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Abstract. The generalized singular value decomposition (GSVD) of a pair of matrices expresses
each matrix as a product of an orthogonal, a diagonal, and a nonsingular matrix. The nonsingular
matrix, which we denote by X

T , is the same in both products. Available software for computing the
GSVD scales the diagonal matrices and X

T so that the squares of corresponding diagonal entries
sum to one. This paper proposes a scaling that seeks to minimize the condition number of X

T .
The rescaled GSVD gives rise to new truncated GSVD methods, one of which is well suited for the
solution of linear discrete ill-posed problems. Numerical examples show this new truncated GSVD
method to be competitive with the standard truncated GSVD method as well as with Tikhonov
regularization with regard to the quality of the computed approximate solution.

Key words. generalized singular value decomposition, truncated generalized singular value
decomposition, ill-posed problem

1. Introduction. Let A ∈ R
m×n and L ∈ R

p×n, and assume that the null
spaces of A and L intersect trivially, i.e., that

N (A) ∩N (L) = {0}.(1.1)

For notational simplicity, we will assume that m ≥ n ≥ p; however, these constraints
can be removed.

The generalized singular value decomposition (GSVD) of the matrix pair {A,L}
are factorizations of the form

A = UΣXT , L = V MXT ,(1.2)

where U ∈ R
m×m and V ∈ R

p×p are orthogonal, X ∈ R
n×n is nonsingular, and

Σ = diag[σ1, σ2, . . . , σp, 1, 1, . . . , 1] ∈ R
m×n,

M = [diag[µ1, µ2, . . . , µp],0,0, . . . ,0] ∈ R
p×n.

(1.3)

Thus, Σ is a diagonal, possibly rectangular, matrix and M consists of a leading p× p
diagonal matrix to which n− p columns of zeros are appended. The entries of Σ and
M are ordered according to

0 ≤ σ1 ≤ σ2 ≤ . . . ≤ σp ≤ 1, 0 ≤ µp ≤ µp−1 ≤ . . . ≤ µ1 ≤ 1

and satisfy

σ2
j + µ2

j = 1, 1 ≤ j ≤ p;(1.4)

see Golub and Van Loan [11, Sections 8.7.4 and 6.1.6] as well as Bai and Demmel [2, 3]
for properties of the GSVD and its computation. The GSVD finds application, e.g.,
in data analysis, such as microarray analysis, and in the solution of linear discrete
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ill-posed problems; see, e.g., [1, 4, 12, 13, 18]. The constraint (1.1) is not necessary
for the GSVD to exist, but is required for the application of the GSVD to the solution
of linear discrete ill-posed problems described below. We will assume that (1.1) holds
unless explicitly stated otherwise.

Due to the scaling (1.4), the σj are not the singular values of A when L is the
identity. The quotients

γj = σj/µj , 1 ≤ j ≤ p,(1.5)

are referred to as generalized singular values of the matrix pair {A,L}. They are
the singular values of AL−1 when L is square and invertible. In particular, up to
reordering, the γj agree with the singular values of A when L = I.

The present paper proposes a rescaling of the matrices in the decompositions (1.2)
with the purpose of making the factor XT better conditioned. Many applications re-
quire the multiplication of a computed vector by XT or the solution of a linear system
of equations with the matrix XT . In both situations, it is beneficial that XT be well
conditioned. We describe the proposed scaling in Section 2. The application of the
GSVD to the solution of linear discrete ill-posed problems is discussed in Section 3.
The computation of a meaningful approximate solution to these problems generally re-
quires regularization. The truncated GSVD (TGSVD) method based on the standard
scaling (1.4) is a simple and popular regularization method. We describe alternative
truncated GSVD methods that are based on our rescaled GSVD. These methods are
discussed in Section 4. Computed examples that illustrate the performance of the
methods considered in this paper can be found in Section 5, and Section 6 contains
concluding remarks.

2. A rescaled GSVD. We propose to scale the columns of the matrix X in (1.2)
so that they all have Euclidean norm one. This scaling is known to make the condition
number of the rescaled matrix near-minimal over all column scalings. Throughout this
paper ‖·‖2 denotes the Euclidean vector norm or the associated induced matrix norm.
The following propositions collect some properties of the rescaled GSVD.

