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Abstract The study of the dynamical behaviour of the operators defined by iterative meth-
ods help us to know more deeply the regions where these methods have a good perfor-
mance. In this paper, we follow the dynamical study of a multipoint variant of the known
Chebyshev-Halley’s family, showing the existence of attractive periodic orbits of period 2
for some values of the parameter.
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1 Introduction

The study of multiple phenomena appearing in different areas of experimental science and
technology leads to build a mathematical model.

Mathematical models are of central importance in many scientific contexts. The under-
lying mathematical nature of the models as the billiard ball model of a gas, the Bohr model
of the atom, the Lorenz model of the atmosphere, the Lotka-Volterra model of predator-prey
interaction, etc, are cases in point. Mathematical models are one of the principal instruments
of modern science.

In many cases, the application of these models to solve a particular problem gives rise
to a nonlinear equation or a differential equation or, more often, a system of equations. The
problem is that in practice it is very difficult, if not impossible, to find the exact solution
of these equations; therefore, it is necessary to resort to numerical approximations by us-
ing iterative methods. This means that the output of the method is a sequence of images
{z0, R (z0) , R2 (z0) , ..., Rn (z0) , ...}, where R is a function that represents the fixed-point
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operator of the iterative scheme. Therefore, it can be seen as a discrete dynamical system
and we can study it from this point of view.

The application of iterative methods on polynomials gives rise to rational functions
whose complex dynamics is not well-known, except the case of Newton’s method (see,
for example, [14]). From the numerical point of view, the dynamical behavior of the rational
function associated with an iterative method gives us important information about its stabil-
ity and reliability. In this sense, Varona in [7] and Amat et al. in [8] described the dynamical
behavior of several well-known families of iterative methods. More recently, in [6,9–13], the
authors analyze, under the point of view of complex dynamics, the qualitative behavior of
different known iterative methods or families, such as King’, Chebyshev-Halley’s, c-family
or damped Newton. When these kind of analysis is made, different pathological numerical
behavior, such as periodic orbits, attracting fixed points different from the solution of the
problem, etc. A very useful tool to understand the behavior of the different members of the
family of methods is the parameter plane, that helps us to select the most stable members of
the class.

The natural space for iterating a rational map R is the Riemann sphere Ĉ. For a given
rational map R, the sphere splits into two complementary domains: the Fatou set F(R)
where the family of iterates {Rn (z)}n∈N is a normal family, and the Julia set J (R) where
the family of iterates fails to be a normal family. The Fatou set, when it is nonempty, is
composed of the set of points whose orbits tend to an attractor (fixed point, periodic orbit,
infinity, ...). On the other hand, it is known that the Julia set is a closed, totally invariant,
perfect nonempty set, and coincides with the closure of the set of repelling periodic points.
The Julia set is the complement of the Fatou set, and it is the locus of chaos; small errors
may become arbitrarily large after many iterations. For a deep review on iteration of rational
maps see [2]. See [1] for a wide study of complex dynamics.

The first objects to arise in the study of such systems are the so-called fixed points, which
are, as the name implies, points of Ĉ which are mapped onto themselves by R. In complex
dynamics, fixed points can be classified by their derivatives into attracting (|R′(z0)| < 1),
superattracting (|R′(z0)| = 0), repelling (|R′(z0)| > 1), and neutral points (|R′(z0)| = 1);
these names are indicative of whether nearby points move closer to or further from the fixed
point under application of R. Besides fixed points, R may have periodic points, which are
points that map back to themselves after several iterations of R, and pre-periodic points,
which are points that eventually map to periodic points.

Given a rational function R : Ĉ → Ĉ, where Ĉ is the Riemann sphere, the orbit of a
point z0 ∈ Ĉ is defined as:

{z0, R (z0) , R2 (z0) , ..., Rn (z0) , ...}

We are interested in the study of the asymptotic behavior of the orbits depending on the
initial condition z0, that is, we are going to analyze the phase plane of the map R defined by
the different iterative methods. To obtain these phase spaces, the first of all is to classify the
starting points from the asymptotic behavior of their orbits.

