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1 Introduction

Discretization of semiclassical Schrödinger equations. The quantitative and qualitative be-
havior of space and time discretization methods for linear and nonlinear Schrödinger equa-
tions has been extensively studied in recent years. As a small selection, we mention the
contributions [6,7,8,12,15,22,24,30] which are of relevance in particular in the context of
semiclassical Schrödinger equations.

The numerical approximation of nonlinear Schrödinger equations in the semiclassical
regime is a challenge, since in general the space and time increments have to be chosen
in dependence of the semiclassical parameter 0 < ε < 1 in order to correctly capture the
solution behavior. In particular, for an initial state u depending on the parameter ε in the form
of semiclassical wave packets, WKB states or focussing states, the solution ψ shows a highly
oscillating behavior. However, a precise characterization of the solution to semiclassical
nonlinear Schrödinger equations in dependence of the prescribed initial state is a question
in the area of analysis that has not been resolved exhaustively yet.

Operator splitting methods. Exponential operator splitting methods for nonlinear
Schrödinger equations have been in the focus of interest of both theoretical physics and
numerical analysis in the last years. A comprehensive review of numerical methods for
nonlinear Schrödinger equations such as Gross–Pitaevskii equations is [1], which summa-
rizes most of the studies conducted in this field. Time-splitting methods in conjunction with
spectral space discretizations are overall concluded to be the most successful approxima-
tions, with favorable stability and efficiency as well as norm and energy conservation. In
particular, the spectral accuracy of the space discretization is advantageous for Schrödinger
equations with regular solutions.

A first error analysis of the Lie and Strang splitting methods for nonlinear Schrödinger
equations is found in [9]. The seminal work [26] provides a rigorous convergence analysis
for the Strang splitting method applied to the Schrödinger–Poisson and cubic Schrödinger
equations; extensions to Gross–Pitaevskii equations and high-order splitting methods as well
as a study of the effect of spatial discretization by spectral methods are given for instance
in [20,25,29]. The question of long-time integration, with view on near-conservation of
invariants under time discretization by splitting methods, is considered in [18,19,21], see
also references given therein and [11,14] for the analysis of related classes of methods.

Linear and nonlinear Schrödinger equations in the semiclassical regime are considered
in [7,8], distinguishing between the cases of weak/strong focusing/defocusing nonlineari-
ties. In particular, numerical tests for time-splitting spectral methods are included and ad-
missible meshing strategies for the correct computation of the solution and evaluation of
observables are provided. Theoretical investigations of time-splitting methods applied to the
cubic Schrödinger equation in the semiclassical regime are conducted in [17]. A wider class
of (nonlocal) nonlinearities has recently been analyzed in [12]. In essence, all these contri-
butions confirm that for the correct computation of the solution the time increment has to be
chosen sufficiently small in relation to the semiclassical parameter ε .

Objective and outline. In this work, we study the cubic Schrödinger equation involving a
small but fixed parameter 0 < ε < 1, see Section 2. Our objective is to provide a rigorous
a priori and a posteriori local error analysis for low-order splitting methods, the first-order
Lie splitting and the second-order Strang splitting methods.

First considerations and numerical tests imply that the splitting solution correctly de-
scribes the qualitative behavior of the true solution only if the time stepsize t > 0 is in the
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range of the parameter ε , see also [7,8,17]. Notably, the numerical simulation of the semi-
classical limit (ε → 0) is not possible by the splitting approach.

A refined local error analysis provides a deeper understanding of the dependence on
the time stepsize and the parameter, see Sections 3-5. However, as the obtained bounds in-
volve certain Sobolev norms of the solution, whose precise dependence on ε is in general
unknown, an appropriate a priori choice of the time stepsize to optimally balance computa-
tional cost and accuracy is a delicate issue.

Pessimistic bounds for the solution and its spatial derivatives would lead to a system-
atic underestimation of the time stepsize, at the expense of efficiency. A remedy is the use
of asymptotically correct a posteriori local error estimates for an automatic time step size
control, see Section 6.

The theoretical investigations are substantiated and complemented by numerical exam-
ples, see Section 7.

Theoretical results and connection to earlier work. The present paper extends the work
of [16,17], where the local error in dependence of ε is studied for higher-order splitting
methods applied to linear equations and for the first-order Lie splitting method applied to
nonlinear equations, respectively. In particular, we analyze the second-order Strang splitting
method in detail, where we adopt the defect-based approach of [3,4,5]. This enables us to
derive a suitable local error representations with bounds of the form

Lie splitting: Ct2 ,

where the constant depends essentially on ‖u‖H2 , and

Strang splitting: Ct3
ε
−1 ,

where the constant depends essentially on ‖u‖H4 . Here, the explicitly stated dependence on
ε is associated with the applied splitting method, additionally a solution dependence on a
negative power of ε may be present. In special cases, precise bounds for ‖u‖Hk are known,
however, the treatment of the general case is an open analytical question. Extending [3], we
analyze asymptotically correct a posteriori error estimators for the purpose of adaptive time
stepping, and verify their asymptotics.

2 The cubic Schrödinger equation as a model problem

Problem setting. The main aim of this paper is to provide a rigorous a priori and a poste-
riori local error analysis for low-order splitting methods applied to the cubic Schrödinger
equation (NLS)

i ∂

∂ t ψ(t,x) =−ε
1
2 ∆ψ(t,x)+ 1

ε

(
U(x)+ϑ |ψ(t,x)|2

)
ψ(t,x), (2.1a)

ψ(0,x) = u(x), (2.1b)

with solution ψ : [0,T ]×Rd → C, initial state u : Rd → C, a quadratic harmonic potential

U : Rd → R : x 7→ 1
2 ω

2 |x|2 , (2.2)

and a fixed positive constant 0 < ε < 1. We choose ϑ = 1 to obtain a defocussing nonlinear-
ity, where a solution exists globally. We focus on the relevant cases d ∈ {1,2,3} and employ
certain regularity conditions and boundedness assumptions on ψ and Uψ .
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Splitting. For discretization in time we split the right-hand side of the PDE (2.1a),

F(ψ) = iε 1
2 ∆ψ− i 1

ε
(U +ϑ |ψ|2)ψ ,

separating the two scalings with respect to ε into

A(ψ) =iε 1
2 ∆ψ , (2.3a)

B(ψ) =− i 1
ε

(
U +ϑ |ψ|2

)
ψ . (2.3b)

The evolutionary operators EA and EB associated with these subproblems and initial state u
are given by

EA(t,u) = ei t ε
2 ∆ u, (2.4a)

EB(t,u) = e−i t 1
ε
(U+ϑ |u|2)u. (2.4b)

Representation (2.4a) follows from Stone’s theorem, and the explicit representation (2.4b)
is immediate.

For the numerical approximation we consider s-fold splitting methods, where one split-
ting step S has the general form1

S (t, ·) := EB(bs t,EA(as t, . . . ,EB(b1 t,EA(a1 t, ·)))). (2.5)

The splitting coefficients ai, bi ∈R are defined by appropriate order conditions. The numer-
ical solution ψn after n time steps is given by

ψn = S (t,S (t, . . . ,S (t,︸ ︷︷ ︸
n times

u))). (2.6)

For the subsequent study the two-fold symmetric second-order Strang splitting method, with
a1 = a2 =

1
2 , b1 = 1, b2 = 0, see (3.2) below, will be in the focus of interest.

Notation. For a nonlinear operator G we denote by G′ its Fréchet derivative. Moreover, for
the associated evolutionary operator EG(t,u), its first and k-th derivatives with respect to the
initial value u are denoted by ∂2EG(t,u) and ∂ k

2 EG(t,u), respectively2.

3 General representation of the local error

Our main goal is a better understanding of the local error behavior of a Strang splitting step
for problem (2.1), see Section 4. To this end, in the present section we first recapitulate an
exact representation of the local error for a general nonlinear evolution equation

∂

∂ t ψ = F(ψ) = A(ψ)+B(ψ), ψ(0) = u. (3.1)

This local error representation is based on [3, Section 4 and Appendix C]. Here we do not
repeat all details of the derivation but particularize for A linear as is the case in (2.3a), and
rearrange terms appropriately as a preparation for the subsequent estimates.

1 For notational convenience, the time increment is simply denoted by t.
2 The operator B from (2.3b) is not complex Fréchet differentiable due to the occurrence of the factor |Ψ |2.

However, this is a merely formal problem, see the discussion in [3, Section 5.1].
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Since A is a linear operator, we have

A(u) = Au , A′(u)v = Av , EA(t,u) = EA(t)u, ∂2 EA(t,u)v = EA(t)v,

with the operator exponential EA(t) = ei t ε
2 ∆ , see (2.4a). A Strang splitting step takes the

form
S (t,u) = SStrang(t,u) = EA(

1
2 t)EB

(
t,EA(

1
2 t)u)

)
(3.2)

with EB(t, ·) from (2.4b).
The flow defined by (3.1) is denoted by EF(t,u), and the local error of a splitting step is

denoted by
L (t,u) = S (t,u)−EF(t,u). (3.3)

The representation of L (t,u) given in the sequel indicates the expected local order O(t p+1)
of the Strang splitting scheme with p = 2 and in particular the dependence on the operators
A and B. This also will enable us to study the dependence on the parameter ε .

The approach adopted in [3] is based on an iterated application of (non)linear varia-
tion of constant formulas involving the defect S (1)(t,u) of the numerical solution S (t,u),
defined according to

∂

∂ t S (t,u) = F(S (t,u))+S (1)(t,u), (3.4)

such that S (t,u) is the exact solution of the perturbed problem (3.4).

3.1 First expansion step

Using Proposition 2 (Gröbner-Alekseev formula, see Appendix A), with z(t) = S (t,u), the
local error (3.3) can be written as

L (t,u) =
∫ t

0
∂2 EF(t− τ,S (τ,u))S (1)(τ,u)dτ . (3.5)

An expression for the defect S (1)(t,u) which contains no time derivatives is derived in
Section B.1,

S (1)(t,u) = EA(
1
2 t)B(w)−B(EA(

1
2 t)w) (3.6)

+ 1
2 EA(

1
2 t)
(
∂2 EB(t,v)Av−AEB(t,v)

)∣∣
v=EA(

1
2 t,u)

w=EB(t,EA(
1
2 t,u))

.

Obviously, S (1)(0,u) = 0, hence S (1)(t,u) is at least of order O(t) provided all expressions
involved are bounded. However, this does not yet reveal the expected order O(t2).

3.2 Second expansion step

Further expansion of L (t,u) via another application of the variation of constant formula
results in

L (t,u) =
∫ t

0

∫
τ1

0

{
∂2 EF(t− τ2,S (τ2,u))S (2)(τ2,u)

+∂
2
2 EF(t− τ2,S (τ2,u))

(
S (1)(τ2,u),S (1)(τ2,u)

)}
dτ2 dτ1

=: L (2)(t,u)+L (1,1)(t,u),

(3.7)
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see [2], involving the first- and second-order defect terms

S (1)(t,u) = ∂

∂ t S (t,u)−F(S (t,u)) (see (3.4),(3.6)) , (3.8a)

S (2)(t,u) = ∂

∂ t S (1)(t,u)−F ′(S (t,u))S (1)(t,u). (3.8b)

Note that for (2.1a),

F ′(u)v =−ε
1
2 ∆v+ 1

ε

(
U v+ u2 v+2ϑ |u|2 v

)
.

