0, 1] to functions which satisfy
these boundary conditions. This section studies the interpolation properties of
these kernels on suitably homogeneous functions.

0 02 04 08 08 1

Fig. 5: Sample plots of the Gy, function from (6.1) with n = 1,3,5,7. As with all
Gy, in this section, v = .0567. The vertical dashed lines are at x =y and x = 1 —+,
and indicate the point beyond which the function is 0.

The first function that we consider is related to a function from [21I] and was
specifically designed to study the effect of error near the boundaries. This family
of functions,

Gal@) = (1/2=7) (@=L (1—v-a), w01 (6.1)

has all its derivatives at x = 0 and = = 1 equal to 0, meaning that it definitely
satisfies . The parameter v € (0,1/2) causes the function to be identically zero
outside of the interval (v,1 —~), with discontinuous nth derivatives at z = {7,1—
~}. By manipulating n we can consider functions that both satisfy and violate
the necessary smoothness conditions of the underlying Green’s kernel differential
operator . For these experiments we will fix v = .0567 rather arbitrarily but
with the intention of keeping the points of discontinuity away from any data point.
G, is plotted in Fig. [5] for some values of n.

6.2.1 Example 1: Convergence Orders

Our first example will study the order of convergence of these kernel methods for
a fixed e = 1 but different 8 values. We choose the smoothness parameter in our
test function G, to be n = 6 and perform iterated Brownian bridge interpolation
with 8 =1,...,5. For 8 < 3, the necessary smoothness conditions are satisfied, but
for 8 > 3, the interpolating functions assume a higher level of smoothness than
the function G provides. Fig. [6a] shows the expected improvement in convergence
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order until the smoothness assumption is violated (when B = 4); at which point,
subsequent increases in S yield negligible convergence improvements.

10
B exponent
. -5 1 -1.96
g 10 2 -4.01
o 3 -6.35
-
—beta=2 g -2(732
—beta=3 o) e
107" — beta=4 TN (b) Convergence order
——beta=5 \ table

1

10
input points N

(a) Convergence order plot

Fig. 6: Error results for iterated Brownian bridge interpolation on the function Gg
from . As f increases, the order of convergence increases, until the interpolat-
ing basis functions reach the smoothness of Gg. Beyond that point (which occurs
at B = 3) we encounter saturation, and there is no value in further increasing .
The N input points were evenly spaced in (0,1) as were the 400 points at which
the error was computed.

These results support our belief, discussed in Section [5} that functions which
satisfy the 23 homogeneity conditions and have at least 28 smooth derivatives
can be interpolated using order 8 iterated Brownian bridge basis functions with
an O(N~28) order of convergence. Recall that we were able only to prove that
result in the e = 0 setting. The table in Fig. [6b] shows the results of lines of best
fit on the log scale graph from Fig. [6a] under the assumption that the error of the
interpolant follows

error(s) = CN~2% or log(error(s)) = log C — 28log N.

The exponent column should contain the values —24 if this error formula is valid.
This is the case when 8 < 3, but for larger 3 the convergence order deteriorates.

6.2.2 Example 2: Piecewise Polynomial Splines as Limits of Iterated Brownian Bridge
Interpolants and the Suboptimality of Splines

Earlier, we claimed that the kernels associated with for e = 0 could be used to
produce piecewise polynomial splines with appropriate boundary conditions. We
now demonstrate that fact experimentally, and also show that optimal accuracy
of the iterated Brownian bridge kernels may be achieved for ¢ > 0. Fig. [7] studies
the use of 8 =1 iterated Brownian bridge kernels to approximate G; sampled at
evenly spaced points. This confirms that the iterated Brownian bridge kernels are
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Fig. 7: Error results for iterated Brownian bridge interpolation on the function G
from . The effect of ¢ is studied for various N values, and each time an optimal
¢, denoted eqpt, produces a smaller error than the spline which occurs in the e — 0
limit. In the table on the right, the eopt value and the ratio of the optimal error
to the spline error is displayed. The N input points were evenly spaced in (0, 1)
as were the 400 points at which the error was computed. The spline results were
computed with a piecewise linear spline.

converging to piecewise linear splines as € — 0, and the table in Fig. displays
the egpt value which produces optimal error.