The basin of attraction of an attractor α is defined as the set of pre-images of any order:

A (α) = {z0 ∈ Ĉ : Rn (z0)→α, n→∞}.

The basin of attraction of an attractor needs at least one critical point inside, so, it is
important the number of critical points because the critical points are the causative of the
instability of numerical methods. A critical point z0 is a point where the derivative of ra-
tional function vanishes, R′ (z0) = 0. When the iterative method has order of convergence,
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at least, two then the roots of the nonlinear function are superattracting fixed points of the
associated operator and so, critical points. However, critical points that are not fixed points
of this operator can appear; they are called free critical points.

As we have said, iterative methods are used for finding roots of a nonlinear equation and,
from a dynamical point of view, these roots are fixed points of the operator R associated
to the method. This paper continues with the dynamical study of a multipoint variant of
Chebyshev’s method started in [5], where we studied the stability of the fixed points. In
Section 2 we summarize some previous results obtained in that paper. In Section 3 we study
the existence of periodic orbits and we find three regions in the parameter plane where we
can ensure the existence of attractive cycles of period 2 for parameter values in such regions
(Propositions 3, 4 and 5). Finally, in Section 4 we obtain the dynamical planes for some
values of the parameter where appears a basin of attraction corresponding to a periodic orbit
of period 2.

2 Previous results on the dynamics of a multipoint variant of Chebyshev-Halley
family

The variant of Chebyshev-Halley family is obtained by considering the Newton-like iterative
method as a predictor

yn = zn − α
f (zn)

f ′ (zn)
,

and modifying the family of Chebyshev’s method by using the second-order derivative at yn
instead of zn:

zn+1 = zn −
f (zn)

f ′ (zn)
− 1

2

f (zn)2 f ′ (zn) f ′′ (yn)

(f ′ (zn)2 − af (zn) f ′′ (yn))2
. (1)

As, for α = 1
3 and a = 1

2 a fourth-order variant of Chebyshev method is obtained
(see [3]), we fix α = 1

3 and conduct a dynamical study of this family, depending on one
parameter a.

The fixed point operator corresponding to the family described in (1) is:

G (z, a) = z − f (z)

f ′ (z)
− 1

2

f (z)2 f ′ (z) f ′′ (y)

(f ′ (z)2 − af (z) f ′′ (y))2
, (2)

where

y = z − 1

3

f (z)

f ′ (z)
.

In paper [5] we began the study of the dynamics of this operator applied on quadratic poly-
nomials and using a conjugacy map onto the operator in order to obtain a rational function
depending only on the parameter a:

Op (z, a) =
z3 (−1 + 2a− z)

(
2 + (3− 2a)z + z2

)
(−1 + (2a− 1)z) (1 + (3− 2a)z + 2z2)

. (3)

The fixed points of this operator are the solutions ofOp (z, a) = z. Solving this equation
we obtain z = 0, z =∞, z = 1 and
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z1,2(a) =
1

4

(
4a− 5 +

√
1− 8a± 2

√
1

4

(
4a− 5 +

√
1− 8a

)2
− 4

)

z3,4(a) =
1

4

(
4a− 5−

√
1− 8a± 2

√
1

4

(
4a− 5−

√
1− 8a

)2
− 4

)
.

A fixed point is attractive or repulsive if the stability function, |O′p (z, a) |, is less or
greater than one, respectively. As

O′p (z, a) = −2z2
(1 + (2− 2a)z + z2)P (z, a)

(−1 + (2a− 1)z)
2 (1 + (3− 2a)z + 2z2)2

, (4)

where

P (z, a) = 6a− 3 + (−12 + 22a− 12a2)z + (−18 + 32a− 24a2 + 8a3)z2

+ (−12 + 22a− 12a2)z3 + (6a− 3)z4,

we obtain that z = 0 and z =∞ are always superattractive fixed points, but the stability of
the other strange fixed points changes depending on the values of the parameter a.