Proposition 2.1. Let the matrices U, V,Σ,M,X be those of the GSVD (1.2) of
the matrix pair {A,L} with the entries of Σ and M scaled to satisfy (1.4). Let the
diagonal entries of the matrix

D = diag[d1, d2, . . . , dn] ∈ R
n×n(2.1)

be positive and such that every column of the matrix

X̃ = XD

is of unit Euclidean norm. Then the condition number of X̃, given by κ(X̃) =

‖X̃‖2‖X̃−1‖2, is within a factor n of its smallest value over all choices of diagonal
matrices D. Introduce the rescaled diagonal matrices

Σ̃ = diag[σ̃1, σ̃2, . . . , σ̃p, d
−1
p+1, d

−1
p+2, . . . , d

−1
n ] = ΣD−1,(2.2)

M̃ = [diag[µ̃1, µ̃2, . . . , µ̃p],0,0, . . . ,0] = MD−1.

Then the rescaled GSVD of the matrix pair {A,L} is given by

A = U Σ̃X̃T , L = V M̃X̃T .(2.3)
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The generalized singular values γ̃j = σ̃j/µ̃j, 1 ≤ j ≤ p, associated with this decom-
position are the same as the generalized singular values (1.5) associated with (1.2).
When L = I, the σ̃j agree, up to ordering, with the singular values of A. Similarly,
when A = I, the µ̃j agree with the singular values of L.

Proof. It follows from (1.1) that the matrix X is nonsingular and, therefore, the

diagonal matrix (2.1) is invertible. The property of κ(X̃) is shown by Demmel [7].

We turn to the situation when L = I. It follows from the representation (2.3) of
L that

I = LT L = X̃M̃T V T V M̃X̃T .

Thus, X̃T X̃ = M̃−2. The columns of X̃ are scaled to be of unit length. Therefore
M̃ = I and X̃ is orthogonal. Hence, the representation (2.3) of A is a (standard)
singular value decomposition up to the ordering of the singular values.

Let, instead, A = I. Then the representation (2.3) of A yields

I = AT A = X̃Σ̃T Σ̃X̃T ,

from which we conclude that Σ̃ = I and that X̃ is orthogonal. It follows that the
representation (2.3) of L is a (standard) singular value decomposition of L.

We remark that while, generally, κ(X̃) < κ(X), the rescaling may result in that

κ(Σ̃) > κ(Σ). However, the condition number of Σ̃ typically is of no significance in
the application to the solution of discrete ill-posed problems of concern in the present
paper. We will comment further on this in Sections 3 and 4.

When condition (1.1) does not hold, the matrix X in (1.2) may have a zero
column. We then set the corresponding diagonal entry of (2.1) to one.

The following result shows that the absolute and relative condition numbers for
simple finite generalized singular values are not affected by our rescaling of the GSVD.

Proposition 2.2. Let γj = σj/µj = σ̃j/µ̃j be a simple, finite, nonzero gener-
alized singular value of the matrix pair {A,L}, and let yj ∈ R

n be the jth column

of Y = (XT )−1 and ỹj ∈ R
n the jth column of Ỹ = (X̃T )−1. Thus, yj and ỹj are

generalized singular vectors of the decompositions (1.2) and (2.3), respectively. Then
the absolute condition number κabs(γj) can be expressed as

κabs(γj) =
‖yj‖2

µj
(1 + γj) =

‖ỹj‖2

µ̃j
(1 + γj),

and the relative condition number κrel(γj) is given by

κrel(γj) = ‖yj‖2

(
‖A‖2

σj
+

‖L‖2

µj

)
= ‖ỹj‖2

(
‖A‖2

σ̃j
+

‖L‖2

µ̃j

)
.

Proof. The jth generalized singular vector yj associated with the decomposition

(1.2) is divided by dj in the rescaling of the decomposition, since Ỹ = Y D−1. Analo-
gously, σj and µj are replaced by σ̃j = σj/dj and µ̃j = µj/dj , respectively. Thus, the
formulas derived by Sun [23] for the absolute and relative condition numbers remain
the same.
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3. The solution of linear discrete ill-posed problems. Consider the com-
putation of an approximate solution of the minimization problem

min
x∈Rn

‖Ax − b‖2,(3.1)

where A ∈ R
m×n is a matrix with many singular values of different orders of mag-

nitude close to the origin. Minimization problems (3.1) with a matrix of this kind
often are referred to as discrete ill-posed problems. They arise, for example, from the
discretization of linear ill-posed problems, such as Fredholm integral equations of the
first kind with a continuous kernel. The vector b ∈ R

m in discrete ill-posed problems
that arise in science and engineering often represents error-contaminated data.

