Skip to main content
Log in

Regularized solution of LCP problems with application to rigid body dynamics

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

For Linear Complementarity Problems (LCP) with a positive semidefinite matrix M, iterative solvers can be derived by a process of regularization. In [3] the initial LCP is replaced by a sequence of positive definite ones, with the matrices M + αI. Here we analyse a generalization of this method where the identity I is replaced by a positive definite diagonal matrix D. We prove that the sequence of approximations so defined converges to the minimal D-norm solution of the initial LCP. This extension opens the possibility for interesting applications in the field of rigid multibody dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Boikanyo, O., Morosanu, G.: A proximal point algorithm converging strongly for general errors. Optimization Letters 4, 635–641 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Boikanyo, O., Morosanu, G.: Four parameter proximal point algorithms. Nonlinear Anal. 74, 544–555 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cottle, R., Pang, J.S., Stone, R.: The linear complementarity problem. Academic Press Inc., New York (1992)

    MATH  Google Scholar 

  4. Khatibzadeh, H., Ranjbar, S.: On the strong convergence of Halpern type proximal point algorithm. J. Optim. Theory Appl. 158, 385–396 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Lehdili, N., Moudafi, A.: Combining the proximal algorithm and Tikhonov regularization. Optimization 37(3), 239–252 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Rockafellar, R.: Monotone operators and proximal point algorithm. SIAM J. Control. Optim. 14(5), 877–989 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  7. Rockafellar, R.: Monotone operators and augmented Lagrangian methods in nonlinear programming. In: Mangasarian, O., Meyer, R., Robinson, S. (eds.): Nonlinear Programming, Vol. 3, pp 1–25. Academic Press (1978)

  8. Song, Y., Yang, C.: A note on a paper “A regularization method for the proximal point algorithm”. J. Glob. Optim. 43(1), 171–174 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Stewart, D.: Impact and friction solids. Structures and Machines, Birkhäuser, chapter Time-stepping methods and the mathematics of rigid body dynamics (2000)

  10. Wang, F.: A note on the regularized proximal point algorithm. J. Glob. Optim. 50(3), 531–535 (2011)

    Article  MATH  Google Scholar 

  11. Wang, F., Cui, H.: On the contraction-proximal point algorithms with multi-parameters. J. Glob. Optim. 54(3), 485–491 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Xu, H.K.: A regularization method for the proximal point algorithm. J. Glob. Optim. 36(1), 115–125 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantin Popa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popa, C., Preclik, T. & Rüde, U. Regularized solution of LCP problems with application to rigid body dynamics. Numer Algor 69, 145–156 (2015). https://doi.org/10.1007/s11075-014-9886-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-014-9886-0

Keywords

Mathematics Subject Classifications (2010)

Navigation