The stability of the fixed points is studied in [5] and the results are summarized in Propo-
sitions 1 and 2.

Proposition 1 For every value a = x + iy of the parameter, the strange fixed point z = 1
satisfies the following statements :

i) z = 1 is an attractor inside the curve C defined by:

3y2 = (−11 + 12x− 3x2 + 2
√
−11 + 12x− 3x2).

It is a superattractor for a = 2.
ii) z = 1 is a parabolic point for values of the parameter a on the curve C, and

iii) z = 1 is a repulsive fixed point for values of a outside the curve C.

We also proved that the stability functions of z1(a) and z2(a) coincide; therefore, z1(a)
and z2(a) exhibit the same dynamical behavior. The same occurs for z3(a) and z4(a).

Moreover, these fixed points satisfy the following result:

Proposition 2 The fixed points z1 (a) and z2 (a) are attractors for a = x + iy ∈ D such
that D = D1 ∪D2 ∪D3, where D1 is the disk delimited by the circumference C1:

(x− 2)2 + (y − 1.5)2 =
1

4
, (5)

D2 is the disk delimited by the circumference C2:

(x− 2)2 + (y + 1.5)2 =
1

4
, (6)

and D3 is delimited by the cardioid C3:

x(t) =
1

8
− 1

4

6.9

6000
+

6.9

6000

(
1

2
cos t− 1

4
cos 2t

)
,

y(t) =
6.9

6000

(
1

2
sin t− 1

4
sin 2t

)
, t ∈ [0, 2π].
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On the other hand, the dynamical behavior of operator Op (z, a) depends on the values
of the parameter a. The parameter plane is obtained by iterating one free critical point; each
point of the parameter plane is associated with a complex value of a, i.e., with an element of
family (1). The critical points of this system are the roots of O′p(z, a) = 0. From equation
(4), we obtain that the critical points are z = 0, z = ∞, c± = a − 1 ±

√
a2 − 2a and the

roots of a symmetric fourth degree polynomial P (z, a) given by:

c1,2(a) =
1

2
(x+ ±

√
x2+ − 4) (7)

c3,4(a) =
1

2
(x− ±

√
x2− − 4),

where

x± =
6− 11a+ 6a2 ± a

√
1 + 36a− 12a2

3(2a− 1)
.

Let us remark that, due to the symmetry of P (z, a), c1(a) =
1

c2(a)
and c3(a) =

1

c4(a)
.

Then, there are free six critical points, different from the roots of the polynomial, but
the parameter planes of inverse critical points coincide, i.e. there are only three independent
free critical points and three different parameter planes ([?]).

These parameter planes are built by using the algorithms designed in [6], with MatLab
program. The following figures are made by using these algorithms, with 2000 × 2000
points, 200 iterations and tolerance 10−3.

In the study of the parameter planes we can ensure that the critical point c1(a) is in the
basin of z = 1 or z1(a) for those values of the parameter for which z = 1 or z1(a) are
attractive, by overlaying their basins of attraction (see Figure 1). In these figures, red color
means that the critical point is into the basins of attraction of z = 0 or z =∞, whereas that
black color indicates that the critical point generates its own dynamics.

3 y2=−11+12 x−3 x2+2 sqrt(−11+12 x−3 x2)

x

y

−3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

(a) Parameter plane of c1(a) with the curves C,
C1 and C2

IRe{α}

IIm
{α

}

0.12 0.121 0.122 0.123 0.124 0.125 0.126 0.127 0.128 0.129 0.13
−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

−3

(b) A magnification of the parameter plane of
c1(a), with the curve C3

Fig. 1: Stability regions of z = 1, z1(a) and z2(a) in the parameter plane of c1(a)
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In this paper we study the existence of attractive periodic orbits of period two. We con-
tinue exploring the planes of parameters of c1(a) and c3(a). We have found two bulbs in
the parameter plane of c1(a) where we can ensure the existence of periodic orbits of period
two. We have also found a region in the parameter plane of c3(a) where there also exist
2-periodic orbits.