Let e ∈ R
m denote the (unknown) error in b, and let b̌ ∈ R

m be the (unknown)
error-free vector associated with b, i.e.,

b = b̌ + e.(3.2)

Let x̌ denote the solution of minimal Euclidean norm of the least-squares problem
obtained by replacing b by b̌ in (3.1). We would like to determine an approximation of
x̌ by computing a suitable approximate solution of the available least-squares problem
(3.1). However, the presence of singular values of A close to the origin makes the
solution of (3.1) sensitive to the error e in b. In particular, the solution of (3.1) of
minimal Euclidean norm typically is not a useful approximation of x̌.

A common approach to remedy this difficulty is to replace the least-squares prob-
lem (3.1) by a nearby problem that is less sensitive to the error e in b. One of the
most popular approaches is known as Tikhonov regularization, which replaces (3.1)
by a penalized least-squares problem of the form

min
x∈Rn

{‖Ax − b‖2
2 + λ‖Lx‖2

2}.(3.3)

The matrix L ∈ R
p×n is referred to as the regularization matrix and the scalar λ ≥ 0

as the regularization parameter. For thorough discussions on ill-posed and discrete
ill-posed problems, as well as on Tikhonov regularization and other regularization
methods, we refer to Engl et al. [10] and Hansen [13]. When (1.1) holds, the mini-
mization problem (3.3) has a unique solution xL,λ for any λ > 0. We required above
that p ≤ n. This inequality can be assumed to hold in the present application, be-
cause when p > n, we may replace L in (3.3) by the upper triangular n× n matrix of
its QR factorization.

The regularization parameter λ > 0 can be determined in many ways, including
by the discrepancy principle, the L-curve criterion, generalized cross validation, and
extrapolation; see, e.g., [5, 6, 10, 13, 16, 17, 21] for discussions on these and other
methods. The discrepancy principle requires that a bound ε for the error in (3.2) be
known and that b̌ is in the range of A. We will assume these requirements to hold, and
will apply the discrepancy principle to determine λ > 0 in the computed examples of
Section 5. Thus,

‖e‖2 ≤ ε.(3.4)

The discrepancy principle prescribes that the parameter λ > 0 be chosen so that

‖AxL,λ − b‖2 = ηε(3.5)
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is satisfied, where η ≥ 1 is a user-supplied parameter independent of ε. Typically, η
is chosen close to unity when ε is known to be a fairly sharp upper bound for ‖e‖2.

Commonly used regularization matrices include the identity and finite difference
matrices, such as

L′ =
1

2




1 −1 0
1 −1

. . .
. . .

0 1 −1


 ∈ R

(n−1)×n(3.6)

and

L′′ =
1

4




−1 2 −1 0
−1 2 −1

. . .
. . .

. . .

0 −1 2 −1


 ∈ R

(n−2)×n.

Also more complicated regularization matrices are discussed in the literature. For
instance, for n even, the regularization matrix

L̂ = L′′(I − wwT ),(3.7)

where

w = c [cos(tn/2), cos(tn/2−1), . . . , cos(t1), cos(t1), . . . , cos(tn/2−1), cos(tn/2)]
T

with tj = 2j−1
n π, j = ±1,±2, . . . ,±n/2, and the scaling factor c chosen so that w is of

unit length, is considered in [9, Example 3.1]. Many other examples of regularization
matrices can be found in [8, 9, 19, 22].

Substituting the rescaled GSVD (2.3) into (3.3) and letting z = X̃T x yields the
penalized least-squares problem with diagonal matrices

min
z∈Rn

{‖Σ̃z − UT b‖2
2 + λ‖M̃z‖2

2},

whose solution can be determined by solving

min
z∈Rn

∥∥∥∥∥

[
Σ̃

λ1/2M̃

]
z −

[
UT b

0

]∥∥∥∥∥
2

.(3.8)

Assume for the moment that m = n = p. Then

κ

([
Σ̃

λ1/2M̃

])
=

max
1≤j≤p

(σ̃2
j + λµ̃2

j )
1/2

min
1≤j≤p

(σ̃2
j + λµ̃2

j )
1/2

.