Again, S (2)(t,u) can be expressed in a way such that no time derivatives occur. Here we
resort to a reformulation facilitating identification of the dominant terms, see Section B.2,

S (2)(t,u) =
(
EA(

1
2 t)B′(w)−B′(EA(

1
2 t)w)EA(

1
2 t)
)

∂2 EB(t,v)Av

+
(
A+B′(EA(

1
2 t)w)

)(
B(EA(

1
2 t)w)−EA(

1
2 t)B(w)

)
+
(
EA(

1
2 t)B′(w)−B′(EA(

1
2 t)w)EA(

1
2 t)
)

B(w)

+ 1
4 EA(

1
2 t)
(

A
(
AEB(t,v)−∂2 EB(t,v)Av

)
−
(
A∂2 EB(t,v)−∂2 EB(t,v)A

)
Av

+∂
2
2 EB(t,v)(Av,Av)

) ∣∣∣ v=EA(
1
2 t)u

w=EB(t,EA(
1
2 t)u)

,

(3.9)

satisfying S (2)(0,u) = 0, hence S (2)(t,u) =O(t) provided all expressions involved remain
bounded. Thus, together with S (1)(t,u) = O(t), we have

L (t,u) = O(t3). (3.10)

Detailed integral expressions for S (1)(t,u) and S (2)(t,u) are given in Section 3.4 below.

3.3 Commutator expressions occurring in the subsequent analysis

In the expansion of the local error, nonlinear commutators occur. The commutator of two
nonlinear vector fields A,B is defined as3

[A,B](u) = A′(u)B(u)−B′(u)A(u).

For a linear operator A, the relevant first- and second-order commutators are given by

[A,B](u) = AB(u)−B′(u)Au , (3.11a)

[A,B′(v)](u) = AB′(v)u−B′(v)Au , (3.11b)

[B, [B,A]](u) = B′(u)
(
B′(u)Au−AB(u)

)
−
(
B′(u)Au−AB(u)

)′B(u) (3.11c)

=−2B′(u)AB(u)−B′′(u)(Au,B(u))+B′(u)B′(u)Au+AB′(u)B(u),

[A, [A,B]](u) = A
(
AB(u)−B′(u)Au

)
−
(
AB(u)−B′(u)Au

)′Au (3.11d)

= A2 B(u)+B′′(u)(Au,Au)+B′(u)A2 u−2AB′(u)Au .

3 Here and in the following, u is a formal variable representing the argument of the respective operators.
This is not to be confused with the initial value, which has also been denoted by u.



Adaptive splitting methods for nonlinear Schrödinger equations in the semiclassical regime 7

3.4 Explicit integral representation of the local error

The integrand in (3.7) depends on the first- and second-order defect terms S (1) and S (2),
see (3.6),(3.9). For a precise estimation of the local error, a more explicit representation
of S (1) and S (2) is required. This is accomplished by converting them into integral form
according to the ideas from [3]. The following integral representations are derived in Ap-
pendix B.

S (1)(t,u) =
∫ t

0

{
1
2 EA(

1
2 (t− τ))[A,B]EA(

1
2 τ)w (3.12)

+ 1
2 EA(

1
2 t)∂2 EB(t− τ,EB(τ,v))[B,A](EB(τ,v))

}
dτ

∣∣∣
v=EA(

1
2 t)u

w=EB(t,EA(
1
2 t)u)

=:
∫ t

0
sss(1)(t,τ,u)dτ = O(t),

and

S (2)(t,u) = (3.13a)

=
∫ t

0

{
− 1

2 EA(
1
2 (t− τ))B′′(EA(

1
2 τ)w)

·
(

AEA(
1
2 τ)w, EA(

1
2 τ) ·

(
∂2 EB(t,v)Av−AEB(t,v)

))
+ 1

2EA(
1
2 (t− τ))

·
(
[A, [B,A]](EA(

1
2 τ)w)+ [A,B′(EA(

1
2 τ)w)]EA(

1
2 τ)
(
∂2 EB(t,v)Av−AEB(t,v)

))
+EA(

1
2 (t− τ))

·
(
−B′′(EA(

1
2 τ)w)

((
EA(

1
2 τ)B(w)−B(EA(

1
2 τ)w)

)
, AEA(

1
2 τ)w

)
+ 1

2 [B, [B,A]]
(
EA(

1
2 τ)w

)
+[A,B′(EA(

1
2 τ)w)]

(
EA(τ)B(w)−B(EA(

1
2 τ)w)

))
+EA(

1
2 t)∂2 EB(t− τ,EB(τ,v))

·
(

1
4 [A, [A,B]](EB(τ,v))− 1

2 [A,B
′(EB(τ,v))]

(
∂2 EB(τ,v)Av−AEB(τ,v)

)
+ 1

4 B′′(EB(τ,v))
((

∂2 EB(τ,v)Av−A(EB(τ,v))
)
,∂2 EB(τ,v)Av+AEB(τ,v)

))}
dτ

∣∣∣
v=EA(

1
2 t)u

w=EB(t,EA(
1
2 t)u)

.

Analogously to (3.12) we define sss(2)(t,τ,u) as the integrand in (3.13a), such that

S (2)(t,u) =
∫ t

0
sss(2)(t,τ,u)dτ . (3.13b)

Several terms in (3.13) cancel out at t = 0, e.g., ∂2 EB(t,v)Av−AEB(t,v). Hence sss(2) can be
written as

sss(2)(t,τ,u) = 1
4 [A, [B,A]](u)+

1
2 [B, [B,A]](u)+O(t). (3.14)

These commutators will dominate the term S (2).
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Combining these results we finally obtain an integral expression for L (t,u) consisting
of two parts according to (3.7). Evaluating L (t,u) at t = 0 reveals the dominant term in its
Taylor expansion,

L (t,u) = t3

6 sss(2)(t,τ,u)+O(t4), (3.15)

with sss(2) as in (3.14).

4 The local error for the cubic Schrödinger equation

In the special case of the NLS (2.1) the operators A,B are given explicitly in (2.3), for which
we can explicitly calculate the terms appearing in the local error representation.

For Au = iε 1
2 ∆u from (2.3a) we have

A′(u)v≡ Av = iε 1
2 ∆v, A′′(u)(v,w)≡ 0.

4.1 Auxiliary results for the nonlinear operator B

In a subsequent L2 -estimate for the integral representation of the local error, several deriva-
tives of the nonlinear operator from (2.3b),

B(u) =−i 1
ε

(
U +ϑ |u|2

)
u

appear.

Fréchet derivatives of B. Direct computation yields

B′(u)v =−i 1
ε

(
U v+ϑ (2|u|2 v+u2 v)

)
,

B′′(u)(v,w) =−2i 1
ε

ϑ
(
uvw+uvw+uvw

)
,

B′′′(u)(v,w,z)≡−2i 1
ε

ϑ
(
vwz+ vwz+ vwz

)
.

Spatial derivatives associated with B. In the commutators to be analyzed below, spatial
derivatives of the functions B(u), B′(u)v and B′′(u)(v,w) occur. We thus compute

∇B(u) =−i 1
ε

(
(∇U)u+U(∇u)+ϑ

(
2|u|2 (∇u)+u2 (∇u)

))
,

∇
(
B′(u)v

)
=−i 1

ε

(
(∇U)v+U ∇v

+ϑ
(
2|u|2 ∇v+u2 (∇v)+2u(∇u)v+2u(∇u)v+2u(∇u)v

))
,

∇(B′′(u)(v,w)) =−2i 1
ε

ϑ
(
(∇u)vw+(∇u)vw+(∇u)vw+u(∇v)w

+u(∇v)w+u(∇v)w+uv(∇w)+uv(∇w)+uv(∇w)
)
.

This implies

∆B(u) =−i 1
ε

(
(∆U)u+2(∇U) · (∇u)+U(∆u)

+ϑ
(
2u(∇u) · (∇u)+4u(∇u) · (∇u)+2|u|2(∆u)+u2(∆u)

))
,
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∆(B′(u)v) =−i 1
ε

(
(∆U)v+2(∇U) · (∇v)+U(∆v)

+ϑ
(
2|u|2 (∆v)+u2 (∆v)+4u(∇u) · (∇v)+4u(∇u) · (∇v)

+4u(∇u) · (∇v)+2u(∆u)v+2u(∆u)v

+2u(∆u)v+2v(∇u) · (∇u)+4v(∇u) · (∇u)
))

,

∆(B′′(u)(v,w)) =−2i 1
ε

ϑ
(
(∆u)vw+(∆u)vw+(∆u)vw+u(∆v)w+u(∆v)w+u(∆w)w

+uv(∆w)+uv(∆w)+uv(∆w)

+2w(∇u) · (∇v)+2w(∇u) · (∇v)+2w(∇u) · (∇v)

+2v(∇u) · (∇w)+2v(∇u) · (∇w)+2v(∇u) · (∇w)

+2u(∇v) · (∇w)+2u(∇v) · (∇w)+2u(∇v) · (∇w)
)
.

Higher derivatives of B, which appear in higher-order commutators, can be expressed in a
similar way but will not be listed here.

4.2 Auxiliary results for the evolutionary operators EA and EB

The evolutionary operators EA and EB are given by (2.4). For the nonlinear operator EB, the
Fréchet derivatives with respect to the initial value u are of increasing complexity:

∂2 EB(t,u)v = e−i t
ε
(U+ϑ |u|2)v− i t

ε
ϑ e−i t

ε
(U+ϑ |u|2)u(uv+uv),

∂
2
2 EB(t,u)(v,w) =−i t

ε
ϑ e−i t

ε
(U+ϑ |u|2)

·
(
2uvw+2uvw+2uvw− i t

ε
ϑ u(uv+uv)(uw+uw)

)
.

For higher derivatives ∂ k
2 the results look similar and involve higher powers of t

ε
. Further-

more,

∂2 EB(t,u)
∣∣

t=0 = id,

∂
2
2 EB(t,u)

∣∣
t=0 = 0.

In the present situation, we may use the identity

∇EA(t)u = EA(t)∇u,

thus

∇EB(t,EA(t)u) = e−i t
ε
(U+ϑ |EA(t)u|2)

·
(
EA(t)∇u− i t

ε

(
(∇U)EA(t)u+ϑ |EA(t)u|2 (EA(t)∇u)+ϑ (EA(t)u)2 (EA(t)∇u)

))
,
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which implies

∆EB(t,EA(t)u) = e−i t
ε
(U+ϑ |EA(t)u|2)

(
EA(t)∆u

− i t
ε

(
2(∇U) · (EA(t)∇u)+2ϑ (EA(t)u)(EA(t)∇u) · (EA(t)∇u)+3ϑ (EA(t)u)|EA(t)∇u|2

+(∆U)EA(t)u+ϑ |EA(t)u|2 EA(t)∆u+ϑ (EA(t)u)2 EA(t)∆u
)

− t2

ε2

(
(∇U) · (∇U)EA(t)u+2ϑ (∇U) · (EA(t)∇u)|EA(t)u|2

+2ϑ (∇U) · (EA(t)∇u)(EA(t)u)2 +2ϑ
2|EA(t)∇u|2 |EA(t)u|2 EA(t)u

+ϑ
2(EA(t)∇u) · (EA(t)∇u)(EA(t)u)3 +ϑ

2(EA(t)∇u) · (EA(t)∇u)|EA(t)u|2 EA(t)u
))

.

