Skip to main content
Log in

On variable step Hermite–Birkhoff solvers combining multistep and 4-stage DIRK methods for stiff ODEs

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Variable-step (VS) 4-stage k-step Hermite–Birkhoff (HB) methods of order p = (k + 2), p = 9, 10, denoted by HB (p), are constructed as a combination of linear k-step methods of order (p − 2) and a diagonally implicit one-step 4-stage Runge–Kutta method of order 3 (DIRK3) for solving stiff ordinary differential equations. Forcing a Taylor expansion of the numerical solution to agree with an expansion of the true solution leads to multistep and Runge–Kutta type order conditions which are reorganized into linear confluent Vandermonde-type systems. This approach allows us to develop L(a)-stable methods of order up to 11 with a > 63°. Fast algorithms are developed for solving these systems in O (p 2) operations to obtain HB interpolation polynomials in terms of generalized Lagrange basis functions. The stepsizes of these methods are controlled by a local error estimator. HB(p) of order p = 9 and 10 compare favorably with existing Cash modified extended backward differentiation formulae of order 7 and 8, MEBDF(7-8) and Ebadi et al. hybrid backward differentiation formulae of order 10 and 12, HBDF(10-12) in solving problems often used to test higher order stiff ODE solvers on the basis of CPU time and error at the endpoint of the integration interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexander, R.: Diagonally implicit Runge–Kutta methods for stiff ODEs. SIAM J. Numer. Anal. 14, 1006–1021 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Björck, A., Elfving, T.: Algorithms for confluent Vandermonde systems. Numer. Math. 21, 130–137 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Björck, A., Pereyra, V.: Solution of Vandermonde systems of equations. Math. Comp. 24, 893–903 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brayton, R.K., Gustavson, F.G., Hachtel, G.D.: A new efficient algorithm for solving differential-algebraic systems using implicit backward differentiation formulas. Proc. IEEE 60, 98–108 (1972)

    Article  MathSciNet  Google Scholar 

  5. Cash, J.R.: On the integration of stiff systems of ODEs using extended backward differentiation formula. Numer. Math. 34, 235–246 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cash, J.R.: The integration of stiff initial value problems in ODEs using modified extendedbackward differentiation formula. Comput. Math. Appl. 9, 645–657 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cash, J.R., Considine, S.: An MEBDF code for stiff initial value problems. ACM Trans. Math. Software 18, 142–160 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cash, J.R.: Modified extended backward differentiation formulae for the numerical solution of stiff initial value problems in ODEs and DAEs. J. Comput. Appl. Math. 125, 117–130 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. D’Ambrosio, R., Izzo, G., Jackiewicz, Z.: Perturbed MEBDF methods. Comput. Math. Appl. 63, 851–861 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ebadi, M., Gokhale, M.Y.: Hybrid BDF methods for the numerical solutions of ordinary differential equations. Numer. Algorithms 55, 1–17 (2010). doi:10.1007/s11075-009-9354-4

    Article  MathSciNet  MATH  Google Scholar 

  11. Enright, W.H., Pryce, J.D.: Two Fortran packages for assessing initial value methods. ACM Trans. Math. Software 13, 1–27 (1987)

    Article  MATH  Google Scholar 

  12. Field, J., Noyes, R.M.: Oscillations in chemical systems. IV: Limit cycle behavior in a model of a real chemical reaction. J. Chem. Phys 60, 1877–1884 (1974)

    Article  Google Scholar 

  13. Galimberti, G., Pereyra, V.: Solving confluent Vandermonde systems of Hermite type. Numer. Math. 18, 44–60 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gear, C.W.: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, Englewood Cliffs (1971)

    MATH  Google Scholar 

  15. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. corr. sec. print. Springer-Verlag, Berlin (2002)

    Google Scholar 

  16. Hojjati, G., Rahimi, M.Y., Hosseini, S.M.: A-EBDF: an adaptive method for numerical solution of stiff systems of ODEs. Math. Comput. Simulation 66, 33–41 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hojjati, G., Rahimi, M.Y., Hosseini, S.M.: New second derivative multistep methods for stiff systems. Appl. Math. Model 30, 466–476 (2006)

    Article  MATH  Google Scholar 

  18. Hull, T.E., Enright, W.H., Fellen, B.M., Sedgwick, A.E.: Comparing numerical methods for ordinary differential equations. SIAM J. Numer. Anal. 9, 603–637 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kelley, C.T.: Solving Nonlinear Equations with Newton’s Method, Fundamentals of Algorithms. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  20. Krogh, F.T. Changing stepsize in the integration of differential equations using modified divided differences. in Proc. Conf. on the Numerical Solution of Ordinary Differential Equations, University of Texas at Austin 1972. In: Bettis, D.G. (ed.) : Lecture Notes in Mathematics No. 362, pp 22–71. Springer-Verlag, Berlin (1974)

  21. Lambert, J.D.: Numerical Methods for Ordinary Differential Systems. Wiley, Chichester (1991)

    MATH  Google Scholar 

  22. Nguyen-Ba, T., Kengne, E., Vaillancourt, R.: One-step 4-stage Hermite–Birkhoff–Taylor ODE solver of order 12. Can. Appl. Math. Q. 16(1), 77–94 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Nguyen-Ba, T., Giordano, T., Vaillancourt, R.: Three-stage Hermite–Birkhoff solver of order 8 and 9 with variable step size for stiff ODEs. Calcolo (2014). doi:10.1007/s10092-014-0121-0

  24. Nordsieck, A.: On numerical integration of ordinary differential equations. Math. Comp. 16, 22–49 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  25. Petzold, L.R.: A description of DASSL: A differential/algebraic system solver. In: Proceedings of IMACS World Congress, Montréal (1982)

  26. Robertson, H.H. The solution of a set of reaction rate equations. In: Walsh, J. (ed.) : Numer Anal., an Introduction, pp 178–182. Academic Press (1966)

  27. Sharp, P.W.: Numerical comparison of explicit Runge–Kutta pairs of orders four through eight. ACM Trans. Math. Software 17, 387–409 (1991)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Truong Nguyen-Ba.

Additional information

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen-Ba, T. On variable step Hermite–Birkhoff solvers combining multistep and 4-stage DIRK methods for stiff ODEs. Numer Algor 71, 855–888 (2016). https://doi.org/10.1007/s11075-015-0027-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-0027-1

Keywords

Mathematics Subject Classification (2010)

Navigation