Let the maximum and minimum of j → (σ̃2
j + λµ̃2

j )
1/2 be achieved for the indices

jmax and jmin, respectively, and assume that σ̃jmax
≥ σ̃jmin

and µ̃jmin
> 0. These

inequalities typically hold. Then

(σ̃2
jmax

+ λµ̃2
jmax

)1/2

(σ̃2
jmin

+ λµ̃2
jmin

)1/2
≤

σ̃jmax

σ̃jmin
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and it follows that

κ

([
Σ̃

λ1/2M̃

])
≤ κ(Σ̃).

We conclude that due to regularization, the matrix in (3.8) generally has a smaller

condition number than Σ̃. In particular, the scaling in (2.2) typically does not result
in a least-squares problem with a very ill-conditioned matrix. We refer to [24, 25] for
discussions on the conditioning of least-squares problems.

Let zL,λ denote the solution of (3.8). Then the solution of (3.3) can be determined
from

xL,λ = (X̃T )−1zL,λ,

i.e., by solving a linear system of equations with the matrix X̃T and right-hand side
zL,λ. The condition number of the task of computing xL,λ from zL,λ is κ(X̃). It is
beneficial if this condition number is small. If, instead, the standard GSVD (1.2) is
substituted into (3.3), then the solution xL,λ of (3.3) is determined in an analogous
fashion by solving a linear system of equations with the matrix XT . The use of the
rescaled GSVD is advantageous since, generally, κ(X̃) < κ(X).

4. TGSVD-type methods. Truncated GSVD (TGSVD) is a regularization
method in which a truncation index is a discrete regularization parameter. Insightful
discussions on this method are provided by Hansen [12, 13]. Let U = [u1,u2, . . . ,um]
and X be the matrices in (1.2), and define Y = [y1,y2, . . . ,yn] = X−T . Substituting
the decomposition (1.2) of A into (3.1) yields

min
z∈Rn

‖Σz − UT b‖2, z = [z1, z2, . . . , zn]T = XT x.

The TGSVD method restricts the above minimization to vectors z whose first p − k
entries z1, z2, . . . , zp−k are required to vanish for a user-chosen truncation index k.
Then the computed solution only depends on the k largest σj . The solution of the
restricted minimization problem is given by

zL,k =

[
0, 0, . . . , 0,

uT
p−k+1b

σp−k+1
,
uT

p−k+2b

σp−k+2
, . . . ,

uT
p b

σp
,uT

p+1b,uT
p+2b, . . . ,uT

nb

]T

,(4.1)

which yields the approximate solution

xL,k = Y zL,k =

p∑

j=p−k+1

uT
j b

σj
yj +

n∑

j=p+1

(uT
j b)yj

of (3.1). The truncation index k is a regularization parameter and can be determined
by the same methods commonly used to determine the regularization parameter λ in
Tikhonov regularization (3.3). For instance, the discrepancy principle prescribes that
the truncation index k be chosen as small as possible such that

‖AxL,k − b‖2 ≤ ηε.(4.2)

This inequality is analogous to (3.5) for Tikhonov regularization and requires a bound
(3.4) to be known.
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We turn to a modification of the TGSVD method described above. Introduce the
diagonal, possibly rectangular, matrix

Σk = diag[0, . . . , 0, σp−k+1, . . . , σp, 1, 1, . . . , 1] ∈ R
m×n.

The vector zL,k defined by (4.1) is the solution of minimal Euclidean norm of the
minimization problem

min
z∈Rn

‖Σkz − UT b‖2.

The condition number of Σk is given by κ(Σk) = σ−1
p−k+1. Let Mm,n,p be the set of

block diagonal matrices with an arbitrary leading principal p× p block and a trailing
principal (m−p)×(n−p) block that is made up of the first n−p columns of the identity
matrix of order m − p. The following proposition characterizes a closest matrix to Σ
in the set Mm,n,p with the same condition number as Σk.

Proposition 4.1. Let the matrix Σ̂bk be given by

Σ̂bk = diag[0, . . . , 0, σ̂p−bk+1, . . . , σ̂p, 1, 1, . . . , 1] ∈ R
m×n,(4.3)

where

σ̂j = 0, 1 ≤ j ≤ p − k̂,

σ̂j = σp−k+1, p − k̂ + 1 ≤ j ≤ p − k,
σ̂j = σj , p − k < j ≤ p,

and the index k̂ is determined by the inequalities σp−bk+1 ≥ σp−k+1/2 and σp−bk <

σp−k+1/2. Then Σ̂bk is a closest matrix to Σ in the set Mm,n,p in the spectral norm
with the same condition number as Σk.