4.3 Representation of commutators

The results derived above for the operators A and B yield explicit expressions for the relevant
commutators from (3.11). With iε (−i 1

ε
) = 1 we obtain, for a general potential U ,

[A,B](u) = (∇U) · (∇u)+ 1
2 (∆U)u+ϑ

(
u2 (∆u)+2u|∇u|2 +u(∇u) · (∇u)

)
, (4.1a)

[A,B′(u)](v) = 1
2 (∆U)v+(∇U) · (∇v) (4.1b)

+ϑ
(
u2(∆v)+(∆u)uv+(∆u)uv+(∆u)uv+2|∇u|2 v

+2u(∇u) · (∇v)+2u(∇u) · (∇v)+(∇u) · (∇u)v+2u(∇u) · (∇v)
)
.

Furthermore,

[B, [B,A]](u) (4.1c)

=−i 1
ε

(
−u(∇U) · (∇U)

+ϑ
(
2(∆U)|u|2 u−4|u|2 (∇U) · (∇u)−2U u2 (∆u)

)
−ϑ

2(2|u|4 (∆u)−2|u|2 u2 (∆u)+ |u|2 u(∇u) · (∇u)+6|u|2 u|∇u|2

+u3 (∇u) · (∇u)
))

.

This expression comprises less critical terms with respect to U , in particular it does not
contain terms U(∇u) · (∇u), or U(∆u).

For [A, [A,B]](u), using the identities

∆
(
(∇u) · (∇v)

)
=
(
∇(∆u)

)
· (∇v)+(∇u) ·

(
∇(∆v)

)
+2Tr

(
(∇∇

T u) · (∇∇
T v)
)
,

(∇u) ·
(
∇((∇u) · (∇u))

)
= 2(∇u)T · (∇∇

T u) · (∇u),
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we obtain4

[A, [A,B]](u) (4.1d)

= iε
(

1
4 (∆

2U)u+(∇(∆U)) · (∇u)+Tr
(
(∇∇

T (U)) · (∇∇
T (u))

)
+ϑ

(
u2 (∆ 2u)+4u(∇u) · (∇(∆u))+2(∆u)(∇u) · (∇u)

))
+ iε ϑ

(
u Tr

(
(∇∇

T (u))2)+2uTr
(
(∇∇

T (u)) · (∇∇T (u))
)
+2(∇u)T · (∇∇

T (u)) · (∇u)

+2(∇u)T · (∇∇T (u)) · (∇u)+2(∇u)T · (∇∇
T (u)) · (∇u)

)
.

5 L2 -estimate of the local error for the cubic Schrödinger equation

Since solutions to Schrödinger equations are well-defined in the Hilbert space L2, we aim
for an L2 -estimate of L (t,u) on the basis of the general representation from Section 3.
Proceeding from (3.7), the local error terms L (2)(t,u) and L (1,1)(t,u) will be estimated
separately in the situation of (2.1a) below. The detailed derivations of these estimates are
given in Appendix C.

5.1 L2 -estimates for L (2) and L (1,1)

Consider
L (2)(t,u) =

∫ t

0

∫
τ1

0
∂2 EF(t− τ2,S (τ2,u))S (2)(τ2,u)dτ2 dτ1 (5.1a)

with S (2)(τ2,u) =
∫ τ2

0 sss(2)(τ2,τ3,u)dτ3 given by (3.13). In combination with an estimate
for sss(2), the integrand in (5.1a) can be estimated by∥∥∂2 EF(t− τ2,S (τ2,u)) ·S (2)(τ2,u)

∥∥
L2 (5.1b)

≤ exp
(

C
∫ t

τ2

1
ε
|ϑ | ‖EF(σ − τ2,S (τ2,u))‖2

H2 dσ

)(
t · sup

0≤τ3≤τ2

‖sss(2)(τ2,τ3,u)‖L2 + t
ε

C∗
)
,

with a constant C∗ as indicated in Appendix C.1.
The second contribution to the local error (3.7) is

L (1,1)(t,u) =
∫ t

0

∫
τ1

0
∂

2
2 EF(t− τ2,S (τ2,u))

(
S (1)(τ2,u),S (1)(τ2,u)

)}
dτ2 dτ1 (5.2a)

with S (1)(τ2,u) =
∫ τ2

0 sss(1)(τ2,τ3,u)dτ3 given by (3.12). The calculations from Ap-
pendix C.2 yield∥∥∂

2
2 EF(t− τ2,S (τ2,u))(S (1)(τ2,u),S (1)(τ2,u))

∥∥
L2 (5.2b)

≤ exp
(

C
t∫

τ2

1
ε
|ϑ |‖EF(σ − τ2,S (τ2,u))‖2

H2 dσ

)
·
(

Ĉ t3

ε
‖u‖L2

(
sup

0≤τ3≤τ2

‖sss(1)(τ2,τ3,u)‖H2 + 1
ε

C∗
)2

+ t2

ε
C∗
)
.

In this way, estimation of the local error reduces to estimates for sss(1) and sss(2) which will be
discussed in Sections 5.4 and 5.5.

4 For the harmonic potential U from (2.2), the terms ∆ 2U and ∇(∆U) vanish.
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5.2 L2 -boundedness of UEA(t)u for the harmonic potential U from (2.2)

The product of the quadratic potential U(x) = 1
2 ω2 |x|2 with the function EA(t)u as it ap-

pears in (5.6) below and in the estimates from Section 5.3, is unbounded in general. In
the following we work out requirements on u which guarantee that ‖UEA(t)u‖L2 remains
bounded.

From the well-known identity

EA(t)xEA(−t) = x+ it ε ∇

we first obtain

‖xEA(t)u‖L2 ≤ ‖xu‖L2 + ε t ‖u‖H1 .

Furthermore, using the estimates from Appendix A.3 we find

‖UEA(t)u‖L2 ≤ ‖U u‖L2 + t εC1‖(∇U)u‖H1 + t2
ε

2C2‖u‖H2

≤ ‖U u‖L2 + t εC1
(
‖U u‖L2 +‖u‖H2

)
+ t2

ε
2C2‖u‖H2 , (5.3)

with C1,C2 depending on the weight ω in U . Clearly, the expression ‖(∆U)u‖L2 is bounded
by C‖u‖L2 with a constant C depending on ω .

5.3 Hm -boundedness of a Strang splitting step

In the estimates of S (1) and S (2), certain Hm -norms of the splitting approximation
S (t,u) = EA(

1
2 t) ·EB(t,EA(

1
2 t)u) and of the intermediate composition EB(t,EA(

1
2 t)u) oc-

cur. Their boundedness with respect to the initial value u is critical for our analysis.
Due to the invariance property ‖EA(t)u‖Hm = ‖u‖Hm , the expressions S (t,u) and w =
EB(t,EA(

1
2 t)u) show the same behavior in the Hm-norm.

Concerning m = 0, both flows EA and EB conserve the L2 -norm, hence

‖S (t,u)‖L2 = ‖EB(t,EA(
1
2 t)u)‖L2 = ‖u‖L2 . (5.4)

The following estimates are based on the results from Section 4.2, making use of the esti-
mates from Appendix A.2. For m = 1 and m = 2 we have

‖EB(t,EA(
1
2 t)u)‖H1 ≤‖u‖H1 +C ·

(
t
ε

(
‖(∇U)u‖L2 + |ϑ |‖u‖H2‖u‖2

H1

)
+t2‖u‖H1

)
, (5.5a)

and

‖EB(t,EA(
1
2 t)u)‖H2 ≤ ‖u‖H2 +C ·

(
t
ε

(
‖U u‖L2 +‖u‖H2 + |ϑ |‖u‖3

H2

)
+ t2‖u‖H2 (5.5b)

+ t2

ε2

(
‖Uu‖L2 + |ϑ |‖U u‖L2‖u‖2

H2 + |ϑ |‖u‖3
H2 + |ϑ |2‖u‖5

H2

)
+ t3

ε

(
‖U u‖L2 +‖u‖H2 + |ϑ |‖u‖3

H2

)
+ t4‖u‖H2

)
.

Analogous estimates for higher Sobolev indices m involve powers up to
( t

ε

)m and higher
Sobolev norms of u as well as U u.
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5.4 H2 -estimate for sss(1)(t,τ,u)

The integrand sss(1) in the integral representation (3.12) for S (1) can be estimated by

‖sss(1)(t,τ,u)‖H2 ≤C
∥∥[A,B](EA(

1
2 τ)EB(t,EA(

1
2 t)u))

∥∥
H2

+C
∥∥∂2 EB(t− τ,EB(τ,EA(

1
2 t)u))[B,A](EB(τ,EA(

1
2 t)u))

∥∥
H2 ,

and further∥∥sss(1)(t,τ,u)
∥∥

H2 ≤C
(
1+ t

ε
|ϑ |‖w‖2

H2

)
·
((

1+ t
ε
|ϑ |‖u‖2

H2

)2‖[A,B](w)‖H2 (5.6)

+ t ε‖w‖H4 + t
ε

(
‖U∆w‖L2 +‖(∇U) · (∇w)‖L2

+ |ϑ |‖(∇U) · (∇w)‖L2‖w‖H4‖w‖H3
)

+ t2

ε2

(
‖U(∇U) · (∇w)‖L2 +‖Uw‖L2 + |ϑ |‖Uw‖L2‖w‖H4‖w‖H3

+ |ϑ |‖U u‖L2‖u‖H2‖[A,B](w)‖H2

+ t ε‖u‖2
H2‖[A,B](w)‖H2

)) ∣∣∣ v=EA(
1
2 τ)u

w=EB(τ,EA(
1
2 τ)u)

,

where (∇U) · (∇U) =CU and

‖[A,B](w)‖H2 ≤C
(
‖(∇U) · (∇w)‖H2 + |ϑ |‖w‖H4‖w‖H3‖w‖H2

)
.

Inserting the expressions for v and w in (5.6) we obtain

sup
0≤τ≤t

‖sss(1)(t,τ,u)‖H2 (5.7)

≤C1

(
‖U2 u‖L2 +‖U u‖L2 +‖u‖H4 + |ϑ |‖u‖H4‖u‖H3‖u‖H2

)
+C2

t
ε

(
‖U u‖L2 +‖u‖H2 + |ϑ |‖U2u‖L2‖u‖2

H2 + |ϑ |‖U u‖L2‖u‖H4‖u‖H3

+ |ϑ |‖u‖H4‖u‖2
H2 + |ϑ |2‖u‖H4‖u‖H3‖u‖3

H2 + ε
2(‖u‖H4 +‖U2u‖L2

))
+C3

t2

ε2

(
‖U2u‖L2 +‖U u‖L2 +‖u‖H4 + |ϑ |‖U2 u‖L2‖u‖2

H2

+ |ϑ |‖U u‖2
L2‖u‖H2 + |ϑ |‖U u‖L2‖u‖H4‖u‖H3

+ |ϑ |‖u‖H4‖u‖2
H2 + |ϑ |2‖U u‖L2‖u‖2

H3‖u‖2
H2

+ |ϑ |2‖u‖H4‖u‖H3‖u‖3
H2 + |ϑ |3‖u‖H4‖u‖H3‖u‖5

H2

+ ε
2(|ϑ |‖U u‖L2‖u‖H4‖u‖H2 + |ϑ |‖u‖H4‖u‖2

H3

)
+ ε

4‖u‖H4

)
+O

( t3

ε3

)(
1+O(ε2)

)
.