For this 8 = 1 example, the optimal error for iterated Brownian bridge inter-
polation is only marginally better than the spline result. This is not always the
case, as is demonstrated for a 8 = 2 interpolant in Fig. [8] We consider a function

Ga(x) = Ga(z) exp(—36(z — .4)?), (6.2)

where G2 was defined in , using the parameter v = .0567. This function
satisfies the necessary smoothness and convergence criteria, but is concentrated
around z = .4 rather than =z = .5. In Fig. we see clear benefits to using ¢ > 0
to perform interpolation, but not for all N values.

It seems that the potential for improved accuracy by allowing € # 0 is strongly
related to the number, and thus location, of the interpolation points. This flex-
ibility would likely provide even greater value should the scattered data not be
located at evenly spaced points. We conclude only that the “flat” limit of a piece-
wise polynomial spline is achieved in all cases.

6.2.3 Summary for Functions Satisfying Homogeneous Boundary Conditions

The results of this section suggest two points:

— The order of the iterated Brownian bridge interpolation scheme is O(N~27)
for sufficiently smooth and appropriately homogeneous functions.

— The & — 0 limit of the iterated Brownian bridge interpolant is the interpolating
piecewise polynomial spline of degree 23— 1 with boundary conditions specified
by . This observation is in agreement with the theoretical results of [39]
on interpolation in the “flat” limit for kernels with finite smoothness.
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Fig. 8: Error results for iterated Brownian bridge interpolation on the function
Go from . The effect of € is studied for various N values, and for smaller N
an optimal €, denoted €qpt, produces a smaller error than the spline which occurs
in the ¢ — 0 limit. In the table on the right, the eqpt value and the ratio of the
optimal error to the spline error is displayed. For N = 48, the optimal error seems
to occur for ¢ = 0. The N input points were evenly spaced in (0, 1) as were the 400
points at which the error was computed. The spline results were computed with a
natural cubic spline.

6.3 Interpolating Functions Which Do Not Satisfy the Boundary Conditions

In the previous section, Fig. [f] studied the effect of choosing 3 greater than the
requisite level of smoothness of the underlying function. This is relevant, because
we may not know a priori the appropriate smoothness when interpolating functions
with limited smoothness. Likewise, many functions of interest do not satisfy the
boundary conditions 7 and in this section we study the effect of violating those
boundary conditions on the resulting interpolant.

One function which satisfies the 8 = 1 and 8 = 2 conditions is the polynomial

p(z) =z — 22° + 2 (6.3)

This function violates the 8 = 3 conditions because p(4)(0) # 0, but all higher
derivatives are 0, so only the 8 = 3 condition is violated. Fig. |§| studies convergence
using different K ; kernels, and shows that there is stagnation beyond g = 2.
Up until 8 = 2, we observe the expected order of convergence, namely O(Nf%)).
Beyond the first nonhomogeneous boundary condition at 8 = 3, there is no im-
provement in convergence; this happens despite the fact that all other boundary
conditions for 8 # 3 are satisfied. Higher order kernels make no progress, much in
the same way that increasing 8 beyond the appropriate smoothness was ineffective

in Fig. [6]
7 Conclusions and Future Work
In this paper we demonstrated that, despite the infinite length of the Hilbert-

Schmidt series, the Hilbert-Schmidt SVD can be used to perform accurate and
stable interpolation with positive definite kernels—even in their “flat” ¢ — 0 limit.
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B exponent

1 -1.96

2 -3.99

3 -4.43

4 -4.43
(b) Convergence order
table

input points N

(a) Convergence order plot

Fig. 9: Error results for iterated Brownian bridge interpolation on the function p
from . The expected order of convergence is observed for 8 = 1 and 8 = 2,
until the 8 = 3 boundary conditions are violated. For 5 = 3, the order is the same
as f = 2, and even though the 8 = 4 boundary conditions are satisfied, the 8 =4
interpolant converges no more quickly than 5 = 2 because of the g = 3 barrier.
The N input points were evenly spaced in (0,1) as were the 400 points at which
the error was computed. Only e = 1 was considered here.