Proof. The last m − p rows and the last n − p columns of the matrices in the set
Mm,n,p agree with the last m− p rows and the last n− p columns, respectively, of the
matrix Σ in (1.3). These rows and columns are related to the number of rows of A
and the dimension of the null space of L, and should be kept fixed.

Let the leading principal p × p submatrix Mp of M ∈ Mm,n,p have the singular
value decomposition Mp = UpΣpV

T
p , where Up, Vp ∈ R

p×p are orthogonal and the
nontrivial entries of the diagonal matrix Σp are sorted in increasing order. Denote
the leading p × p principal submatrix of Σ, defined by (1.3), by Σ0. Then it follows
from [15, Theorem 3.4.5] and the Fan dominance theorem [15, Corollary 3.5.9] that

‖Σ0 − Mp‖2 ≥ ‖Σ0 − Σp‖2.

Thus, the closest matrix to Σ0 in the spectral norm is diagonal. It follows that
the closest matrix to Σ is of the form (4.3) for certain entries σ̂j and index k̂. If

σp−k+1 = 0, then k̂ = p and Σ̂bk = Σ. When σp−k+1 > 0, a closest matrix Σ̂bk to Σ
with smallest diagonal entry σp−k+1 is obtained by modifying each diagonal entry of Σ
that is smaller than σp−k+1 as little as possible to be either σp−k+1 or zero. Hence, the
diagonal entries that are larger than or equal to σp−k+1/2 are set to σp−k+1 and the

remaining ones are set to zero. This determines a matrix Σ̂bk such that κ(Σk) = κ(Σ̂bk)
and

‖Σ − Σ̂bk‖2 = 0, if σp−k+1 = 0,

‖Σ − Σ̂bk‖2 = σp−k, if σp−k <
σp−k+1

2 ,

‖Σ − Σ̂bk‖2 ≤
σp−k+1

2 , if 0 <
σp−k+1

2 ≤ σp−k.
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Comparing with ‖Σ − Σk‖2 = σp−k shows the proposition.
Let ẑL,bk denote the solution of minimal Euclidean norm of the minimization

problem

min
z∈Rn

‖Σ̂bkz − UT b‖2.

Since κ(Σk) = κ(Σ̂bk) and Σ̂bk is at least as close to Σ as Σk, the approximate solution
x̂L,bk = Y ẑL,bk can be expected to be of the same or higher quality as xL,k. This is
confirmed by computed examples reported in Section 5. We refer to this method for
computing x̂L,bk as the truncated modified GSVD (TMGSVD) method. An analogous

modification of the truncated (standard) singular value decomposition is proposed in
[20].

We have introduced the TMGSVD method because it is a simple and natural
modification of the TGSVD method. However, we do not advocate its use for the
solution of discrete ill-posed problems, because the computed results obtained with
this method depend in an intricate way on the scaling of the matrices A and L, and
the vector b in (3.3). For instance, when A and b are replaced by 10A and 10b, but
L is kept fixed, generally all entries of the diagonal matrices Σ in (1.3) change, but

not by a common factor. Therefore, the modification Σ̂bk of Σ of Proposition 4.1,
and the computed approximation x̂L,bk of x̌, depend on the scaling of A, L, and b.
This difficulty can be circumvented by modifying the rescaled GSVD instead of the
standard GSVD. We now describe this approach.

Consider truncated regularization methods based on the rescaled GSVD. Define
the diagonal, possibly rectangular, matrix

Σ̃′ = diag[σ̃j1 , σ̃j2 , . . . , σ̃jp
, d−1

p+1, d
−1
p+2, . . . , d

−1
n ] ∈ R

m×n,(4.4)

where the i → ji defines a renumbering such that

σ̃j1 ≤ σ̃j2 ≤ . . . ≤ σ̃jp
.

