Skip to main content
Log in

Galerkin-Chebyshev spectral method and block boundary value methods for two-dimensional semilinear parabolic equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we present a high-order accurate method for two-dimensional semilinear parabolic equations. The method is based on a Galerkin-Chebyshev spectral method for discretizing spatial derivatives and a block boundary value methods of fourth-order for temporal discretization. Our formulation has high-order accurate in both space and time. Optimal a priori error bound is derived in the weighted \(L^{2}_{\omega }\)-norm for the semidiscrete formulation. Extensive numerical results are presented to demonstrate the convergence properties of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Crank, J., Nicolson, P.: A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Proc. Cambridge Philos. Soc 43, 50–67 (1947)

    MathSciNet  MATH  Google Scholar 

  2. Smith, G.: Numerical solution of partial differential equations: finite difference methods, 2nd edn. Oxford University Press, Oxford (1978)

    MATH  Google Scholar 

  3. Van lent, J., Vandewalle, S.: Multigrid methods for implicit Runge-Kutta and boundary value method discretizations of PDEs. SIAM. J. Sci. Comput 27, 67–92 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Mardal, K.A., Nilssen, T.K., Staff, G.A.: Order optimal preconditioners for implicit Runge-Kutta schemes applied to parabolic PDEs. SIAM. J. Sci. Comput 29, 361–375 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Hochbruck, M., Ostermann, A.: Explicit exponential Runge Kutta methods for semilinear parabolic problems. SIAM. J. Numer. Anal 43, 1069–1090 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hochbruck, M., Ostermann, A.: Exponential Runge-Kutta methods for parabolic problems. Appl. Numer. Math 53, 323–339 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chawia, M.M., Al-Zanaidi, M.A., Shammeri, A.Z.: High-accuracy finite-difference schemes for the diffusion equation. Neural Parallel Sci. Comput 6, 523–535 (1998)

    Google Scholar 

  8. Thomas, J.W.: Numerical Partial Differential Equations:finite difference methods. Springer-Verlag, New York (1995)

    Book  MATH  Google Scholar 

  9. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, 2nd edn. Springer-Verlag, Berlin Heidelberg (2006)

    MATH  Google Scholar 

  10. Brugnano, L., Trigiante, D.: Solving Differential Problems by Multistep Initial and Boundary Value Methods. Gordon and Beach Science Publishers, Amsterdam (1998)

    Google Scholar 

  11. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley, New York (2008)

    Book  MATH  Google Scholar 

  12. Mohebbi, A., Dehghan, M.: High-order compact solution of the one-dimensional heat and advection-diffusion equations. Appl. Math. Model. 34, 3071–3084 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Shamsi, M., Dehghan, M.: Determination of a control function in three-dimensional parabolic equations by Legendre pseudospectral method. Numer. Methods Partial Differential Eq 28, 74–93 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lakestani, M., Dehghan, M.: The use of Chebyshev cardinal functions for the solution of a partial differential equation with an unknown time-dependent coefficient subject to an extra measurement. J. Comput. Appl. Math 235, 669–678 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Saadatmandi, A., Dehghan, M.: Computation of two time-dependent coefficients in a parabolic partial differential equation subject to additional specifications. Int. J. Comput. Math 87, 997–1008 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dehghan, M., Shakeri, F.: Method of lines solutions of the parabolic inverse problem with an overspecification at a point. Numer. Algorithms 50, 417–437 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shamsi, M., Dehghan, M.: Recovering a time-dependent coefficient in a parabolic equation from overspecified boundary data using the pseudospectral Legendre method. Numer. Methods Partial Differential Eq 23, 196–210 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dehghan, M., Yousefi, S.A., Rashedi, K.: Ritz-Galerkin method for solving an inverse heat conduction problem with a nonlinear source term. Inverse Probl. Sci. En 21, 500–523 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Mohebbi, A., Dehghan, M.: The use of compact boundary value method for the solution of two-dimensional Schrödinger equation. J. Comput. Appl. Math 225, 124–134 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dehghan, M., Mohebbi, A.: High-order compact boundary value method for the solution of unsteady convection-diffusion problems. Math. Comput. Simul 79, 683–699 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Brugnano, L., Trigiante, D.: Stability properties of some BVM methods. Appl. Numer. Math 13, 201–304 (1993)

    Google Scholar 

  22. Brugnano, L., Trigiante, D.: Boundary value methods: the third way between linear multistep and Runge-Kutta methods. Comput. Math. Appl 36, 269–284 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Brugnano, L.: Essentially Symplectic Boundary Value Methods for Linear Hamiltonian Systems. J. Comput. Math 15, 233–252 (1997)

    MathSciNet  MATH  Google Scholar 

  24. Brugnano, L., Trigiante, D.: Block Boundary Value Methods for Linear Hamiltonian Systems. Appl. Math. Comput 81, 49–68 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Deuflhard, P.: Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms. Springer-Verlag, NewYork (2011)

    Book  Google Scholar 

  26. Shen, J.: Efficient spectral-Galerkin method. II. Direct solvers of second- and fourth-order equations using Chebyshev polynomials. SIAM. J. Sci. Comput 16, 74–87 (1995)

    MATH  Google Scholar 

  27. Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications. Springer-Verlag, New York (2011)

    Book  Google Scholar 

  28. Guo, B.Y.: Spectral Methods and Their Applications. World Scietific, Singapore (1998)

    Book  MATH  Google Scholar 

  29. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang T.A.: Spectral Methods in Fluid Mechanics. Springer-Verlag, New York (1988)

    Book  Google Scholar 

  30. Iavernaro, F., Mazzia, F.: Block-boundary value methods for the solution of ordinary differential equations. SIAM J. Sci. Comput 21, 323–339 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, W.J., Sun, J.B., Wu, B.Y.: Space-time spectral method for the two-dimensional generalized sine-Gordon equation. J. Math. Anal. Appl 427, 787–804 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boying Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Sun, J. & Wu, B. Galerkin-Chebyshev spectral method and block boundary value methods for two-dimensional semilinear parabolic equations. Numer Algor 71, 437–455 (2016). https://doi.org/10.1007/s11075-015-0002-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-0002-x

Keywords

Mathematical Subject Classifications (2010)

Navigation