5.5 L2 -estimate for sss(2)(t,τ,u)

The integrand sss(2) in the integral representation (3.13) for S (2) involves multiple commuta-
tors and derivatives of the flows EA and EB. Here we only note the dominant terms according
to (3.14) in more detail:

‖sss(2)(t,τ,u)‖L2 ≤ 1
2 ‖[B, [B,A]](u)‖L2 + 1

4 ‖[A, [B,A]](u)‖L2 +O( t
ε2 + t),
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where the dominant commutators, given by (4.1c) and (4.1d), can be estimated by

‖[B, [B,A]](u)‖L2 ≤C 1
ε

(
‖U u‖L2 + |ϑ |‖U u‖L2 ‖u‖H4 ‖u‖H2 + |ϑ |‖u‖3

H2 + |ϑ |2‖u‖5
H2

)
,

‖[A, [B,A]](u)‖L2 ≤Cε

(
‖u‖H2 + |ϑ |‖u‖H4 ‖u‖2

H2

)
.

A more refined estimate reads

sup
0≤τ≤t

‖sss(2)(t,τ,u)‖L2 (5.8)

≤C1 ε

(
‖u‖H2 + |ϑ |‖u‖H4 ‖u‖2

H2

)
+C2

1
ε

(
‖U u‖L2 + |ϑ |‖U u‖L2 ‖u‖H4 ‖u‖H2 + |ϑ |‖u‖3

H2 + |ϑ |2‖u‖5
H2

)
+C3 t

(
‖U2 u‖L2 +‖U u‖L2 +‖u‖H4 + |ϑ |‖U u‖L2 ‖u‖H4 ‖u‖L2

+ |ϑ |‖u‖H4 ‖u‖2
H2 + |ϑ |‖u‖2

H3 ‖u‖H2 + |ϑ |2‖u‖H4 ‖u‖4
H2

)
+C4 t 1

ε2

(
|ϑ |‖U u‖2

L2 ‖u‖H4 + |ϑ |‖U u‖L2 ‖u‖H4 ‖u‖H2

+ |ϑ |2‖U u‖L2 ‖u‖4
H2 + |ϑ |3‖u‖7

H2

)
+O

( t2

ε3 +
t2

ε
+ t2

ε
)
.

5.6 Resulting L2 -estimate for L (t,u)

Combining all previous estimates we conclude∥∥L (t,u)
∥∥

L2 ≤
∫ t

0

∫
τ1

0

{∫ τ2

0
‖∂2 EF(t− τ2,S (τ2,u))sss(2)(τ2,τ3,u)‖L2 dτ3

+
∥∥∥∂

2
2 EF(t− τ2,S (τ2,u)) ·

(∫ τ2

0
sss(1)(τ2,τ3,u)dτ3

)2∥∥∥
L2

}
dτ2 dτ1

≤ C̃ · t3 exp
(

C t
ε
|ϑ | sup

0≤χ≤σ≤t
‖EF(σ ,S (χ,u))‖2

H2

)
(5.9)

· sup
0≤τ≤t

(
t2

ε
‖u‖L2

(
‖sss(1)(t,τ,u)‖H2 + 1

ε
C∗
)2

+‖sss(2)(t,τ,u)‖L2 + 1
ε

C∗+ t
ε

C∗
)
,

where sss(1) and sss(2) have been estimated in Sections 5.4 and 5.5.

5.7 L2 -estimate for L (t,u) for the Lie splitting method

For comparison, we recapitulate an L2 -estimate for the Lie splitting method

S (t,u) = SLie(t,u) = EB(t,EA(t)u). (5.10)

Following [3] we have, for A linear,

L (t,u) =
∫ t

0

∫
τ1

0
∂2EF(t− τ1,S (τ1,u))∂2EB(τ1− τ2,EB(τ2,EA(τ1)u))

· [B,A](EB(τ2,EA(τ1)u))dτ2 dτ1 .

(5.11)
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Evaluating L (t,u) at t = 0 reveals the dominant term in its Taylor expansion,

L (t,u) = t2

2 [B,A](u)+O
( t3

ε
+ t3

ε
)
. (5.12)

Proceeding similarly as for the case of the Strang splitting method we obtain

‖L (t,u)‖L2 ≤C̃ · t2 exp
(

C t
ε
|ϑ | sup

0≤χ≤σ≤t
‖EF(σ ,S (χ,u))‖2

H2

)
(5.13)

·
(
‖U u‖L2 +‖u‖H2 + |ϑ |‖u‖3

H2 + t ε ‖u‖H2

+ t
ε

(
‖U u‖L2 + |ϑ |‖U u‖L2‖u‖H2‖u‖H2 + |ϑ |‖u‖H2‖u‖2

H1

)
+ t2(‖U u‖L2 +‖u‖H2 + |ϑ |‖u‖3

H2

)
+ t2

ε2 |ϑ |
(
‖U u‖L2‖u‖2

H2 +‖U u‖2
L2‖u‖H2 + |ϑ |‖U u‖L2‖u‖4

H2

+ |ϑ |‖u‖5
H2 + |ϑ |2‖u‖7

H2

)
+ 1

ε
C∗
)

+O
( t5

ε3 +
t5

ε
+ t5

ε
)
.

Here the constant C∗ discussed in Appendix C.1 again appears. We observe that the dominant
O(t2) term of the local error does not depend on ε , which is a different behavior compared
to the Strang splitting method.

5.8 Higher-order methods

For the Lie and Strang splitting methods, the leading term of the local error has a
very simple structure and is influenced by [B,A] and [A, [B,A]], [B, [B,A]], respectively
(see (5.12),(3.15)). It is also known that for a higher-order method the leading term in the
Taylor expansion of the local error comprises iterated commutators, see for instance [2] for
a precise discussion.

However, as we have seen, an exact (integral) representation of the local error becomes
quite complicated already for the Strang case, and it involves various derivatives of the
nonlinear operator B(u) and derivatives of commutator expressions. Due to this significant
increase in complexity, a rigorous analysis of higher-order splitting methods (2.5) appears
to be a major challenge for the nonlinear case which we do not attempt to cope with here.5

Nevertheless we may infer information about the behavior of the dominant terms. For
a third-order scheme, for instance, the local error will be dominated by the commutator
expressions

[A, [A, [A,B]]](u), [A, [B, [A,B]]](u) = [B, [A, [A,B]]](u), [B, [B, [A,B]]](u).

For the NLS we have [B, [B, [A,B]]] = 0 and therefore no terms involving 1
ε2 appear. More-

over, all other third-order commutators have either no or a quadratic dependence on ε . This
is comparable to our results for the Lie splitting method. This means that especially for
ε� 1, one would see the classical behavior or even a better order behavior for more regular
initial values. Numerical observations are reported in Section 7.

5 See [5] for an exact local error representation for the linear case. This is combinatorially rather involved;
however, the role of iterated commutators dominating the error is clearly worked out.
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Summarizing remark. The theoretical analysis has shown a delicate dependence of the nu-
merical error on the semiclassical parameter, the stepsize, and higher Sobolev norms of the
exact solution. Consequently for practical computations, automatic stepsize control seems
more promising than an attempt to choose the time steps a priori. To this end, a posteriori
estimators for the local time stepping error are required. In the following, we construct and
analyze an asymptotically correct local error estimator based on the defect of the splitting
solution.

6 An a posteriori error estimator

In [3] the following a posteriori local error estimator for s-fold splitting methods (2.5) of
order p was proposed; it is based on an Hermite quadrature approximation for the local error
integral (3.5). In Proposition 1 we state how this error estimator can be practically computed
via an appropriate evaluation of the defect.

Proposition 1 ([3]) Let vi, wi be defined as

vi = EA(ai t,wi−1), wi = EB(bi t,vi), 1≤ i≤ s, (6.1)

with w0 = u and ws = S (t,u), and consider the local a posteriori error estimator for a
method of order p defined by

P(t,u) = 1
p+1 tS (1)(t,u)≈L (t,u), (6.2)

involving the defect
S (1)(t,u) = ∂

∂ t S (t,u)−F(S (t,u)). (6.3)

This can be computationally evaluated in the following way:

S (1)(t,u) = g(s) ◦g(s−1) ◦ . . .◦g(1) ◦g(0)−F(ws), (6.4)

where

g(i)(z) = bi B(wi)+∂2 EB(bi t,vi)∂2 EA(ai t,wi−1)
[
ai A(wi−1)+ z

]
, i≥ 1,

g(0)(z) = 0.

Hence, P(t,u) can be computed as

P = 1
p+1 t

(
g(s) ◦ . . .◦g(0)−F(ws)

)
. (6.5)

Since the g(i) depend on vi, wi and wi−1 only, they can be evaluated in parallel with the
splitting scheme without the need to store all intermediate values vi, wi.

For problem (2.1) with ε = 1, the asymptotical order

P(t,u)−L (t,u) = O(t p+2)

has been proven in [3] for the cases p = 1 (Lie) and p = 2 (Strang). We will extend this
study by incorporating the dependence on ε < 1, while for higher-order methods we resort
to numerical observations. Understanding the asymptotical order behavior is essential to
ensure reliability of a time-adaptive method.
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6.1 Analysis of the deviation of the a posteriori error estimator

Lie Splitting. For the deviation P−L of the Lie splitting error estimator an integral rep-
resentation has been derived in [3],

P(t,u)−L (t,u) =
∫ t

0

(
K1(τ, t)G1(τ, t,u)−K2(τ, t)G2(τ, t,u)

)
dτ , (6.6)

where K1 and K2 are the first- and second-order Peano kernels associated with the error of
the underlying trapezoidal quadrature,

K1(τ, t) = τ− 1
2 t , K2(τ, t) = 1

2 τ (t− τ),

and

G1(τ, t,u) =
{

∂2 EF(t− τ,S (τ,u))
∫

τ

0
∂2 EB(τ− τ2,EB(τ2,v))

·
(

B′′(EB(τ2,v))
(
S̃ (1)(τ2,v)

)2
+[[B,A],A](EB(τ2,v))+ [[B,A],B](EB(τ2,v))

+2[B,A]′(EB(τ2,v))S̃ (1)(τ2,v)
)

dτ2

+∂
2
2 EF(t− τ,S (τ,u))

(
S (1)(τ,u)

)2
} ∣∣∣

v=EA(τ)u
,

G2(τ, t,u) =
{

∂2 EF(t− τ,S (τ,u))
(

∂
2
2 EB(τ,v)(Av, [B,A](v))

+
(
∂2 EB(τ,v)A−A∂2 EB(τ,v)

)
[B,A](v)

)
+∂

2
2 EF(t− τ,S (τ,u))

(
S (1)(τ,u),∂2 EB(τ,v)[B,A](v)

)
+∂2 EF(t− τ,S (τ,u))∂2 EB(τ,v)[[B,A],A](v)

} ∣∣∣
v=EA(τ)u

.