Iterated Brownian bridge kernels, given in terms of the eigenvalues and eigen-
functions of the iterated modified Helmholtz differential operator applied on the
interval [0,1], were developed in order to provide a simple and transparent im-
plementation of the Hilbert-Schmidt SVD. The kernels are defined by using the
eigenvalues and eigenfunctions in a Hilbert-Schmidt (or Mercer’s) series. Boundary
conditions enforcing homogeneity of even derivatives at 0 and 1 differentiate these
kernels from the traditional full-space Matérn kernels. Free parameters € and S
control the locality and smoothness of these kernels, and in the e — 0 “flat” limit
they can be used to produce piecewise polynomial splines.

Numerical results show convergence of the interpolant at order roughly twice
the smoothness of the kernel, which is a result predicted theoretically for polyno-
mial splines when ¢ = 0 using sampling inequalities. This convergence behavior
only applies to functions which satisfy the aforementioned homogeneity conditions
at the boundary; failure to comply impedes the improvement otherwise commen-
surate with a smoother kernel.

Future work must address the transition to higher dimensions, likely through
the use of tensor product kernels, and the implication of the boundary conditions in
higher dimensions. The presence of both a locality and smoothness parameter adds
another layer of complexity to the common problem of choosing the right kernel
parametrization. Future work should study the statistical or analytic methods
for optimally choosing e and § simultaneously. During that process, one may also
consider the interpretation of fractional f/—in the operator sense 7 a fractional
B seems nonsensical, but the final series computations can handle non-integer 3
without difficulty.

Some work has studied the distribution of error on [0, 1] for iterated Brownian
bridge interpolants, but more work will help understand the effect of violating the
boundary conditions, and perhaps even provide a mechanism to circumvent them
without losing the higher convergence. Furthermore, different boundary conditions
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may be preferable for certain problems, so the impact of other boundary condi-
tions must be studied. It is, of course, also possible to define alternative families
of kernels using the same differential operators we have used, but with different
boundary conditions. For example, a family of periodic kernels is discussed in [43]
Chapter 2]. Finally, one can also investigate other differential operators leading,
for example, to kernels in terms of classical orthogonal polynomials such as Leg-
endre or Chebyshev polynomials. For those cases, our Hilbert-Schmidt SVD can
easily be adapted.

In general, applicability of the Hilbert-Schmidt SVD is limited by the availabil-
ity of the eigenfunctions and eigenvalues of (the Hilbert-Schmidt integral operator
associated with) K. Therefore, one might instead consider kernels that are en-
tirely defined in terms of series expansions of orthonormal bases or frames (as,
e.g., in [20]) with expansion coefficients that decay sufficiently quickly. Our matrix
factorization approach should be applicable to those kernels as well.

Acknowledgements We would like to thank Casey Bylund and William Mayner for their
derivation of formula . We also sincerely thank the two anonymous referees for helping
us significantly improve our paper. Major parts of this research were performed while the
first author visited IIT supported by University of Turin and Piedmont Region through the
project “Alta Formazione”. The second author acknowledges support from the National Science
Foundation via grant DMS-1115392.

Appendix

To illustrate the simplicity of the implementation of the Hilbert-Schmidt SVD for iterated
Brownian bridge kernels we include the MATLAB code for a typical interpolation problem.

function yy = HSSVDInterp(x,y,ep,beta,xx)
phifunc = @(n,x) sqrt(2)*sin(pi*x*n);
lambdafunc = @(n) ((n*pi)."2+ep~2)."(-beta);
N = length(x);
M = ceil(1/pi*sqrt(eps”(-1/beta)*(N"2*pi~2+ep~2)-ep~2));
I_N = eye(N);
Lambda = diag(lambdafunc(1:M));
Phi_interp = phifunc(1:M,x);
Phi_eval = phifunc(1:M,xx);
Phi_1 = Phi_interp(:,1:N);
Phi_2 = Phi_interp(:,N+1l:end);
Lambda_1 = Lambda(1:N,1:N);
Lambda_2 = Lambda(N+1:M,N+1:M);
Correction = Lambda_2*(Phi_1\Phi_2)’/Lambda_1;
Psi_interp = Phi_interp*[I_N;Correction];
Psi_eval = Phi_eval*[I_N;Correction];
yy = Psi_eval*(Psi_interp\y);

end
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