3 Regions involving attractive 2-periodic orbits

The 2-bulbs are regions in the parameter space containing values of the parameter for which
the rational operator exhibits attractive orbits of period two.

Cycles of period 2 satisfy the equation:

O2
p (z, a) = z.

The relation O2
p (z, a)− z can be factorized as:

(1− z)
(
z4 + (5− 4a) z3 +

(
4a2 − 8a+ 8

)
z2 + (5− 4a) z + 1

)
(z6 + (5− 4a) z5 +

(
10− 12a+ 4a2

)
z4 +

(
12− 16a+ 4a2

)
z3

+
(

10− 12a+ 4a2
)
z2 + (5− 4a) z + 1)P24 (z, a)

where P24 (z, a) is a polynomial of degree 24 in z.
The two first factors of O2

p (z, a) − z = 0 give the fixed points; in this paper we show
that the third factor gives attractive 2-cycles.

To obtain the solutions of the symmetric 6-degree polynomial, third factor in the previ-
ous expression, we follow the process used in [4].

The expressions for these solutions are:

z1,2(a) =
x1 ±

√
x21 − 4

2
;

z3,4(a) =
x2 ±

√
x22 − 4

2
;

z5,6(a) =
x3 ±

√
x23 − 4

2
;

where

x1(a) =
1

3
(4a− 5) +

3
√

11 + 24a + 24a2 − 16a3 − 3
√

3
√
−5 + 48a− 16a2 + 96a3 − 64a4

3 3
√

2
+

3
√

11 + 24a + 24a2 − 16a3 + 3
√

3
√
−5 + 48a− 16a2 + 96a3 − 64a4

3 3
√

2
;

x2(a) =
1

3
(4a− 5)−

(
1− i

√
3
)

3
√

11 + 24a + 24a2 − 16a3 − 3
√

3
√
−5 + 48a− 16a2 + 96a3 − 64a4

6 3
√

2
−

(1 + i
√

3)
3
√

11 + 24a + 24a2 − 16a3 + 3
√

3
√
−5 + 48a− 16a2 + 96a3 − 64a4

6 3
√

2
;
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x3(a) =
1

3
(4a− 5)−

(
1 + i

√
3
)

3
√

11 + 24a + 24a2 − 16a3 − 3
√

3
√
−5 + 48a− 16a2 + 96a3 − 64a4

6 3
√

2
−

(1− i
√

3)
3
√

11 + 24a + 24a2 − 16a3 + 3
√

3
√
−5 + 48a− 16a2 + 96a3 − 64a4

6 3
√

2
.

It can be checked that

Op (z1(a), a) = z2(a) and Op (z2(a), a) = z1(a),

Op (z3(a), a) = z4(a) and Op (z4(a), a) = z3(a),

Op (z5(a), a) = z6(a) and Op (z6(a), a) = z5(a);

so, {z1(a), z2(a)}, {z3(a), z4(a)} and {z5(a), z6(a)} are periodic orbits of period 2.
In the following we study for which values of the parameters these 2-cycles are attrac-

tive. The coordinates x and y of the parameter plane correspond to the real and imaginary
part of the parameter: a = x+ iy.

A 2-periodic orbit {z, z∗} is attractive when
∣∣O′p (z, a)O′p (z∗, a)

∣∣ < 1; if
∣∣O′p (z, a)O′p (z∗, a)

∣∣ >
1 the period 2 orbit is repulsive; the values of the parameter a such that

∣∣O′p (z, a)O′p (z∗, a)
∣∣ =

1 correspond to values where the orbit changes its stability. In the following results we
obtain the regions where {z1, z2}, {z3, z4} and {z5, z6} are attractive by finding curves
delimiting regions where

∣∣O′p (zi, a)O′p (zj , a)
∣∣ < 1.