The last n − p diagonal entries of (4.4), which are associated with the null space of
L, are not renumbered. The same renumbering also is applied to the diagonal entries
of the matrix M̃ to give the new diagonal matrix M̃ ′, and we renumber the columns
of the matrices X̃, V , and U in (2.3) accordingly so that the renumbering does not
affect the rescaled GSVD Tikhonov solution xL,λ. We refer to the matrices with

renumbered columns as X̃ ′, V ′, and U ′.
The renumbering may affect the approximate solution determined by the trun-

cated rescaled GSVD (TRGSVD) method. Introduce for some 1 ≤ k ≤ p the matrix

Σ̃′
k = diag[0, . . . , 0, σ̃jp−k+1

, σ̃jp−k+2
, . . . , σ̃jp

, d−1
p+1, d

−1
p+2, . . . , d

−1
n ] ∈ R

m×n(4.5)

and consider the minimization problem

min
z∈Rn

‖Σ̃′
kz − (U ′)T b‖2.(4.6)

Let z̃L,k denote the solution of minimal Euclidean norm. Then x̃L,k = (X̃ ′)−T z̃L,k is
the TRGSVD approximate solution of (3.1).

The TRGSVD method can be modified similarly as TGSVD was modified to
give the TMGSVD method. The modified method so obtained, which we refer to
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as TMRGSVD, will be seen to perform the best among the truncated GSVD-type
methods considered. Its derivation is completely analogous to the derivation of the
TMGSVD method from TGSVD. We therefore omit the details.

We conclude this section with a comment on the conditioning of the matrix in
(4.6). Regularization implies that the smallest p − k of the p first diagonal entries of
the matrix (4.4) are ignored in the solution process. This generally makes the matrix
(4.5) better conditioned than the matrix (4.4). Therefore, the possible increase of the
condition number of the matrix (4.4) due to rescaling generally is not a concern.

5. Computed examples. The calculations of this section were carried out in
MATLAB with machine epsilon about 2.2·10−16. We use examples from the MATLAB
package Regularization Tools [13]. All examples but one are obtained by discretizing
Fredholm integral equations of the first kind

∫ b

a

h(s, t)x(t) dt = g(s), c ≤ s ≤ d,(5.1)

with a smooth kernel h. The discretizations are carried out by Galerkin or Nyström
methods and yield linear discrete ill-posed problems (3.1). MATLAB functions in
[13] determine discretizations A ∈ R

n×n of the integral operators and scaled discrete
approximations x̌ ∈ R

n of the solution x of (5.1). In all examples, n = 500. We
generate the “unknown” error-free vector b̌ = Ax̌ and add a “noise vector” e ∈ R

n

with normally distributed random entries with zero mean to obtain the vector b in
(3.1); cf. (3.2). The noise vector e is scaled to correspond to a specified noise level
‖e‖2/‖b̌‖2, which is assumed to be known.

We determine approximations of the desired solution x̌ by the TGSVD, TRGSVD,
and TMRSVD methods described in Section 4, as well as by Tikhonov regularization
considered in Section 3. The performance of several regularization matrices is illus-
trated. The regularization parameters are determined by the discrepancy principle
with ε = ‖e‖ and η = 1.01 in (3.5) and (4.2). To gain insight into the behavior of
the solution methods, we report in every example the average of the relative errors in
the computed solution over 1000 runs with different noise vectors e for each specified
noise level.

method average k average relative error
Tikhonov −− 0.1318
TGSVD 1.000 0.1029
TRGSVD 1.000 0.1026
TMRGSVD 1.000 0.1026

Table 5.1

Example 5.1: Average relative errors in the computed approximate solutions for the deriv2 test
problem and average truncation indices for the truncated GSVD-type methods for L = L

′ and noise
level 10−1

.

Example 5.1. We first consider the problem deriv2 from [13]. The kernel, solution,
and right-hand side of (5.1) are given by

h(s, t) =

{
s(t − 1), s < t,
t(s − 1), s ≥ t,

x(t) = t,

g(s) =
s3 − s

6
,
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and a = c = 0, b = d = 1. Thus, the kernel h is the Green’s function for the
second derivative. Table 5.1 shows the average relative errors in the computed so-
lutions determined by Tikhonov regularization and truncated GSVD-type methods.
The average truncation indices for the latter methods also are displayed. The regu-
larization matrix L = L′ defined by (3.6) is used and the regularization parameters
are determined by the discrepancy principle. The noise level is 10−1. Note that all
truncated GSVD-type methods yield better approximations of the desired solution x̌

than Tikhonov regularization. We have κ(X) = 1 · 102 and κ(X̃) = 1 · 101. 2

method average k average relative error
Tikhonov −− 0.1028
TGSVD 15.66 0.1120
TRGSVD 15.66 0.1120
TMRGSVD 19.67 0.0942

Table 5.2

Example 5.2: Average relative errors in the computed approximate solutions for the heat test
problem and average truncation indices for the truncated GSVD-type methods for L = L

′ and noise
level 10−2

.