Here, S (1) is the defect (6.3) which satisfies the integral representation

S (1)(t,u) = S̃ (1)(t,EA(t,u)),

with S̃ (1)(t,v) =
∫ t

0
∂2 EB(t− τ,EB(τ,v))[B,A](EB(τ,v))dτ .

Denoting

T1 =
∫

τ

0
∂2 EB(τ− τ2,EB(τ2,v))

(
B′′(EB(τ2,v))

(
S̃ (1)(τ2,v)

)2
+[[B,A],A](EB(τ2,v))

+ [[B,A],B](EB(τ2,v))+2[B,A]′(EB(τ2,v))S̃ (1)(τ2,v)
)

dτ2 ,

T2 = ∂
2
2 EB(τ,v)(Av, [B,A](v))+

(
∂2 EB(τ,v)A−A∂2 EB(τ,v)

)
[B,A](v)

+∂2 EB(τ,v)[[B,A],A](v),

T22 = ∂2 EB(τ,v)[B,A](v),

we have

‖P(t,u)−L (t,u)‖L2

≤Ct2(‖∂2 EF(t− τ,S (τ,u))T1‖L2 +‖∂ 2
2 EF(t− τ,S (τ,u))(S (1)(τ,u))2‖L2

)
+Ct3(‖∂2 EF(t− τ,S (τ,u))T2‖L2 +‖∂ 2

2 EF(t− τ,S (τ,u))(S (1)(τ,u),T22)‖L2
)
.
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Estimating ∂2 EF and ∂ 2
2 EF as in Appendix C, we obtain

‖P(t,u)−L (t,u)‖L2 ≤C1 e
(

C2
t
ε
|ϑ | sup0≤χ≤σ≤t ‖EF (σ ,S (χ,u))‖2

H2

)
· sup

0≤τ2≤τ≤t

(
t2‖T1‖L2 + t3

ε
C∗+ t5

ε
‖u‖L2

(
‖sss(1)(τ,τ2,u)‖L2 + 1

ε
C∗
)2

+ t4

ε
C∗+ t3‖T2‖L2

+ t4

ε
C∗+ t5

ε
‖u‖L2

(
‖sss(1)(τ,τ2,u)‖L2 + 1

ε
C∗
)
(‖T22‖L2 + 1

ε
C∗)+ t4

ε
C∗
)
.

Now we separately estimate,

‖T1‖L2 ≤ t ε
(
‖u‖H2 + |ϑ |‖u‖H4‖u‖H3‖u‖H2

)
+ t

ε

(
‖U u‖L2 + |ϑ |‖Uu‖L2‖u‖H4‖u‖H2 + |ϑ |‖u‖3

H2 + |ϑ |2‖u‖5
H2

)
+ t2(‖U2u‖L2 +‖U u‖L2 +‖u‖H4 + |ϑ |‖u‖H3‖u‖2

H2 + |ϑ |‖U u‖L2‖u‖H3‖u‖H2

+ |ϑ |2‖u‖H4‖u‖H3‖u‖3
H2

)
+ t2

ε2

(
|ϑ |‖U u‖L2‖u‖H4‖u‖H3 + |ϑ |2‖u‖H4‖u‖H3‖u‖3

H2 + |ϑ |2‖U u‖L2‖u‖4
H2

+ |ϑ |3‖u‖7
H2

)
+O

( t3

ε3 +
t3

ε
+ t3

ε
)
,

and

‖T2‖L2 ≤ ε
(
‖u‖H2 + |ϑ |‖u‖H4‖u‖H3‖u‖H2

)
+ t
(
‖U2u‖L2 +‖U u‖L2 +‖u‖H4 + |ϑ |‖U u‖L2‖u‖H4‖u‖H2

+ |ϑ |‖u‖H4‖u‖2
H2 + |ϑ |2‖u‖H4‖u‖H3‖u‖3

H2

)
+O

( t2

ε
+ t2

ε
)
.

Concerning T22 we refer to the representation of the commutator [B,A](v) in Section 4.3.
Combining these results, we obtain

‖P(t,u)−L (t,u)‖L2 ≤C1 t3 e
(

C2
t
ε
|ϑ | sup0≤χ≤σ≤t ‖EF (σ ,S (χ,u))‖2

H2

)
·
(

ε
(
‖u‖H2 + |ϑ |‖u‖H4‖u‖H3‖u‖H2

)
+ 1

ε

(
‖U u‖L2 + |ϑ |‖U u‖L2‖u‖H4‖u‖H2 + |ϑ |‖u‖3

H2 + |ϑ |2‖u‖5
H2 +C∗

)
+ t
(
‖U2u‖L2 +‖U u‖L2 +‖u‖H4 + |ϑ |‖u‖H3‖u‖2

H2 + |ϑ |‖U u‖L2‖u‖H3‖u‖H2

+ |ϑ |2‖u‖H4‖u‖H3‖u‖3
H2

)
+ t

ε
C∗

+ t
ε2

(
|ϑ |‖U u‖L2‖u‖H4‖u‖H3 + |ϑ |2‖u‖H4‖u‖H3‖u‖3

H2 + |ϑ |2‖U u‖L2‖u‖4
H2

+ |ϑ |3‖u‖7
H2

))
+O

( t5

ε3 +
t5

ε
+ t5

ε
)
,

where the constant C∗ arising in Appendix C.1 appears again.
To sum up, for the Lie splitting method6

‖PLie(t,u)−LLie(t,u)‖L2 . t3(C1
1
ε
+C2 ε

)
+ t4(C3

1
ε2 +C4

)
, (6.7)

6 Here and in the following, we use the symbol . in order to express bounds in terms of the asymptotically
dominant quantities (omitting higher order terms).
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with constants C1,. . . ,C4 depending on the H4 -norm of u, and additionally C1,C3 depending
on ‖U u‖L2 , and C4 depending on ‖U2 u‖L2 .

This estimate is of a similar nature as the a priori error bound for the Strang splitting
method. Therefore we expect the same asymptotical behavior of both the deviation of the
a posteriori error estimator of the Lie splitting method and the local error of the Strang
splitting method. This claim is mainly based on the fact that both estimates are dominated
by the commutators ‖[[B,A],A](u)‖L2 and ‖[[B,A],B](u)‖L2 .

Strang splitting. It was observed earlier that, to leading order, the deviation of the a posteri-
ori Lie error estimator is dominated by ‖[[B,A],A](u)‖L2 and ‖[[B,A],B](u)‖L2 . For the case
of Strang splitting, third-order commutators dominate. According to [3],

P(t,u)−L (t,u) =
∫ t

0
K3(τ, t) ∂

∂τ

(
∂2 EF(t− τ,S (τ,u))S (3)(τ,u)

)
dτ +O(t5), (6.8)

with the third-order Peano kernel K3(τ, t) = 1
6 τ (t − τ)2 associated with the error of the

underlying Hermite quadrature rule defining P , and the third-order defect

S (3)(t,u) =
{
EA(

1
2 t)∂2 EB(t,v)

( 1
2 [[B,A],A](v)+

1
2 [[B,A],B](v)

)
−EA(

1
2 t)
( 3

4 [[B,A],A](w)+ [[B,A],B](w)
)
+O(t)

} ∣∣∣ v=EA(
1
2 t)u

w=EB(t,EA(
1
2 t)u)

.

We now collect coefficients of t4 in (6.8),

P(t,u)−L (t,u) =Ct4
(

1
4 [A, [B, [B,A]]](u)+

1
4 [A, [A, [B,A]]](u)− [B, [B, [B,A]]](u)

− 1
2 [A, [B, [B,A]]](u)−

3
4 [B, [A, [B,A]]](u)−

3
8 [A, [B, [B,A]]](u)

)
+O(t5)

=Ct4
(
− 1

4 [A, [B, [B,A]]](u)−
1
8 [A, [A, [B,A]]](u)

)
+O(t5).

Here we have used the identity [A, [B, [B,A]]](u) = [B, [A, [B,A]]](u) and the fact that, for a
cubic nonlinearity and a harmonic potential, [B, [B, [B,A]]] = 0.

The appearing commutators can be estimated as ‖[A, [B, [B,A]]](u)‖L2 ≤ ε0C(‖u‖H4)
and ‖[A, [A, [B,A]]](u)‖L2 ≤ ε2C(‖u‖H6), such that

‖PStrang(t,u)−LStrang(t,u)‖L2 .Ct4(1+ ε
2), (6.9)

with C depending in particular on ‖u‖H6 . From (6.8) we deduce that the coefficients hidden
in the O(t5) remainder are of the form O( t5

ε
+ t5 ε), which is also observed numerically, see

Fig. 1.

7 Numerical results

In our numerical experiments we solve a cubic Schrödinger equation (2.1), with either no
potential U = 0 or a quadratic potential U : Rd → R, x 7→ 1

2 |x|
2. For ϑ = 1 we speak of a

defocussing nonlinearity, for ϑ =−1 we have a focussing nonlinearity.
For the computation of reference solutions we have used a fourth-order scheme with

7 stages and a sixth-order scheme with 11 stages from [10]. Besides these two and the Lie
and Strang splitting methods we have tested a third-order scheme from [28], a fourth-order
scheme from [31], and a new fifth-order scheme (see Table 1).
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Table 1 Coefficients of a new 5-th order scheme obtained on the basis of order conditions set up according
to [2].

a1 0.475018345144539497 b1 −0.402020995028838599
a2 0.021856594741098449 b2 0.345821780864741783
a3 −0.334948298035883491 b3 0.400962967485371350
a4 0.512638174652696736 b4 0.980926531879316517
a5 −0.011978701020553904 b5 −1.362064898669775625
a6 −0.032120004263046859 b6 0.923805029000837468
a7 0.369533888781149572 b7 0.112569584468347105

7.1 Numerical order estimation

We compare the numerically observed local error behavior for different choices of ε as well
as for a time stepsize t proportional to this parameter (t = ε).

For ε = 1, we observe the classical order O(t p+1). For small ε ≈ 10−2, a different local
error behavior is in fact observed. We also have noticed distinct asymptotics in dependence
of the smoothness of the initial value.

Smooth initial state. We may express the observed dependencies as

‖L (t,u)‖L2 ≈ t p+1 ·

{
C
(
1+ t

ε

)
, p odd ,

C 1
ε
, p even.

(7.1)

The dependence on t
ε

for odd order methods is visible in Fig. 1 as a kink, while the depen-
dence on 1

ε
for even order methods appears as an order reduction in Fig. 4 for the specific

choice t = ε . This reflects the theoretical results in (5.9) and (5.13) for smooth initial values,∥∥LLie(t,u)
∥∥

L2 .C
(
t2 + t3 ( 1

ε
+ ε)+ t4 ( 1

ε2 +1)
)
, (7.2)

with C depending on the H2 -norm of u and on ‖U u‖L2 , and for the Strang splitting,∥∥LStrang(t,u)
∥∥

L2 . t3(C1
1
ε
+C2 ε

)
+ t4(C3

1
ε2 +C4

)
, (7.3)

with constants depending on the H4 -norm of u, as well as C1, C3 depending on ‖U u‖L2 , and
C4 depending on ‖U2 u‖L2 .