Proposition 3 The 2-periodic orbit {z1(a), z2(a)} is attractive for a ∈ R1, where R1 is a
disk delimited by the curve:

x (t) = 1.30932 + 0.113 cos t,

y (t) = 0.112 sin t,

with t ∈ [0, 2π] .

Proof The 2-periodic orbit {z1(a), z2(a)} is attractive for those values of the parameter a
such that

S12 (a) =
∣∣O′p (z1(a), a)O′p (z2(a), a)

∣∣ < 1.

We consider a bundle of curves filling the region R1 where the outer curve is given by

x (t) = 1.30932 + 0.113 cos t,

y (t) = 0.112 sin t,

and the rest of curves of the bundle are obtained by decreasing the radii.
As the stability function S12 (a) is less than 1 when it is evaluated on this bundle, the

2-cycle {z1(a), z2(a)} is attractive inside the disk R1. In Figure 2 we show the bundle of
curves and the values of S12 (a) evaluated on the bundle.

Note that this outer curve of the bundle corresponding to values of the parameter

a = 1.30932 + 0.113 cos t+ i · 0.112 sin t, t ∈ [0, 2π]

is an approximation of the set of points such that∣∣O′p (z1(a), a)O′p (z2(a), a)
∣∣ = 1.

Similarly, we obtain the region R2 where {z3(a), z4(a)} is attractive.
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1.25 1.3 1.35 1.4

-0.1

-0.05

0.05

0.1

Ci

(a) Bundle of curves inside R1

0.5 1 1.5 2 2.5 3 t

0.2

0.4

0.6

0.8

1

S12

(b) Values of S12 on the curves

Fig. 2: Bundle of curves and stability function S12 evaluated on the bundle

Proposition 4 The 2-periodic orbit {z3(a), z4(a)} is attractive for a ∈ R2, where R2 is a
disk delimited by the circumference:

x (t) = 2.66368 + 0.0825 cos t,

y (t) = 0.0825 sin t,

with t ∈ [0, 2π].

Proof The 2-periodic orbit {z3(a), z4(a)} is attractive for those values of the parameter a
such that

S34 (a) =
∣∣O′p (z3(a), a)O′p (z4(a), a)

∣∣ < 1.

We consider a bundle of circumferences in the disk R2 with the outer curve given by

x (t) = 2.66368 + 0.0825 cos t,

y (t) = 0.0825 sin t.

The rest of circumferences are obtained by decreasing the radii.
The stability function satisfies S34 (a) < 1 evaluated on each circumference of the

bundle; then, the 2-cycle {z3(a), z4(a)} is attractive inside the disk R2. In Figure 3 we
show the bundle of curves and the values of S34 (a) evaluated on it.

2.625 2.65 2.675 2.7 2.725 2.75

-0.075

-0.05

-0.025

0.025

0.05

0.075

Ci

(a) Bundle of curves inside R2

1 2 3 4 5 6 t

0.2

0.4

0.6

0.8

1
S34

(b) Values of S34 on the curves

Fig. 3: Bundle of curves and stability function S34 evaluated on the bundle
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In Figure 4 we can observe the regionsR1 andR2 inside the 2-bulbs located on the right
and the left of the curve C that delimits the parameter set where the fixed point z = 1 is
attractive.

(x−2)2+(y+3/2)2−1/4 = 0

x

y

−3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Fig. 4: Parameter plane of c1(a) with the regions D1, D2, D3, R1 and R2

Finally, the following result shows where the 2-cycle {z5(a), z6(a)} is attractive.

Proposition 5 The 2-periodic orbit {z5(a), z6(a)} is attractive for a ∈ R3, where R3 is a
region delimited by the cardioid:

x (t) = 1.62− 0.117 cos t(1− cos t),

y (t) = −0.115 sin t(1− cos t),

with t ∈ [0, 2π].

Proof The 2-periodic orbit {z5(a), z6(a)} is attractive for those values of the parameter a
such that

S56 (a) =
∣∣O′p (z5(a), a)O′p (z6(a), a)

∣∣ < 1.