Example 5.2. The test problem heat from [13] is a discretization of a Volterra
integral equation of the first kind on the interval [0, 1] with a convolution kernel.
Table 5.2 shows the average relative errors in the computed solutions determined by
Tikhonov regularization and truncated GSVD-type methods for the noise level 10−2.
Also the average truncation index for the truncated GSVD-type methods is displayed.
The regularization matrix is L = L′ defined by (3.6). The smallest average error is

furnished by TMRGSVD. We have κ(X) = 9 · 101 and κ(X̃) = 2 · 101.
To further illustrate the performance of the truncated GSVD-type methods, we

display in Table 5.3 the relative errors and truncation indices for one run. The TM-
RGSVD method yields an approximate solution with the largest k-value and provides
the most accurate approximation of x̌. Figure 5.1 depicts the error in the approximate
solutions determined by the truncated GSVD-type methods for several k-values. The
figure shows that the discrepancy principle when used with the TMRGSVD method
determines a k-value that gives an approximate solution with the smallest error. This
is not the case for the TGSVD and TRGSVD methods. However, even the best k-
value for the latter methods (k = 21) yields approximate solutions with larger errors
than the solution obtained with the TMRGSVD method.

We conclude this example with an illustration of the performance of the TMGSVD
method. As mentioned in Section 4, the computed approximate solutions determined
with this method depend on the scaling of A, L, and b. When we solve the problem
of this example 1000 times with different noise realizations, all corresponding to the
noise level 10−2, we obtain the average relative error 0.1011 and average truncation
index k = 18.66. This average relative error is smaller than the average relative errors
for all methods of Table 5.2 except for TMRGSVD. If we replace the matrix A and
vector b by 10A and 10b, respectively, and keep the regularization matrix L fixed, then
the TMGSVD method yields the average relative error 0.0996 and average truncation
index k = 19.05 over 1000 runs. Thus, the scaling reduces the average relative error in
the computed approximations of x̌ determined by TMGSVD. Since it is not obvious
how to scale the matrices A and L, and vector b, to obtain the minimal average relative
error in the computed approximate solutions, and because TMRGSVD delivers a
smaller average relative error, we propose that the latter method be used instead of
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Fig. 5.1. Example 5.2. Errors in the computed approximate solutions given by TGSVD (solid
curve), TRGSVD (dash-dotted curve), and TMRGSVD (dashed curve). The curves for the TGSVD
and TRGSVD methods are indistinguishable.

TMGSVD. 2

method k relative error
Tikhonov −− 0.0735
TGSVD 18 0.1005
TRGSVD 18 0.1005
TMRGSVD 23 0.0572

Table 5.3

Example 5.2: Relative errors in the computed approximate solutions for the heat test problem
and truncation indices for the truncated GSVD-type methods for L = L

′ and noise level 10−2
.

method average k average relative error
Tikhonov −− 0.1073
TGSVD 2.03 0.0938
TRGSVD 2.03 0.0938
TMRGSVD 3.03 0.0628

Table 5.4

Example 5.3: Average relative errors in the computed approximate solutions for the gravity test
problem and average truncation indices for the truncated GSVD-type methods for L = bL and noise
level 10−1.

Example 5.3. The test problem gravity from [13] is a discretization of a Fred-
holm integral equation of the first kind with kernel h(s, t) = δ(δ2 + (s − t)2)−3/2 and
a = c = 0, b = d = 1 in (5.1). The right-hand side function g in (5.1) is chosen so that
the integral equation has the solution x(t) = sin(πt) + sin(2πt)/2. Discretization is
carried out by a Nyström method based on the midpoint quadrature rule. The result-
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method average k average relative error
Tikhonov −− 0.0315
TGSVD 3.53 0.0305
TRGSVD 3.53 0.0305
TMRGSVD 4.53 0.0227