WKB initial state. Oscillatory initial data given in WKB form leads to less regular solutions,
which reveals a different aspect of the theoretical estimates.

For our numerical experiments we chose

ψ(x,y,0) = e−x2 · e−i/ε

(
log(exp(x)+exp(−x))

)
, (7.4)

which features oscillations in dependence of ε .
The numerical observations in Fig. 2 yield

‖L (t,u)‖L2 ≈Ct p+1 1
ε
, (7.5)

also in accordance with [17]. The theoretical results (5.9) and (5.13) would imply too pes-
simistic estimates, since higher powers of 1

ε
are introduced by the estimates in Sobolev

spaces. In particular for this situation where the time stepsize would be underestimated a
priori, the use of automatic stepsize control is indicated.



Adaptive splitting methods for nonlinear Schrödinger equations in the semiclassical regime 21

Global error observations. The influence of higher order terms in the estimates is observed
in numerical experiments more distinctly in the global error. Thus in Fig. 3, we observe that
for small ε , the effects for the local error may sum up critically in dependence of ε . For
t . ε < 1, the classical global order O(t p) is observed, for ε . t < 1, the contributions of
terms involving higher powers of t

ε
imply stagnation at a constant value (see Fig. 3).

Fig. 1 t -dependence of the local error and of the deviation of the a posteriori error estimator. First
row: The plot on the left shows the empirical local error for several splitting methods, while the plot on
the right shows the associated observed orders. It can be seen that for the Lie splitting and other odd-order
methods, the order decreases by one, starting below t ≈ ε . The even order methods are not affected by this
order reduction. Second row: Here, the plot on the left shows the estimated deviation of the a posteriori error
estimator for several splitting methods and again, the plot on the right shows the associated observed orders.
The odd order methods change their behavior, but here we observe an improved order for t < ε . Moreover,
the even order methods perform even one order better than expected, O(t p+3). For all computations the initial
condition was a shifted Gaussian at 2 ·104 gridpoints with a fixed parameter ε = 10−2.

7.2 Observed behavior of the deviation of the error estimator

For ε ≈ 1 the deviation of the local error estimator (6.2) associated with a method of or-
der p shows an O(t p+2) behavior, but for smaller values of ε , we have observed a different
behavior for some methods, as shown in Figs. 1 and 4.

In detail, the following dependencies have been observed for smooth initial values inde-
pendent of ε ,

‖P(t,u)−L (t,u)‖L2 ≈ t p+2 ·

{
C 1

ε

t
ε+t , p odd,

C 1
ε

t , p even.
(7.6)
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Fig. 2 Dependence of the local error for WKB initial values. First row: t -dependence. The plot on the left
shows the empirical local error for several splitting methods, while the plot on the right shows the associated
observed orders. For all methods the order O(t p+1) can be observed (We have chosen ε = 10−2 and 2 · 104

gridpoints.). Second row: (t = ε)-dependence. The plot on the left shows the empirical local error for several
splitting methods, while the plot on the right shows the associated observed orders. It can be seen that for
all methods the order decreases by one, starting below t ≈ ε . To resolve the error also for ε = 10−5, 4 · 105

gridpoints have been used. For all computations the initial condition is given in (7.4).

Fig. 3 t-dependence of the global error for Gaussian initial values. For ε = 1/250, the error initially
stagnates for t & ε and resumes the classical order for smaller t . ε , as likewise observed for WKB initial
values. A total integration time of T = 0.5 and 2 ·104 gridpoints in space have been used.

The functional form t
ε+t above is inferred from the kink observed in the empirical conver-

gence order in Fig. 1. The increased order O(t p+3) for even order methods is present in
Fig. 1 and the factor 1

ε
is apparent from Fig. 4.

The theoretical result (6.7) shows a deviation of the a posteriori estimator of order
O(t p+2) for the Lie splitting method. In contrast, an increased order in our numerical exper-
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iments occurs in the same regime as the order reduction for the local error behavior, showing
a spurious improvement to order O(t p+3).

For the choice t = ε our observations in Fig. 4 reflect the analytical results (6.7) and (6.9)
(O(t p+1) for the Lie splitting method, O(t p+2) for the Strang splitting method).

Numerical experiments, not reported here, show that for WKB initial values the ob-
served order reduction analogous to Section 7.1 is

‖P(t,u)−L (t,u)‖L2 ≈Ct p+2 1
ε
.

Again, the theoretical estimates (6.7) and (6.9) are too pessimistic for this case.

Fig. 4 (t = ε)-dependence of the local error and of the deviation of the a posteriori error estimator.
First row: As in Fig. 1, the plot on the left shows the empirical error of different splitting methods, while the
plot on the right shows their observed orders. It is obvious that here the local order of the even order methods
is reduced to O(t p) while the odd order methods are not affected. Second row: Again, the plot on the left
shows the empirical deviation of the a posteriori error estimator for different splitting methods and the plot
on the right shows their observed orders. Compared to Fig. 1, the odd order methods suffer from an order
reduction, while the even order methods show the expected dependence O(t p+2). This advantage can be used
to overcome the disadvantage observed in the first row (see (7.6)) even for less regular initial conditions. For
all computations the initial condition was a shifted Gaussian at 2 ·104 gridpoints.

7.3 Defocussing laser beams and soliton solutions: Adaptive integration

For the following experiment we choose an application where a cubic Schrödinger equation
without external potential arises, namely a model involving a self-defocussing laser beam in
a nonlinear medium (see [27]).
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The model describes the propagation of a weak intensity beam ψ(x,y,z) in z-direction
via

iε ∂

∂ z ψ(x,y,z) =− 1
2 ε

2( ∂ 2

∂x2 +
∂ 2

∂y2

)
ψ(x,y,z)+ϑ |ψ(x,y,z)|2 ψ(x,y,z), (7.7)

where ε describes the relationship between diffusion and focussing (arising from the non-
linear medium). For the special initial distribution ψ(x,y,0) = tanh(x) and ε = 1, ϑ = 1, we
obtain the solution

ψ(x,y,z) = tanh(x)e−it z .

We have modified this and constructed a wave similar to a soliton by multiplying a Gaussian
by tanh, which might be more stable under diffusion. For the results shown in Fig. 5 we have
used the initial conditions

ψ1(x,y,0) = A exp
(
− x2+y2

r2
0

)
tanh

( y
ys

)
,

ψ2(x,y,0) = A exp
(
− x2+y2

r2
0

)
.

Numerical solutions have been obtained at 1000 spatial gridpoints on the x- and y-axes and
by a time-adaptive method of order four based on the a posteriori local error estimator (6.2)
with a local absolute tolerance 10−8. Comparing the two columns, we indeed see that the
tanh profile provides a more stable signal than the Gaussian, which diffuses much faster and
shows higher oscillations.

Appendix

A Technical tools

A.1 Gröbner-Alekseev formula (nonlinear variation of constant)

Proposition 2 Given a pair of initial value problems,

{
z′(t) = G(t,z(t)) = F(z(t))+ r(t,z(t)), 0≤ t ≤ T
z(0) = u

(A.1a){
y′(t) = F(y(t)), 0≤ t ≤ T
y(0) = u

(A.1b)

the solution z(t) of (A.1a) can be expressed via the nonlinear variation of constant formula

z(t) = EG(t,u) = y(t)+
∫ t

0
∂2 EF (t− τ,EG(τ,u))r(τ,EG(τ,u))dτ, 0≤ t ≤ T , (A.2)

where y(t) = EF (t,u) is the solution of (A.1b).

Proof See [23] or [17].
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Fig. 5 Defocussing laser beam with different shapes. Absolute value of beam intensity ψ for problem (7.7)
with ε = 1

100 , Tend = 5 along the x- and z-axes for y = 0. In the first two rows we compare the absolute value
(first row) and the real part (second row) of the solution. In the third row we display the adaptive step-
sizes. Left column: Modulated Gaussian ψ1(x,y,0) = exp(−4(x2 + y2)) tanh(x). Right column: Gaussian
ψ2(x,y,0) = exp(−4(x2 + y2)).

A.2 L2 estimates for products of functions

For the following estimates we use Hölder’s inequality and Sobolev embeddings for estimating products in
the L2 -norm, for spatial dimension d ∈ {1,2,3},

‖uv‖L2 ≤ ‖u‖L4 ‖v‖L4 ≤C‖u‖H1 ‖v‖H1 ,

‖uv‖L2 ≤C‖u‖H2 ‖v‖L2 ,

‖uvw‖L2 ≤ ‖u‖L6 ‖v‖L6 ‖w‖L6 ≤C‖u‖H1 ‖v‖H1 ‖w‖H1 ,

‖uvw‖L2 ≤C‖uv‖H2 ‖w‖L2 ,

‖uvwz‖L2 ≤C‖uvw‖H2 ‖z‖L2 .
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Since H2 forms an algebra, we can moreover estimate products in H2 as

‖uv‖H2 ≤C‖u‖H2 ‖v‖H2 .

A.3 L2 estimates for mixed powers of x and ∂ ju

The following estimates are based on repeated integration by parts and the inequality of arithmetic and geo-
metric means.

‖x j ∂ j u‖L2 ≤C
(
‖x2 u‖L2 +‖u‖H2

)
,

‖x2
j ∂ j u‖L2 ≤C

(
‖x4 u‖L2 +‖x2 u‖L2 +‖u‖H2

)
,

‖x j ∂
2
j u‖L2 ≤C

(
‖x3 u‖L2 +‖u‖H3

)
, or ‖x j ∂

2
j u‖L2 ≤C

(
‖x3 u‖L2 +‖u‖H3

)
,

‖x2
j ∂

2
j u‖L2 ≤C

(
‖x4 u‖L2 +‖u‖H4

)
.

B Derivation of integral representations for the first- and second-order defect terms

The integral representations (3.12) and (3.13) for the first- and second-order defect terms S (1)(t,u) and
S (2)(t,u) are related to the analogous results for the general case, with A and B nonlinear, from [3], which
were derived and verified with the help of computer algebra. Here we specialize for A linear and give a
rigorous proof, rearranging terms in a way which is appropriate for the present purpose, without explicating
all technical details.

The idea is to evaluate the defect terms in a way containing no explicit time derivatives. This results in
several subexpressions vanishing at t = 0 and satisfying certain linear evolution equations. Application of the
variation of constant formulas

y′(t) = 1
2 Ay(t)+ r(t), y(0) = 0 ⇒ y(t) =

∫ t

0
EA(

1
2 (t− τ))r(τ)dτ , (B.1a)

y′(t) = B′(EB(t,u))y(t)+ r(t), y(0) = 0 ⇒ y(t) =
∫ t

0
∂2 EB(t− τ,EB(τ,u))r(τ)dτ . (B.1b)

then yields the desired integral forms.
To explain (B.1b) we note that

∂

∂ t ∂2EB(t,u)z = B′(EB(t,u))∂2EB(t,u)z ,(
∂2EB(t,u)

)−1
= ∂2EB(−τ,EB(τ,u)),

∂2EB(t,u)∂2EB(−τ,EB(τ,u)) = ∂2EB(t− τ,EB(τ,u)).