In this case we consider a bundle of cardioids in order to obtain a better approximation
of the boundary of this region of stability. The parametric equation of the outer cardioid is:

x (t) = 1.62− 0.117 cos t(1− cos t),

y (t) = −0.115 sin t(1− cos t),
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and the rest of curves of the bundle are obtained by decreasing their sizes.
As the stability function S56 (a) is less than 1 when it is evaluated on this bundle, the

2-cycle {z5(a), z6(a)} is attractive inside the region R3. In Figure 5 we show the bundle of
curves and the values of S56 (a) evaluated on the bundle.

1.65 1.7 1.75 1.8 1.85

-0.15

-0.1

-0.05

0.05

0.1

0.15

(a) Bundle of curves inside R3

1 2 3 4 5 6
t

0.2

0.4

0.6

0.8

1

S56

(b) Values of S56 on the curves

Fig. 5: Bundle of curves and stability function S56 evaluated on the bundle.

So, the region R3 corresponds to values of the parameter a where the 2-periodic orbit
{z5(a), z6(a)} is attractive.

As we see in Figure 6, this region is located in the parameter plane of the critical point
c3(a).

IRe{α}

IIm
{α

}

−2 −1 0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 6: Parameter plane for c3(a) with the cardioid R3.

4 Dynamical planes with 2-periodic orbits

In this section we show the dynamical planes for values of the parameter studied in the
previous section in order to observe the existence of attractive periodic orbits of period 2.

In Figures 7 and 8 we show the attractive periodic orbits {z1(a), z2(a)} and {z3(a), z4(a)}
for values of the parameter in the regions R1 and R2, respectively. As we have seen in [5],
these periodic orbits come from the bifurcation of the fixed point z = 1. This fixed point is
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z=0.89524+i0.44558

IRe{z}
3 −2 −1 0 1 2 3

Fig. 7: Dynamical plane for a = 1.3125 ∈ R1.

an attractor inside the curve C (see Proposition 1) and it becomes repulsive when entering
in region R1 at the point a = 2−

√
3
3 , appearing an attractive double period orbit. The same

occurs when z = 1 enters in region R2 at the point a = 2 +
√
3
3 (see Figure 4).

z=0.63502+i−3.246e−071

IRe{z}
3 −2 −1 0 1 2 3 4 5 6

Fig. 8: Dynamical plane for a = 2.6775 ∈ R2.

In Figure 9 we can observe the dynamical plane for the parameter a = 1.7175. In this
case, we see the basin of attraction of the orbit of period two {z5(a), z6(a)} (black color)
together with the basins of attraction of the fixed points z = 1 (green color), z = 0 (orange
color) and z =∞ (blue color).

As we have said at the beginning, each attractor needs a critical point inside its basin of
attraction. As the critical point c1(a) is in the basin of z = 1 for this value of the parameter,
the basin of attraction of the 2-periodic orbit needs another critical point, that is c3(a). That
is the reason why the region R3 appears in the parameter plane of c3(a) (see Figure 6).
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z=−0.36411+i0.93135

IRe{z}
−2 −1 0 1 2 3

Fig. 9: Dynamical plane for a = 1.7175 ∈ D3.

5 Numerical experiments

In this section, some numerical examples are given in order to check the behavior of the
elements of the analyzed family. We have selected some values of parameter a in stable
regions of the parameter plane and also some belonging to unstable regions. For this purpose,
we use the following test functions:

– f1(x) = ex − 4x2, x̄1 ≈ −0.40777, x̄2 ≈ 4.306585,
– f2(x) = arctanx, x̄ = 0,
– f3(x) =