Table 5.5

Example 5.3: Average relative errors in the computed approximate solutions for the gravity test
problem and average truncation indices for the truncated GSVD-type methods for L = bL and noise
level 10−2.

ing matrix A is symmetric and Toeplitz. The parameter δ is the depth at which the
magnetic deposit is located in the model. We use the default value δ = 0.25. Tables
5.4 and 5.5 show the average relative errors in the computed approximate solutions as
well as the average truncation indices for the truncated GSVD-type methods for the
noise levels 10−1 and 10−2. The regularization matrix (3.7) is used. The TMRGSVD
method is seen to yield the smallest average relative errors in the computed approx-
imate solutions for both noise levels. We have κ(X) = 1 · 102 and κ(X̃) = 3 · 101.
2

6. Conclusion. This paper proposes a rescaling of the GSVD that is designed
to reduce the condition number of the square nonsingular matrix X in (1.3). The
rescaling and the solution of a matrix nearness problem give rise to new truncated
GSVD-type regularization methods for the solution of discrete ill-posed problems.
Computed examples show one of these methods, TMRGSVD, to generally deter-
mine approximate solutions of higher quality than the standard TGSVD method and
Tikhonov regularization.
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[4] Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
[5] C. Brezinski, G. Rodriguez, and S. Seatzu, Error estimates for linear systems with applications

to regularization, Numer. Algorithms, 49 (2008), pp. 85–104.
[6] C. Brezinski, G. Rodriguez, and S. Seatzu, Error estimates for the regularization of least squares

problems, Numer. Algorithms, 51 (2009), pp. 61–76.
[7] J. Demmel, The condition number of equivalence transformations that block diagonalize matrix

pencils, SIAM J. Numer. Anal., 20 (1983), pp. 599–610.
[8] M. Donatelli and L. Reichel, Square smoothing regularization matrices with accurate boundary

conditions, J. Comput. Appl. Math., in press
[9] L. Dykes and L. Reichel On the reduction of Tikhonov minimization problems and the con-

struction of regularization matrices, Numer. Algorithms, 60 (2012), pp. 683–696.
[10] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Kluwer, Dor-

drecht, 1996.
[11] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed., Johns Hopkins University

Press, Baltimore, 2013.
[12] P. C. Hansen, Regularization, GSVD and truncated GSVD, BIT, 29 (1989), pp. 491–504.



A rescaled GSVD method 13

[13] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems, SIAM, Philadelphia, 1998.
[14] P. C. Hansen, Regularization tools version 4.0 for Matlab 7.3, Numer. Algorithms, 46 (2007),

pp. 189–194.
[15] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cam-

bridge, 1991.
[16] S. Kindermann, Convergence analysis of minimization-based noise level-free parameter choice

rules for linear ill-posed problems, Electron. Trans. Numer. Anal., 38 (2011), pp. 233–257.
[17] S. Kindermann, Discretization independent convergence rates for noise level-free parameter

choice rules for the regularization of ill-conditioned problems, Electron. Trans. Numer.
Anal., 40 (2013), pp. 58–81.

[18] C. H. Lee, B. O. Alpert, P. Sankaranarayanan, and O. Alter, GSVD comparison of patient-
matched normal and tumor aCGH profiles reveals global copy-number alterations predicting
glioblastoma multiforme survival, PLoS One, 7 (1) (2012), article e30098.

[19] S. Noschese and L. Reichel, Inverse problems for regularization matrices, Numer. Algorithms,
60 (2012), pp. 531–544.

[20] S. Noschese and L. Reichel, A modified TSVD method for discrete ill-posed problems, Numer.
Linear Algebra Appl., in press.

[21] L. Reichel and G. Rodriguez, Old and new parameter choice rules for discrete ill-posed prob-
lems, Numer. Algorithms, 63 (2013), pp. 65–87.

[22] L. Reichel and Q. Ye, Simple square smoothing regularization operators, Electron. Trans. Nu-
mer. Anal., 33 (2009), pp. 63–83.

[23] J. G. Sun, Condition number and backward error for the generalized singular value decompo-
sition, SIAM J. Matrix Anal. Appl., 22 (2000), pp. 323–341.

[24] L. N. Trefethen and D. Bau, III, Numerical Linear Algebra, SIAM, Philadelphia, 1997.
[25] A. van der Sluis, Stability of the solution of linear least squares problems, Numer. Math., 23

(1975), pp. 241–254.