Hence by the linear variation of constant formula,

y(t) = ∂2EB(t,u)
∫ t

0

(
∂2EB(τ,u)

)−1r(τ)dτ =
∫ t

0
∂2 EB(t− τ,EB(τ,u))r(τ)dτ .

B.1 The first-order defect S (1)(t,u)

The intermediate values of a Strang splitting step (3.2),

v = v(t,u) = EA(
1
2 t)u, (B.2a)

w = w(t,u) = EB(t,v), (B.2b)

(such that S (t,u) = EA(
1
2 t,w)) satisfy

∂

∂ t v = 1
2 Av ,

∂

∂ t w = B(w)+∂2 EB(t,v) ∂

∂ t v = B(w)+ 1
2 ∂2 EB(t,v)Av .
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Thus,
∂

∂ t S (t,u) = ∂

∂ t

(
EA(

1
2 t)w

)
= 1

2 AS (t,u)+EA(
1
2 t,w) ∂

∂ t w

= 1
2 AS (t,u)+EA(

1
2 t)B(w)+ 1

2 EA(
1
2 t)∂2 EB(t,v)Av ,

and for the defect S (1) this gives

S (1)(t,u) = ∂

∂ t S (t,u)−AS (t,u)−B(S (t,u))

= EA(
1
2 t)B(w)+ 1

2 EA(
1
2 t)∂2 EB(t,v)Av− 1

2 AS (t,u)−B(S (t,u))

= EA(
1
2 t)B(w)+ 1

2 EA(
1
2 t)∂2 EB(t,v)Av− 1

2 AEA(
1
2 t)w−B(EA(

1
2 t)w)

= EA(
1
2 t)B(w)+ 1

2 EA(
1
2 t)∂2 EB(t,v)Av− 1

2 EA(
1
2 t)Aw−B(EA(

1
2 t)w),

which can be written in the form

S (1)(t,u) = EA(
1
2 t)B(w)−B(EA(

1
2 t)w) (B.3a)

+ 1
2 EA(

1
2 t)
(
∂2 EB(t,v)Av−AEB(t,v)

)
. (B.3b)

In order to find an integral representation for S (1)(t,u), we separately consider the terms (B.3a) and (B.3b),
with v and w fixed. Differentiating with respect to t we find that they satisfy the following evolution equations.
(B.3a): S

(1)
(a) (t) = EA(

1
2 t)B(w)−B(EA(

1
2 t)w) satisfies S

(1)
(a) (0) = 0, and

∂

∂ t S
(1)
(a) (t) =

1
2 AS

(1)
(a) (t)+

1
2 [A,B](EA(

1
2 t)w). (B.4a)

In (B.3b), we consider the expression within
(
. . .
)
:

(B.3b): S
(1)
(b) (t) = ∂2 EB(t,v)Av−AEB(t,v) satisfies S

(1)
(b) (0) = 0, and

∂

∂ t S
(1)
(b) (t) = B′(EB(t,v))S

(1)
(b) (t,v)+ [B,A](EB(t,v)). (B.4b)

Finally, applying (B.1a) and (B.1b), recombination and substituting v = EA(
1
2 t)u, w = EB(t,EA(

1
2 t)u) leads

to the integral representation (3.12) for S (1)(t,u).

B.2 The second-order defect S (2)(t,u)

To evaluate S (2) defined in (3.8b), we proceed in an analogous way as for S (1), with v, w defined in (B.2).
We start by differentiating the expression for S (1) from (3.6) with respect to t,

∂

∂ t S (1)(t,u) =
(
A+B′(S (t,u))

)
S (1)(t,u)

−B′(EA(
1
2 t)w)EA(

1
2 t)∂2 EB(t,v)Av+EA(

1
2 t)B′(w)∂2 EB(t,v)Av

−AEA(
1
2 t)B(w)+AB(EA(

1
2 t)w)− 1

2 AEA(
1
2 t)∂2 EB(t,v)Av

+ 1
4 EA(

1
2 t)∂2 EB(t,v)A2 v+ 1

4 A2 EA(
1
2 t)w

+ 1
4 EA(

1
2 t)∂

2
2 EB(t,v)(Av,Av)+EA(

1
2 t)B′(w)B(w)

+B′(EA(
1
2 t)w)B(EA(

1
2 t)w)−2B′(EA(

1
2 t)w)EA(

1
2 t)B(w).

Subtracting F ′(S (t,u))S (1)(t,u) = (A+B′(S (t,u)))S (1)(t,u) and rearranging terms yields

S (2)(t,u) =
(
EA(

1
2 t)B′(w)−B′(EA(

1
2 t)w)EA(

1
2 t)
)

∂2 EB(t,v)Av (B.5a)

+
(
A+B′(EA(

1
2 t)w)

)(
B(EA(

1
2 t)w)−EA(

1
2 t)B(w)

)
(B.5b)

+
(
EA(

1
2 t)B′(w)−B′(EA(

1
2 t)w)EA(

1
2 t)
)

B(w) (B.5c)

+ 1
4 EA(

1
2 t)
(

A
(
AEB(t,v)−∂2 EB(t,v)Av

)
(B.5d)

−
(
A∂2 EB(t,v)−∂2 EB(t,v)A

)
Av (B.5e)

+∂
2
2 EB(t,v)(Av,Av)

)
. (B.5f)
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Evaluation of S (2)(t,u) at t = 0 shows S (2)(0,u) = 0, hence S (2)(t,u) = O(t).
In order to find an integral representation for S (2)(t,u), we separately consider the terms (B.5a)–(B.5f),

with v, w and z := ∂2 EB(t,v)Av fixed. Differentiating with respect to t we find that they satisfy the following
linear evolution equations.

(B.5a): S
(2)
(a) (t) =

(
EA(

1
2 t)B′(w)−B′(EA(

1
2 t)w)EA(

1
2 t)
)
z satisfies S

(2)
(a) (0) = 0, and

∂

∂ t S
(2)
(a) (t) =

1
2 AS

(2)
(a) (t) (B.6a)

+ 1
2 [A,B

′(EA(
1
2 t)w)]AEA(

1
2 t)w+ 1

2 [A,B
′(EA(

1
2 t)w)]EA(

1
2 t)
(
z−Aw

)
− 1

2 B′′(EA(
1
2 t)w)

(
AEA(

1
2 t)w,EA(

1
2 t)(z−Aw+Aw)

)
.

(B.5b): S
(2)
(b) (t) =

(
A+B′(EA(

1
2 t)w)

)(
B(EA(

1
2 t)w)−EA(

1
2 t)B(w)

)
satisfies S

(2)
(b) (0) = 0, and

∂

∂ t S
(2)
(b) (t) =

1
2 AS

(2)
(b) (t) (B.6b)

+ 1
2 A [B ,A]EA(

1
2 t)w+ 1

2 B′(EA(
1
2 t)w)[B ,A]EA(

1
2 t)w

− 1
2 B′′(EA(

1
2 t)w)

(
AEA(

1
2 t)w,EA(

1
2 t)B(w)−B(EA(

1
2 t)w)

)
+ 1

2 [A,B
′(EA(

1
2 t)w)]

(
EA(

1
2 t)B(w)−B(EA(

1
2 t)w)

)
.

(B.5c): S
(2)
(c) (t) =

(
EA(

1
2 t)B′(w)−B′(EA(

1
2 t)w)EA(

1
2 t)
)

B(w), satisfies S
(2)
(c) (0) = 0, and

∂

∂ t S
(2)
(c) (t) =

1
2 AS

(2)
(c) (t)+

1
2 [A,B

′(EA(
1
2 t)w)]EA(

1
2 t)B(w) (B.6c)

− 1
2 B′′(EA(

1
2 t)w)

(
AEA(

1
2 t)w,EA(

1
2 t)B(w)

)
.

In (B.5d)–(B.5f), we consider the expressions within
(
. . .
)
:

(B.5d): S
(2)
(d) (t) = A

(
AEB(t,v)−∂2 EB(t,v)Av

)
satisfies S

(2)
(d) (0) = 0, and

∂

∂ t S
(2)
(d) (t) = B′(EB(t,v))

(
S

(2)
(d) (t)

)
(B.6d)

+[A, [A,B]](EB(t,v))

+2[A,B′(EB(t,v))]AEB(t,v)− [A,B′(EB(t,v))]∂2 EB(t,v)Av

−B′′(EB(t,v))
(
AEB(t,v),AEB(t,v)

)
.

(B.5e): S
(2)
(e) (t) =

(
A∂2 EB(t,v)−∂2 EB(t,v)A

)
Av satisfies S

(2)
(e) (0) = 0, and

∂

∂ t S
(2)
(e) (t) = B′(EB(t,v))

(
S

(2)
(e) (t)

)
+[A,B′(EB(t,v))]∂2 EB(t,v)Av . (B.6e)

(B.5f): S
(2)
( f ) (t) = ∂ 2

2 EB(t,v)(Av,Av) satisfies S
(2)
( f ) (0) = 0, and

∂

∂ t S
(2)
( f ) (t) = B′(EB(t,v))

(
S

(2)
( f ) (t)

)
+B′′(EB(t,v))

(
∂2 EB(t,v)Av,∂2 EB(t,v)Av

)
. (B.6f)

Finally, applying (B.1a) and (B.1b), respectively, recombination and substituting v = EA(
1
2 t)u, w =

EB(t,EA(
1
2 t)u) and z = ∂2 EB(t,v)Av leads to the integral representation (3.13) for S (2)(t,u).

C Auxiliary estimates for the NLS case

C.1 Estimate of
∥∥∂2 EF(τ1− τ2,S (τ2,u)) ·S (2)(τ2,u)

∥∥
L2

For a detailed study of the estimate (5.1b), we need to estimate the arising expressions in L (2)(t,u) as

‖∂2 EF (t−τ2,S (τ2,u))S (2)(τ2,u)‖L2 ≤C1 +C2 · ‖S (2)(τ2,u)‖L2 ≤C1 +C2 ·τ2 sup
0≤τ3≤τ2

‖sss(2)(τ2,τ3,u)‖L2 ,
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with constants C1,C2 resulting from Gronwall estimates.
We substitute

g = S (2)(τ2,u), w = S (τ2,u)

and apply the linear variation of constant formula in the following way,

∂

∂ t ∂2 EF (t− τ2,w)g = F ′(EF (t− τ2,w))∂2 EF (t− τ2,w)g

= A∂2 EF (t− τ2,w)g+B′(EF (t− τ2,w))∂2 EF (t− τ2,w)g,

∂2 EF (t− τ2,w)
∣∣∣
t=τ2

g = g,

⇒ ∂2 EF (t− τ2,w)g = EA(t− τ2)g+
∫ t

τ2

EA(t−θ)B′(EF (θ − τ2,w))∂2 EF (θ − τ2,w)gdθ .

Hence,

‖∂2 EF (t− τ2,w)g‖L2 ≤ ‖g‖L2 +
∫ t

τ2

‖B′(EF (θ − τ2,w))∂2 EF (θ − τ2,w)g‖L2 dθ

≤ ‖g‖L2 +
∫ t

τ2

1
ε
‖U ∂2 EF (θ − τ2,w)g‖L2 dθ

+
∫ t

τ2

1
ε

C̃ϑ ‖EF (θ − τ2,w)‖2
H2‖ ∂2 EF (θ − τ2,w)g‖L2 dθ .