(
sin2 x− x

2

)2, x̄1 = 0 double, x̄2 ≈ −1.895494, double,
– f4(x) =

√
x2 + 2x+ 5− 2 sinx− x2 + 3, x̄1 ≈ 2.331968 , x̄2 ≈ −2.573167,

Numerical computations have been carried out using variable precision arithmetic, with
100 digits, in MATLAB 7.11a. The stopping criterion used is |xk+1 − xk| < 10−25 or
|f(xk+1)| < 10−25. For test function, we calculate the number of iterations, the value of
error estimations |xk+1 − xk| and incr = |f(xk+1)| at the last iteration and the computa-
tional order of convergence ACOC, approximated by (see [15])

p ≈ ACOC =
ln(|xk+1 − xk| / |xk − xk−1|)

ln(|xk − xk−1| / |xk−1 − xk−2|)
. (8)

The value of ACOC that appears in Table 3 is the last coordinate of vector (8) when the
variation between its values is small. In some cases, the approximated order of convergence
is not stable and it is shown in the table as ’-’.

In Table 1 it can be observed that numerical results confirm the qualitative information
obtained in the dynamical study. Parameters belonging to stable regions achieve third- or
fourth-order of convergence, meanwhile unstable values of a yield to slower convergence
(in terms of number of iterations) or even divergence.

Function f2(x) corresponds to a case of pathological behavior, where divergence ap-
pears for all the values of parameter a, except for the element of the family with fourth-order
of convergence.
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a root iter |xk+1 − xk| |f(xk+1)| ACOC

1/2 x̄1 4 3.04e-25 5.42e-98 3.9890
4 x̄1 5 6.18e-15 1.13e-41 3.0072
-2 x̄1 5 2.7e-16 6.73e-46 2.9906
2 x̄1 NaN NaN

2.6 x̄2 131 1.19e-16 3.95e-46 -
1.7175 x̄2 7 5.62e-10 2.38e-26 3.0050

Table 1: Numerical results for f1(x) and x0 = −1

a root iter |xk+1 − xk| |f(xk+1)| ACOC

1/2 x̄1 5 7.06e-22 2.59e-108 5.1583
4 > 1000
-2 > 1000
2 > 1000

2.6 > 1000
1.7175 > 1000

Table 2: Numerical results for f2(x) and x0 = 1.5

a root iter |xk+1 − xk| |f(xk+1)| ACOC

1/2 x̄1 22 6.04e-13 1.35e-26 1.0000
4 x̄1 27 8.60e-13 6.65e-26 1.0000
-2 x̄1 36 5.93e-13 6.85e-26 1.0000
2 > 1000

2.6 x̄2 232 7.60e-13 8.58e-26 1.0000
1.7175 > 1000

Table 3: Numerical results for f3(x) and x0 = 0.5

As in case of the first function, the numerical behavior of the members of the family on
f3 corresponds to the dynamical information obtained in previous sections. However, as the
roots in this case are double, convergence is linear.

a root iter |xk+1 − xk| |f(xk+1)| ACOC

1/2 x̄1 4 3.86e-20 1.66e-81 4.3166
4 x̄1 5 1.47e-10 1.07e-30 -
-2 x̄1 5 1.26e-09 4.81e-28 3.1058
2 x̄1 8 1.70e-21 7.08e-64 -

2.6 x̄1 4 1.09e-11 2.61e-34 2.7894
1.7175 x̄2 18 4.00e-23 1.00e-67 -

Table 4: Numerical results for f4(x) and x0 = 5
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Table 4 shows a weaker relationship between dynamical and numerical results. In this
case, some ’unstable’ values of a show a behavior as stable as that of other methods of the
family. Nevertheless, unstable performance remains in other elements of the class.

It can be concluded that, in general, the numerical performance of the members of the
family belongs to stable regions of the parameter planes. The computational order of con-
vergence confirms the theoretical results.

6 Final remarks

There are regions in the parameter planes where there exist attractors that do not correspond
to the roots of the equation, so the corresponding numerical method can fail if the initial
conditions are not appropriate. Accordingly,

– A dynamical study of the system help us to understand and control the behavior of the
numerical method.

– The study of the behavior of a family of numerical methods in terms of the parame-
ters provides information about which members of the family are more efficient. This
statement is confirmed by numerical results.

Acknowledgments: The authors thank to the anonymous referees for their suggestions to
improve the readability of the paper.
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