Applying a Gronwall argument we obtain

‖∂2 EF (t− τ2,w)g‖L2 ≤ exp
(

C̃
∫ t

τ2

1
ε
|ϑ |‖EF (σ − τ2,u)‖2

H2 dσ

)
·
(
‖g‖L2 +

∫ t

τ2

1
ε
‖U ∂2 EF (θ − τ2,w)g‖L2 dθ

)
.

Now the question is how to argue a reasonable a priori estimate for 1
ε
‖U ∂2 EF (θ −τ2,w)g‖L2 . In the follow-

ing this is accomplished by relating this term to a known estimate for ‖U EF (t,u)‖L2 , see [13].
Considering the Fréchet derivative of EF (θ − τ2,w + g) with a small increment g,

‖g‖L2 ≤ δ‖EF (θ − τ2,w+g)‖ and ‖EF (θ − τ2,w+g)‖L2 = ‖EF (θ − τ2,w)‖L2 +O(‖g‖L2 ),

EF (θ − τ2,w+g) = EF (θ − τ2,w)+∂2EF (θ − τ2,w)(g)+O(‖g‖2
L2 ),

we obtain

U ·
(
∂2EF (θ − τ2,w)(g)

)
+O(‖g‖2) =U ·EF (θ − τ2,w+g)−U ·EF (θ − τ2,w),

‖U ·
(
∂2EF (θ − τ2,w)(g)

)
‖L2 ≤ ‖U ·EF (θ − τ2,w)−U ·EF (θ − τ2,w+g)‖L2 +O(‖g‖2

L2 ),

‖U ·
(
∂2EF (θ − τ2,w)(g)

)
‖L2 ≤ ‖U ·EF (θ − τ2,w)‖L2 +‖U ·EF (θ − τ2,w+g)‖L2 +O(‖g‖2

L2 ),

where the size of the increment g = S (2)(t,u) becomes negligible for sufficiently small choice of t. Apply-
ing [13, pp. 532sqq.] allows to bound UEF in L2 by a constant 1

2 C∗, which depends on EF . Altogether, we
obtain the crude estimate

sup
τ2≤θ≤t

‖U∂2EF (θ − τ2,w)g‖L2 ≤C∗ . (C.1)

Actually, the above derivation lets us expect that C∗ contains a factor t. However, we have not been able to
prove this in a rigorous way.

Altogether we obtain (5.1b),

‖∂2 EF (t− τ2,S (τ2,u))g‖L2 ≤ exp
(∫ t

τ2

1
ε

C̃ |ϑ |‖EF (σ − τ2,S (τ2,u))‖2
H2 dσ

)(
‖g‖L2 + t

ε
C∗
)
. (C.2)

A similar result can be obtained in the H2 -norm,

‖∂2 EF (t− τ2,u)g‖H2 ≤ exp
(

C̃
∫ t

τ2

1
ε
|ϑ |‖EF (σ − τ2,u)‖2

H2 dσ

)(
‖g‖H2 + t

ε
C∗
)
, (C.3)
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with a constant C̃∗ such that

sup
τ2≤θ≤t

‖U∂2EF (θ − τ2,u)g‖H2 ≤ C̃∗ . (C.4)

For simplicity of denotation, let C∗ be defined as the maximum of the constants appearing in (C.1) and C.4).
In this sense the estimates from this section enter the local error estimates in Section 5.

C.2 Estimate of
∥∥∂ 2

2 EF(t− τ2,S (τ2,u))
(
(S (1)(τ2,u)

)2∥∥
L2

For the estimate of ‖∂ 2
2 EF (t − τ2,S (τ2,u))

(
S (1)(τ2,u)

)2‖L2 in (5.2b), we proceed in a similar way as
for (C.2) with the help of the identity

∂

∂ t ∂
2
2 EF (t,u)

(
v,w
)
= F ′′(EF (t,u))

(
∂2EF (t,u)v,∂2EF (t,u)w

)
+F ′(EF (t,u))∂ 2

2 EF (t,u)
(
v,w
)

= A∂
2
2 EF (t,u)

(
v,w
)
+B′′(EF (t,u))

(
∂2EF (t,u)v,∂2EF (t,u)w

)
+B′(EF (t,u))∂ 2

2 EF (t,u)
(
v,w
)
,

where

B′′(u)(v,w) =−2i 1
ε

ϑ
(
uvw+uvw+uvw

)
does not depend on U .

Again we can apply the variation of constant formula and obtain, with the help of Sobolev embeddings
and (C.3),

‖∂ 2
2 EF (t− τ2,S (τ2,u))(S (1)(τ2,u),S (1)(τ2,u))‖L2

≤ exp
(

C
∫ t

τ2

1
ε
|ϑ |‖EF (σ − τ2,S (τ2,u))‖2

H2 dσ

)
·
(

Ĉ t3

ε
‖u‖L2

(
sup

0≤τ3≤τ2

‖sss(1)(τ2,τ3,u)‖H2 + 1
ε

C∗
)2

+ t2

ε
C∗
)
,

for some constants C and Ĉ depending on the Sobolev imbedding of H2 in L2.

References

1. X. Antoine, W. Bao, and Ch. Besse. Computational methods for the dynamics of the nonlinear
Schrödinger/Gross–Pitaevskii equations. Comput. Phys. Commun., 184:2621–2633, 2013.

2. W. Auzinger and W. Herfort. Local error structures and order conditions in terms of Lie elements for
exponential operator splitting schemes. Opuscula Math., 34(2):243–255, 2014.

3. W. Auzinger, H. Hofstätter, O. Koch, and M. Thalhammer. Defect-based local error estimators for
splitting methods, with application to Schrödinger equations, Part III: The nonlinear case. J. Comput.
Appl. Math., 273:182–204, 2014.

4. W. Auzinger, O. Koch, and M. Thalhammer. Defect-based local error estimators for splitting methods,
with application to Schrödinger equations, Part I: The linear case. J. Comput. Appl. Math., 236:2643–
2659, 2012.

5. W. Auzinger, O. Koch, and M. Thalhammer. Defect-based local error estimators for splitting methods,
with application to Schrödinger equations, Part II: Higher-order methods for linear problems. J. Comput.
Appl. Math., 255:384–403, 2013.

6. P. Bader, A. Iserles, K. Kropielnicka, and P. Singh. Effective approximation for the semiclassical
Schrödinger equation. Found. Comput. Math., 14(4):689–720, 2014.

7. W. Bao, S. Jin, and P. Markowich. On time-splitting spectral approximations for the Schrödinger equation
in the semiclassical regime. J. Comput. Phys., 175:487–524, 2002.

8. W. Bao, S. Jin, and P. Markowich. Numerical study of time-splitting spectral discretisations of nonlinear
Schrödinger equations in the semiclassical regimes. SIAM J. Sci. Comput., 25/1:27–64, 2003.

9. C. Besse, B. Bidégaray and S. Descombes. Order estimates in time of splitting methods for the nonlinear
Schrödinger equation. SIAM J. Numer. Anal., 40(1):26–40,2002.



Adaptive splitting methods for nonlinear Schrödinger equations in the semiclassical regime 31

10. S. Blanes and P. C. Moan. Practical symplectic partitioned Runge–Kutta and Runge–Kutta–Nyström
methods. J. Comput. Appl. Math., 142(2):313–330, 2002.

11. B. Cano and A. González-Pachón. Plane waves numerical stability of some explicit exponential methods
for cubic Schrödinger equation. Available at http://hermite.mac.cie.uva.es/bego/cgp3.pdf,
2013.

12. R. Carles. On Fourier time-splitting methods for nonlinear Schrödinger equations in the semiclassical
limit. SIAM J. Numer. Anal., 51(6):3232–3258, 2013.

13. R. Carles. Semi-classical Schrödinger equations with harmonic potential and nonlinear perturbation.
Ann. Inst. H. Poincaré Anal. Non Linéaire, 20(3):501–542, 2003.

14. M. Dahlby and B. Owren. Plane wave stability of some conservative schemes for the cubic Schrödinger
equation. M2AN Math. Model. Numer. Anal., 43:677–687, 2009.

15. P. Degond, S. Gallego, and F. Méhats. An asymptotic preserving scheme for the Schrödinger equation
in the semiclassical limit. C. R. Math. Acad. Sci. Paris, 345(9):531–536, 2007.

16. S. Descombes and M. Thalhammer. An exact local error representation of exponential operator splitting
methods for evolutionary problems and applications to linear Schrödinger equations in the semi-classical
regime. BIT Numer. Math., 50:729–749, 2010.

17. S. Descombes and M. Thalhammer. The Lie–Trotter splitting for nonlinear evolutionary problems with
critical parameters: a compact local error representation and application to nonlinear Schrödinger equa-
tions in the semiclassical regime. IMA J. Numer. Anal., 33:722–745, 2013.

18. E. Faou. Geometric numerical integration and Schrödinger equations. European Math. Soc., 2012.
19. E. Faou, L. Gauckler and Ch. Lubich. Sobolev stability of plane wave solutions to the cubic nonlinear

Schrödinger equation on a torus. Comm. Partial Differential Equations 38(7):1123-1140, 2013.
20. L. Gauckler. Convergence of a split-step Hermite method for the Gross–Pitaevskii equation. IMA J.

Numer. Anal., 31:396–415, 2011.
21. L. Gauckler and Ch. Lubich. Splitting integrators for nonlinear Schrödinger equations over long times.

Found. Comput. Math., 10:275–302, 2010.
22. V. Gradinaru and G.A. Hagedorn. Convergence of a semiclassical wavepacket based time-splitting for

the Schrödinger equation. Numer. Math., 126(1):53–73, 2014.
23. E. Hairer, S.P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I: Nonstiff Problems,

volume 1. Springer Series in Computational Mathematics, Heidelberg, 1993.
24. S. Jin, P. Markowich, and Ch. Sparber. Mathematical and computational methods for semiclassical

Schrödinger equations. Acta Numer., 20:121–209, 2011.
25. O. Koch, Ch. Neuhauser, and M. Thalhammer. Error analysis of high-order splitting methods for nonlin-

ear evolutionary Schrödinger equations and application to the MCTDHF equations in electron dynamics.
M2AN Math. Model. Numer. Anal., 47:1265–1284, 2013.

26. Ch. Lubich. On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations.
Math. Comp., 77:2141–2153, 2008.

27. G.S. McDonald, K.S. Syed, and W.J. Firth. Dark spatial soliton break-up in the transverse plane. Opt.
Commun., 95:281–288, 1993.

28. R.D. Ruth. A canonical integration technique. T. Nucl. S., 30:2669–2671, 1983.
29. M. Thalhammer. Convergence analysis of high-order time-splitting pseudo-spectral methods for nonlin-

ear Schrödinger equations. SIAM J. Numer. Anal., 50:3231–3258, 2012.
30. X. Yang and J. Zhang. Computation of the Schrödinger equation in the semiclassical regime on an

unbounded domain. SIAM J. Numer. Anal., 52(2):808–831, 2014.
31. H. Yoshida. Construction of higher order symplectic intergrators. Phys. Lett. A, 150:262–268, 1990.


